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ABSTRACT 

The fractional order modeling method of robot dynamics with one, two and three degrees of freedom is introduced. 

The stability of the fractional order model is proved by using the second-order Lyapunov method. A basic physical pa-

rameter is considered, that is, the inertial mass of the connecting rod. Freecad software is used for mechanical design. 

The dynamic models of 2-DOF and 3-DOF robots are established, and their motion trajectories are given in plane (x, y) 

and space (x, y, z) respectively. The model is programmed on the development card based on microcontroller. The ad-

vantage of the development card lies in its peripheral output, because it has two analog output channels, which are sent 

to the oscilloscope. The results are consistent with the proposed model. 
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1. Introduction 

Mathematical model is the approximate value of physical sys-

tem behavior. In the existing mathematical tools, fractional-order cal-

culus (FOC) has interesting characteristics compared with integer order 

calculation. In the subject of system dynamics modeling, FOC has better 

approximation than integer order calculation. For example, FOC is ap-

plied to the modeling of diver system. The circuit dynamics model based 

on integer order differential equation shows the difference between the 

experimental data and the data generated by the model. The widely 

studied circuit is a circuit composed of resistance and capacitance in 

series. Due to the difference between integer order model data and ex-

perimental data, the model of the circuit is questioned. Gómez-Aguilar[1] 

proposed the fractional order model of RC circuit. The error of the data 

of the fractional order model is much smaller than that of the integer 

order model. Goodvine[2] introduced the application of FOC in the study 

of welding process dynamics. Tejado[3] applied FOC to the study of 

human arm, and Rosario[4] used FOC on the axis of robot arm. Shalaby[5] 

introduced an inverted pendulum into the FOC model. Zhang[6] intro-

duced FOC when estimating the CARC state of supercapacitors. Shi et 

al.[7] proved that FOC based control can suppress interference, and Ce-

ron-Morales[8] realizes the control of solar concentrator through FOC. 

For robots that can be modeled with various technologies[9], one of 

the widely used robot modeling equations is Euler-Lagrange equation, 

and the result is an integer order differential equation system. The pro-

posed fractional order model must first meet the stability conditions. If 

the fractional order model meets the stability requirements, it can be 

simulated and applied to practical purposes. Therefore, the stability pro-
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of using Lyapunov’s second criterion is given. 

It is difficult to apply fractional order modeling to 

the actual situation[10]. Therefore, this paper uses the de-

velopment card to realize the fractional order modeling of 

one, two and three degree of freedom (DOF) robots, and 

reports the implementation of using multiple microcon-

trollers. Like the work of Flores-Ordeñana et al.[11], in-

which STM32 card is used for its built-in ad-

vantages[12,13]. 

This work is limited to showing the simulation re-

sults realized on the STM32L476 development 

card, because building a robot with the simplest design 

parameters requires financial investment, which can-

not be realized at present. 

2. Development 

The robot connecting rod is a mechanical part, 

which has mechanical properties that must be determined 

digitally. As shown in the Figure 1, you can see a con-

necting rod designed in a free software called FreeCAD. 

The mechanical parameters required for dynamic 

simulation are mass moment of inertia (also known as 

moment of inertia) and center of mass position. The parts 

must be solid materials and their bulk mass density 

must be known data (ρ). Table 1 divides the connecting 

rod into four basic geometric figures and specifies the 

equations for calculating mass moment of inertia and 

center of mass. 

The parallel axis theorem is used to calculate the 

moment of inertia mass of the combined graph. When 

calculating the moment of inertia mass of the complete 

graph, the moment of inertia of the hollow graph is neg-

ative. Use the equations in Table 1 to design the con-

necting rod parameters, and take into account the mate-

rials with known mass bulk density. Then calculate the 

mass of mechanical components, and design the robot 

mechanism according to these known numerical values. 

The simplest is the single connecting rod mechanically 

coupled to the motor[14]. Taking the mechanism as the 

starting point, the dynamic model of the mechanism is 

established. 

Considering the single degree of freedom manipu-

lator (1DOF) diagram shown in Figure 2, parameters 

such as mass, length and moment of inertia are observed. 

These mechanical parameters and simulation values are 

shown in Table 2. 

The first-order integer mathematical model is ob-

tained by using Euler-Lagrange equation. The obtained 

dynamic model is (1): 

𝜏 = (𝑚𝑙2 + 𝐼)�̈� + 𝑏�̇� + 𝑚𝑔𝑙𝑐 𝑠𝑒𝑛( 𝑞) (1) 

The goal is to position the linkage at the desired 

(qd) angle. (1) is written in the form of state variables (2) 

and (3): 

dq q q= −
 (2) 

dq
q

dt
=

 (3) 

According to the state variables, the dynamic system 

is shown in (4): 

( ) ( )
1

2 sen( )c

qd
ml I bq mgl q

qdt


−   = + − −       (4) 

 

Figure 1. (a) Connecting rod design in FreeCAD; (b) dividing the connecting rod plane into basic geometric figures. 
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Table 1. An equation for calculating the basic parameters of the simple geometry constituting the robot connecting rod 
Rectangular Circular Triangular Bend 

    
Mass moment of inertia 

3 3

( )
12 12

bh b h
Es

 
  + 

   
( )

2
21

1
2

r
Es r 

 

2 24

3 2

Es bh
h b

  
 +    

    
( )

2
21

1
8

r
Es r 

 
Centroid 

, ,
2 2 2

b h Es 
 
   

0,0,
2

Es 
 
   

, ,
3 3 2

b h Es 
 
   

1 14 4
, ,

3 3 2

r r Es

 

 
 
   

 

If expressed by Laplace transform, we get (5). 

( ) ( )
1

2

( )

( ) sen( ( ))c

q ssq

sq ml I bq s mgl q s
−

−  
 = 

+ − −      (5) 

The integer derivative of the angular position func-

tion is represented by (6), and according to Krishna[2], the 

fractional derivative is (7). 

( )
( )

dq t
sq s

dt

 
= 

 
L

 (6) 

( )
( )

d q t
s q s

dt






 
= 

 
L

 (7) 

 

Figure 2. Connecting rod diagram of 1-DOF robot. 

Equation (7) has an approximation of the quotient, 

which is the approximation of each continuous fraction in 

(8). 

As 1
( )

 s A
s q s +


+  (8) 

 

Table 2. Physical parameters of one degree of freedom 

manipulator 

Parameter Link 1 Value Unit 

quality m 1 kg . 

length L 1 m 

Center length 
LC compa-

ny 
0.5 m 

quality    

Moment of inertia I 0.1 kg·m2 

Viscous friction coeffi-

cient 

b 0 N∙m∙s-1 

   

Torsion τ - N 

Angular position q - Grade 

angular velocity q
  - grade∙s-1 

angular acceleration q
  - grade∙s-2 

Conditions (9) and (10) must meet: 

1

1
A





+
=

−
 (9) 

0 1 
 (10) 

Therefore, the fractional order approximation ap-

plied to model (5) is expressed as (11). 

( ) ( )
1

2

( )

( ) sen( ( ))c

q ss q

s q ml I bq s mgl q s



 
−

−  
 = 

+ − −      (11) 

(12) is obtained by replacing (8) in (11). 
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( ) ( )
1

2

( ) ( )( 1)

( 1) ( ) ( ) sen( ( ))c

s A q sAs q

As q ml I S A bq s mgl q s
−

− + + 
 = 

+ + + − −     (12) 

On this point, a proportional derivative control (15) 

plus gravity compensation in (13) is proposed. It is worth 

mentioning that PD control has neural network ver-

sions[12,16]. 

( ) sen( ( ))p v ck q k q s mgl q s = − +
(13) 

By replacing (13) with (12) and executing the alge-

bra shown,  a compact equation can be obtained, with is 

supported by the variables shown in (14), (15), (16) and 

(17). Using the inverse Laplace transform, the result is 

(18). 

( ) ( )

( ) ( )

3 2 2

11 2 2

v p

v p

A ml I A k b Ak
A

A ml I A k b k

+ + + +
=

+ + + +
(14) 

12

1 A
A

A

−
=

(15) 

( ) ( )
21 2 2

(1 )p

v p

k A A
A

A ml I A k b k

−
=

+ + + +
(16) 

( ) ( )
( ) ( )

2 2

22 2 2

v p

v p

A k b A ml I k
A

A ml I A k b k

+ + + +
=

+ + + +
(17) 

11 12

21 22

A q A qqd

A q A qqdt

− +  
=   

−    (18) 

At this point, a candidate Lyapunov function (19) is 

proposed. 

2 2

1 2

1 1
( , )

2 2
V q q k q k q= +

(19) 

It is deduced that the candidate Lyapunov function 

about time is (20). 

1 2( , )
d dq dq

V q q k q k q
dt dt dt

= +
(20) 

(21) is obtained by substituting (18) into (20) and 

performing algebraic operations. 

( )2 2 2

1 2 1 2( , ) ( 1) 0p

d
V q q CAk q CDk q A k k k A qq

dt
= − − − − + 

  (21) 

The support (21) is considered to be (22). 

( ) ( )
2

1 1

2 2
11 1 22 2( , )

d
V q q A k q A k q

dt

 
 − + 

  (22) 

By developing the algebra shown in (22), result (23) 

completes the proof of Lyapunov stability of fractional 

order model. 

( )2

1 2( 1) pA k k k A qq− − + 

( ) ( )( )3 2 2 2

1 1 1v pk A ml I k A k b k A k + + + +

( ) ( )( )( )2 2

2 v pk A A k b A ml I k qq+ + + +
(23) 

The proof given shows that the equilibrium point of 

the new model is represented by (24). 

0

0
t

q

q
→

   
=   

   
(24) 

The simulation results show that it is feasible to use 

the fractional order model for stability simulation, that is, 

the equations can be written in programming language, 

and the dynamic behavior of 1 DOF manipulator is sim-

ulated, (24) shows that the model has convergence. The 

simulation will be introduced later, and continue to in-

troduce the modeling of 2 and 3 DOF robots. Figure 3 

shows a 2 DOF robot in which two connecting rods move 

on a plane. 

The physical parameters of 2 DOF robot are shown 

in Table 3. The Euler-Lagrange model of robot 2 DOF is 

shown in (25) 

1 11 12 1 1 1

2 21 22 2 2 2

11 12 1 1

21 22 2 2

( ) ( ) 0

( ) ( ) 0

( , ) ( , ) ( )

( , ) ( , ) ( )

m q m q q b q

m q m q q b q

c q q c q q q g q

c q q c q q q g q





         
= + +         

         

     
+ +     
      (25) 
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Figure 3. Schematic diagram of 2-DOF robot. 

According to the physical parameters, the equation 

of the matrix element is shown between (26) and (35). 

( )2 2

11 1 1 2 2 1 2 2 1 2 2( ) 2 cosm q m lc m lc I I m l lc q= + + + +
(26) 

( )2

12 2 2 2 2 1 2 2( ) cosm q m lc I m l lc q= + +
(27) 

( )2

12 2 2 2 2 1 2 2( ) cosm q m lc I m l lc q= + +
(28) 

Table 3. Physical parameters of 2-DOF manipulator 

Parameter Link 1 Link 2 Unit 

quality m1 m2 kg 

0.1 0.05 

length L1 L2 m 

0.1 0.1 

Center length Lc1 Lc2 
m 

quality 0.05 0.05 

I1 I2 kg·m2 

Moment of inertia 
0.2 0.09 

friction coefficient b1 b2 
N∙m∙s-1 

Viscous 0.2 0.17 

Torsion 1  2  N 

Angular position 1q 2q Grade 

angular velocity 1q 2q grade∙s-1 

angular acceleration 1q 2q grade∙s-2 

2

22 2 2 2( )m q m lc I= +
(29) 

Due to the symmetry of matrices and M (27) and 

(28), they are the same. 

This C matrix, also known as the Coriolis matrix, 

represents terms (30) to (33). When an object moves to 

another rotating object, the Coriolis effect appears, which 

is why q2 angle is an important dependency. 

( )11 2 1 2 2 2( ) 2 sinc q m l lc q q n= −
(30) 

( )12 2 1 2 2 2( ) sinc q m l lc q q= −
(31) 

( )21 2 1 2 1 2( ) sinc q m l lc q q=
(32) 

22 ( ) 0c q = (33) 

The term due to gravity is given in (34) and (35). 

( ) ( ) ( )1 1 1 1 2 1 1 2 2 1 2( ) sin sin sing q m glc q m gl q m glc q q= + + +
(34) 

( )2 2 2 1 2( ) sing q m glc q q= +
(35) 

The model is processed according to the state vari-

ables (36) to (39) and the substitution (40) in (25) is ob-

tained. 

1 1q x= (36) 

2 3q x= (37) 

.

1 2 1q x x= = (38) 

.

2 4 2q x x= = (39) 

To present a compact representation, (41) is used to 

simplify the matrix. 

21

43

1 1
2 111 12

1 1
4 221 22

1 0

0 1

( ) ( )

( ) ( )

xx

xx

x fm x m x

x fm x m x

− −

− −

    
    

      =       
     
       (40) 

1 1 11 12 3 1 3 1

2 2 21 22 4 2 4 2

( ) ( ) 0 ( )

( ) ( ) 0 ( )

f c x c x x b x g x

f c x c x x b x g x





               
= − − −              
                (41)

At this point, we develop algebra and further simplify 

it with (42) and (43). 

1 1

1 11 1 12 2G m f m f− −= +
(42) 

1 1

2 21 1 22 2G m f m f− −= +
(43) 
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As with the single link system, the fractional order 

approximation (44) is applied, and a program similar to 

the 1 DOF robot is used to finally obtain the fractional 

order model shown in (45). 

21

12

43

24

xs x

Gs x

xs x

Gs x









   
   
   =
   
   
     (44) 

In (44), the approximation shown in (12) is per-

formed, and algebra and simplification terms are per-

formed. Finally, the fractional order model of 2 DOF 

robot is established. 

2

1 1 2 12 2

1

1 1 2

2

2
3

2 2 4 32
4

2 2 4

1
1

1

1
1

1

t t

t

t t

t

T T A T
G G T x x

A A A A

x T T
G TG x

x A A

x T A T
A G T x x

x A A A

T T
G TG x

A A

  −   
+ + + −     

     
      
 + + −     

      =     −   + + + −          
 

    
+ + −        

(45) 

In (45), I = 1 2i = until. 

( ) ( 2 )i i

i

G t T G t T
G

T

− − −


(46) 

Arrangements similar to (18) could have been pro-

posed, but in this case (A11, A12, A21, A22) would be a

matrix. 

Finally, the fractional order model of 3 DOF robot is 

given, and its modeling scheme is shown in the Figure 4. 

The 3 DOF robot model in the reference dose not meet 

the requirements in Figure 4. Therefore, the modeling is 

carried out step by step from direct kinematics, inverse 

kinematics and Euler-Lagrange, and the calculation is 

repeated to check the error. Once the correct equation is 

obtained, the parameters given in Table 4 are applied. 

For 3 DOF robot, the Euler-Lagrange model shown 

in (47) is taken as the starting point. 

1 11 12 13 1 11 12 13 1 1 1 1

2 21 22 23 2 21 22 23 2 2 2 2

3 31 32 33 3 31 32 33 3 3 3 3

q i i i c c c q b q g

q i i i c c c q b q g

q i i i c c c q b q g







              
              

= − − −              
                              

(47) 

In equation (47), the inverse matrix I is (48): 

1

11 12 13 11 12 13

21 22 23 21 22 23

31 32 33 31 32 33

i i i m m m

i i i m m m

i i i m m m

−

   
   

=
   
      

22 33 23 32 13 32 12 33 12 23 13 22

23 31 21 33 11 33 13 31 13 21 11 23

21 32 22 31 12 31 11 32 11 22 12 21

m m m m m m m m m m m m
1

 m m m m m m m m m m m m

 m m m m m m m m m m m m

− − − 
 

= − − −
 
 − − −  (48)

Figure 4. Schematic diagram of three degree of freedom 

robot. 

As determinant (49):
( ) ( )11 22 33 23 32 12 23 31 21 33 m m m m m m m mm m = − + − +

( )13 21 32 22 31 m m m mm+ −
(49) 

From (50) to (67), each element of the matrix is 

represented by physical parameters. Due to the symmetry 

of the M matrix, some terms of the matrix are equal, as 

shown in (51), (52) and (54). 

( ) ( )2 2 2 2 2

11 1 1 1 2 1 3 1 2 2 2 2 2 2 3 12 cos cosm m ll I m l m l l q m l q I m l= + + + + + +

( ) ( ) ( )2 2

3 1 2 2 3 1 3 2 3 3 2 22 cos 2 cos cosm l l q m l lc q q m l q+ + + +

( ) ( ) ( )2 2

3 2 3 2 2 3 3 3 2 3 32 cos cos cosm l lc q q q m lc q q I+ + + + +

(50) 

12 21 2 3m m I I= = +
(51) 

13 31 3m m I= =
(52) 

( )2 2 2

22 2 2 3 2 3 1 2 3 3 2 3 32 cosm m lc m l m lc I I m l lc q= + + + + +

(53) 
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( ) 2

23 32 3 3 2 3 3 3 3cosm m I m ll lc q m lc= = + +
(54) 

2

33 3 3 3m I m lc= +
(55) 

Table 4. Physical parameters of three degree of freedom manipulator 

Parameter Link 1 Link 2 Link 3 Unit 

Quality 
m1 m2 m3 

kg 
19.5 1.3 1.1 

Length 
L1 L2 L3 

m 
1.2 1.1 1.1 

Centroid length 
lc1 

0.5 

lc2 

0.5 

lc3 

0.5 
m 

Moment of inertia 
I1 I2 I3 

kg·m2 
4.15 0.37 0.271 

Viscous friction coeffi-

cient 

b1 b2 b3 
N∙m∙s-1 

1.8 1.8 1.8 

Torsion τ1 τ2 τ3 N 

Angular position 1q 2q 3q Grade 

Angular velocity 1q 2q 3q grade∙s-1 

Accelerate 

angular 1q 2q 3q grade∙s-2 

The Coriolis matrix of 3 DOF robot represents the 

dependence of angular position q2 and q3, and there is no 

equal term in this matrix. 

( ) ( ) ( )2

11 2 1 2 2 2 2 2 2 2 22 sen 2 cos senc m l l q q m l q q q= − −

( ) ( )3 1 2 2 2 3 1 3 2 2 32 sen 2 senm l l q q m l lc q q q− − +

(56) 

( ) ( )2

12 3 2 1 2 22 cos senc m l q q q= −

( ) ( )3 2 3 1 2 2 32 cos senm l lc q q q q− +

( ) ( )2

3 3 1 2 3 2 32 cos senm lc q q q q q− + +
(57) 

( )13 3 1 3 1 2 32 senc m l lc q q q= − +

( ) ( )3 2 3 1 2 3 22 sen q q cosm l lc q q− +

( ) ( )2

3 3 1 2 3 2 32 cos senm lc q q q q q− + +
(58) 

( )21 3 1 2 1 2senc m l l q q= ( )3 1 3 1 2 3senm l l q q q+ +

( ) ( )2

3 2 1 2 2cos senm l q q q+ ( ) ( )3 2 3 1 2 2 32 cos senm l lc q q q q+ +

( ) ( )3 2 3 1 2 2 32 sen cosm l lc q q q q+ +

( ) ( )2

3 3 1 2 3 2 32 cos senm l q q q q q+ + +
(59) 

( )22 3 2 3 3 32 senc m l lc q q= −
(60) 

( )23 3 2 3 3 3senc m l lc q q= −
(61) 

( )31 3 1 3 1 2 3senc m l lc q q q= +

( ) ( )3 2 3 1 2 2 3cos senm l lc q q q q+ +

( ) ( )22

3 3 1 2 3 2 3cos senm lc q q q q q+ + +
(62) 

( )32 3 2 3 3 3senc m l lc q q= −
(63) 

( )33 3 2 3 2 3senc m l lc q q=
(64) 

The terms related to gravity are given in sections 2 

and 3. In section 1, since gravity is parallel to the earth’s 

surface, there is no dependence on gravity. 

1 0g =
(65) 

( ) ( ) ( )2 2 2 2 3 2 2 3 3 2 3cos cos cosg m glc q m gl q m glc q q= + + +

(66) 

( )3 3 3 2 3cosg m glc q q= +
(67) 
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Using the same method for 1 and 2 DOF system, the 

fractional dynamic model of 3 DOF robot is (68): 

2

1 1 4 12 2

2

2 2 5 22 2
1

2
2

3 3 6 32 2
3

4

1 1 4
5

6

1
1

1
1

1
1

1

t t

t t

t t

t

T T A T
G G T x x

A A A A

T T A T
G G T x x

x A A A A

x T T A T
G G T x x

x A A A A

x
T T

G TG xx A A
x

 −   
+ + + −    

    

 −   
+ + + −    

      
 

 −    
+ + + −     

    = 
    

+ + −   
  

  
2 2 5

3 3 6

1

1

t

t

T T
G TG x

A A

T T
G TG x

A A

 
 
 
 
 
 
 
 
 
 
 
  

  
    

+ + −    
    

    
 + + −   
     

(68) 

(68) applies to (69) and (70): 

1 11 12 13

2 21 22 23

3 31 32 33

G i i i

G i i i

G i i i

   
   

=
   
      

( )

( )

( )

1 1 1 1 1 11 1 12 2 13 3 1 1

1 2 2 2 2 21 1 22 2 23 3 2 2

1 3 3 3 3 31 1 32 2 33 3 3 3

d

d

d

kp q q kv q c q c q c q b q

kp q q kv q c q c q c q b q

kp q q kv q c q c q c q b q

  
  
 

− − − − − −

− − − − − −

− − − −
 
  
 − −  

(69) 

1 1

1

.
2 2

2

.

3 33

t

t

t

G G

G T

G G
G

T

G GG

T

−

−

−

− 
 

 
 

  − 
    
 

 
  −  

 
  (70) 

3. Result

This section compares the integer order model with 

the model developed using FOC. Figure 5 shows the 

response diagram of the first-order integer and sec-

ond-order fractional robot connecting rod, and the order 

of the fractional derivative is μ = 0.99 and μ = 0.95. 

The very similar diagram shows that the steady-state 

error is more obvious for the fractional order model. If the 

value of μ is small, this is what we want to prove. The 

velocity diagram of link 1 also shows that the velocity 

approaches zero, i.e. the equilibrium value is reached. As 

shown in the Figure 5, the fractional order response is 

slower than the integer order model. In fact, if the frac-

tional order model with high response speed is to be 

simulated, the continuous fractional approximation (8) 

must have more terms. The more terms, the more accu-

rate the bandwidth of the fractional order model[9]. Finally, 

in this simulation, the q1 required angle is 90°. 

Figure 5. Graphical response of the 1 DOF robot. 



Fractional Order Modeling of 1,2,3 DOF Robot Dynamic 

37 

Figure 6 shows the response diagram of connecting 

rod 1 of the 2 DOF robot, which is of integer order and 

two fractional orders, and the order of the fractional de-

rivative is μ = 0.99 and μ = 0.95. The fractional order 

diagram shows that the error in the steady state is easier to 

observe, and the speed approaches zero, i.e. it reaches the 

equilibrium value. In the simulation, the q1 and q2 re-

quired angle is 10°. 

Figure 7 shows the response diagram of the con-

necting rod 1 of the 3 DOF robot, which is of integer 

order and two fractional orders, and the fractional deriv-

ative is μ = 0.99  and μ = 0.95 . The fractional order 

diagram shows that the error in the steady state is easier to 

observe, and the speed approaches zero, i.e. it reaches the 

equilibrium value. In the simulation, the q1, q2 and q3 

required angle is 5°in the graphics of 3 DOF robot. 

Figure 6. Response diagram of connecting rod 1 of the 2 DOF robot. 

Figure 7. Response diagram of connecting rod 1 of the 3 DOF robot. 
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Figure 8. Output the image of “HOLA” track on the oscilloscope. 

Figure 9. The figure shows the “HOLA Dr CHUA” track output by the oscilloscope. 

Figure 10. Set the “HOLA” path for the score model of 3 DOF in LabVIEW. 
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Within the application scope of these models, the 

trajectories of 2 and 3 DOF models and “H” “O” “L” “A” 

are designed by using the advantages of STM32L476 

card. In the case of 2 DOF model, the route is drawn by 

oscilloscope, as shown in the Figure 8. In addition, a path 

of “HOLA Dr CHUA” is designed and displayed on the 

oscilloscope. For the 3 DOF model, the “HOLA ” track is 

drawn in LabVIEW, as shown in Figure 10. 

Figures 8 and 9 are obtained using Tektronix 

DPO3032 oscilloscope. Photos of greetings to the head of 

ITSPR are shown in the Figure 9. 

4. Conclusion

The results show that the fractional order modeling 

of the dynamic model of the rotating manipulator will 

produce convergence results when it is expected to reach 

a certain position or describe a trajectory in the 

point-to-point control method. In fact, the fractional order 

must be close to the first order, which shows that the 

difference between the traditional integer order model 

and the fractional order model is not significant. The 

fractional order model includes the following points. 

1. The results show that the fractional order dynamic

model meets the second criterion of Lyapunov stability, 

which shows that the model has convergence.  

2. The simulation diagram shows the expected error

of the fractional order model in the steady state, which 

means that the fractional order model is more accurate 

than the integer order model.  

3. The fractional order model allows to simulate the

complex trajectories of 2 and 3 DOF systems, which are 

implemented on STM32L476 development card and 

displayed on oscilloscope. 
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