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ABSTRACT 

In view of the continuous growth of energy demand and interest in environmental protection, the use of clean energy 

to replace fossil fuels is a global trend. Wind energy is the fastest growing renewable energy in the world in recent years. 

However, in the case of Mexico, there are still some difficulties in promoting its use in some areas of the national territory. 

One difficulty is knowing in advance how much energy can be injected into the grid. This paper introduces the 

development of artificial intelligence technology for wind power generation prediction based on multi-year 

meteorological information. In particular, the potential application of Bayesian network in these prediction applications 

is studied in detail. A weather forecasting method based on Dynamic Bayesian network (RBD) is proposed. The 

forecasting system was tested using meteorological data from the regional wind energy technology center (CERT) of the 

National Institute of Electricity and Clean Energy (INEEL) in Oaxaca, Mexico. The results are compared with the time 

series prediction results. The results show that dynamic Bayesian network is a promising wind power generation 

prediction tool. 

Keywords: Wind power generation,  Power prediction,  Artificial intelligence, Dynamic Bayesian network 

ARTICLE INFO 

Received: Aug 21, 2021 

Accepted: Oct 19, 2021 

Available online: Oct 25, 2021 

*CORRESPONDING AUTHOR

Ibargüengoytia-González Pablo Héctor 

pibar@ineel.mx; 

Reyes-Ballesteros Alberto 
areyes@ineel.mx  

CITATION 

Pablo Héctor IG, Alberto RB, Mónica BP, et 

al. Prediction of Wind Power Generation 

with Modern Artificial Intelligence Technol-

ogy and Prediction of Wind Power Genera-

tion with Artificial Intelligence Tools 2021; 

4(2): 52-62. doi: 10.32629/jai.v4i2.501 

COPYRIGHT 

Copyright © 2021 by author(s) and Frontier 

Scientific Publishing. This work is licensed 

under the Creative Commons Attribution-

NonCommercial 4.0 International License 

(CC BY-NC 4.0). https://creativecom-

mons.org/licenses/by-nc/4.0/ 

1. Introduction

The continuous growth of energy demand and the depletion of fos-

sil and nuclear energy, coupled with the need to protect the environment,

make the intensive and extensive use of renewable energy attractive and 

necessary. Compared with traditional energy, renewable energy has in-

exhaustible advantages. Its operation cost and the generation of pollu-

tion sources, especially the emission of carbon dioxide, are very expen-

sive. However, some of their main disadvantages, such as the 

intermittent and variability of solar energy, are difficult to predict. These 

two disadvantages are very important, because in the power grid, in or-

der to meet the requirements of power grid operation specifications, it is 

necessary to maintain a balance between the power consumption and its 

power generation. For example, if the electricity generated by wind 

power shows variability in the amount of electricity generated, non-dis-

tributable electricity will be considered, which may lead to quality or 

power interruption. 

Wind power generation is affected by atmospheric parameters, such 

as wind speed and direction, temperature, humidity and pressure, as well 

as internal factors, such as maintenance plan and design constraints. On 

the one hand, it is obvious that the prediction of wind power generation

makes the control, management, maintenance and planning of power  
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dispatching possible. On the other hand, the impact 

of good dispatching is transformed into significant 

economic savings and better utiliza-tion of 

renewable resources by power suppliers. When 

user demand and supplier scheduling are esti-mated 

synchronously, the benefit is greater. There-fore, it 

is best to develop a method to adjust the sup-ply of 

wind farms according to wind conditions. These 

forecasts must have such a prediction range to help 

calculate the power output and improve the fit-ting 

of the actual demand curve.  

Wind power prediction can be realized by 

phys-ical methods and random methods. All 

physicists are based on physical considerations of 

terrain, such as roughness, terrain and obstacles, 

and the atmos-phere, where they simulate the crazy 

contours of the wind. In the stochastic model, the 

prediction is based on the analysis of data series and 

the use of time se-ries, statistical technology and 

artificial intelligence technology. 

This paper presents an artificial intelligence 

(AI) method based on Dynamic Bayesian Network 

(DBN) and machine learning, which is a good wind 

forecast-ing method. DBN is an extension of static 

Bayesian network or simple Bayesian Network 

(BN). Its main features are: • They allow coding of knowledge and manage-

ment experience and help users maintain their

models to improve their confidence in the accu-

racy of the models.

• They use multiple model learning algo-

rithms based on historical data to deal with differ-

ent types of applications.

• They have a powerful reasoning mechanism to re-

spond to information queries given some evi-

dence.

• The output of dynamic Bayesian network is prob-

ability distribution, not a point prediction value.

They allow handling noisy or incomplete infor-

mation and are ideal for intermittent processes.This 

paper expounds two kinds of original input: aca-

demic input and technical input. Academic contribu-

tion corresponds to the development of DBN on 

short-term prognosis. Specifically, it is part of the 

construction originally proposed by DBN[1]. When 

calculating data sets in the form of time series, it is 

extended to prediction applications. Especially in 

this case, it is used to predict the wind and generate 

electricity on the 5-hour horizon. This recommenda-

tion is demonstrated by predicting the wind speed 

and direction of Oaxaca, Mexico, using two years of 

historical data from a wind speed measurement sta-

tion in the region. On the other hand, technical inputs 

include the development of proprietary software 

tools[2], which allow dynamic Bayesian networks 

to be learned from data. This tool is used to perform 

the experienments. Finally, the absolute error of the 

model is used to evaluate the quality of the wind 

speed. The results are compared with the traditional 

prediction methods, the average error is acceptable, 

lower than other methods, and satisfactory results are 

obtained. 

The structure of the rest of this paper is as fol-

lows: the next section briefly introduces the predic-

tion of wind power generation. The next section in-

troduces the Bayesian network and dynamic 

Bayesian network tools for wind power generation 

prediction. Experiments and results will be described, 

analyzed and evaluated in the following section. Fi-

nally, Finally, the last section concludes the article 

and presents future work. 

2. Wind prediction

The wind power prediction corresponds to the

offshore power generation of an aircraft at a certain 

time in the future. Weather forecasting can be carried 

out on different time scales. Short term predictions 

range from milliseconds to a few milliseconds and 

are used to actively control aerogenerators. Forecasts 

made within hours or up to 3 days are medium-term 

and contribute to power system management of the 

energy system and its trading. These predictions help 

to determine the use of traditional plants (unit com-

mitment) and the optimal scheduling of these plants 

(economic dispatch). The 5–7 day forecast is called 

long-term forecast and is used for maintenance plan-

ning. 

Wind energy is the kinetic energy generated by 

mass airflow. In this case, it is stable and predictable 

on an annual scale, but it depends on weather condi-
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tions on a smaller time scale. Meteorological condi-

tions produce changes directly in air mass movement 

according to incident solar radiation, ambient tem-

perature, relative humidity, atmospheric pressure, al-

titude and latitude. These changes may be cyclical in 

days, months, seasons, seasons or years. The speed 

of the wind may be very small, from 2 km/h in 

the breeze to 120 km/h in the hurricane, lasting from 

a few seconds to a few days. 

Wind energy generates electricity by converting 

kinetic energy into mechanical energy, which is then 

converted into electrical energy by wind turbines. 

According to Bates law, the maximum wind energy 

available to wind turbines is 59.3%[3], but the maxi-

mum wind energy of commercial wind turbines is 75% 

to 80% of the Bates limit[4]. The available power 

when the wind passes through a vertical area at a cer-

tain speed is determined by 

31

2
p Av= (1)

Where ρ is the air density. Within the operating 

temperature range of Oaxaca, the air density is as-

sumed to be constant. Figure 1 corresponds to the 

power curve of the wind turbine and shows the 

power generation as a function of wind speed. The 

power curve characterizes the air generator. The min-

imum speed at which power begins to be generated 

is called the starting speed and is typically 3 m/s or 4 

m/s. With the increase of speed, the power also in-

creases. The wind turbine runs under partial load un-

til it reaches the rated speed and matches the rated 

power. The wind turbine is designed to produce max-

imum power at a speed between rated speed and stop 

speed, which corresponds to the maximum speed at 

which the wind turbine operates under safe condi-

tions, with a typical speed of 25 m/s. 

Wind energy prediction can be carried out directly or 

indirectly. In the first case, the estimation is realized by 

directly describing the power output of the electrical 

power variables. In the second case, it predicts the be-

havior of wind by estimating meteorological variables 

and the correlation between power curve and electric 

power. 

Figure 1. Wind turbine power curve 

The models used for prediction can be divided 

into two categories[5]: physical models[6]and stochas-

tic models[7]. Physical methods are based on physical 

considerations of terrain, such as roughness, terrain 

and obstacles, and atmosphere, and simulate local 

wind profiles. These models include numerical 

weather prediction (NWP)[6], sky image analy-

sis[8]and power generation system 

In the stochastic model, the prediction is based 

on data sequence analysis and carried out through 

various technologies: 

Time series. When data is available, they use 

historical data. The prediction of variables is com-

pleted by multiple transfer values of the same varia-

ble. 

Statisticians. They use statistical functions to 

estimate the value of a given variable and the histor-

ical data of that variable and other related variables. 

Artificial intelligence (AI). This includes build-

ing models using automatic learning algorithms, ex-

pert knowledge, or a mixture of both. 

The main statistical methods include AR, 

ARMA and ARIMA[9]. On the other hand, the current 

wind field prediction models based on time series 

and statistical models include ALEASOFT,  AEO-

LIS, CASANDRA, CENER, GARRAD HASSAN, 

METEOROLOGICA, METEOSIM or METE-

OTEMP[10]. They are based on the prediction of at-

mospheric changes by some numerical models, and 

do not have enough accuracy to predict the horizon 

wind speed of more than 5 hours. As another option 

to solve this problem, we can find a method to solve 

complex problems that cannot be solved by tradi-

tional methods by using artificial intelligence tools 
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such as artificial neural network (ANN)[11], Bayesian 

network[12], fuzzy logic and support vector ma-

chine[13]. These methods “learn” the relationship be-

tween prediction and measurement series. These 

methods usually provide better results within 2–4 

hours, depending on the method selected. In addition, 

artificial intelligence methods usually provide better 

results than statistical methods. 

An effective prediction technology devel-

oped by artificial intelligence community is Dy-

namic Probabilistic Graphical Models (DPGM). 

Many of the problems listed can be solved by using 

this method. Its main features are:  

(1) Represents a conditional dependency between 

variables.  

(2) This is a kind of reasoning technology with un-

certain process and environment.  

(3) It can represent the structure and parameters of 

expert knowledge. 

(4) It represents the result in the form of probability 

distribution, not in the form of point value. 

(5) Because MGPDs has the ability to express con-

ditional independence, it implicitly excludes irrele-

vant variables. 

Despite these characteristics, in order to support 

the assumption that this technology can achieve good 

results, different models must be established and 

evaluated. The main DPGMs are Bayesian networks 

and Markov networks. 

In this paper, Bayesian Dynamic Network 

(BDN) is used to predict wind speed and direction, 

as described below. BDN links wind speed and di-

rection with ambient temperature, relative humidity 

and solar radiation to predict the probability of wind 

speed and direction in the future. Then, the power 

generated by the power characteristic curve of the 

wind turbine is mapped. Then it briefly introduces 

the method of predicting wind power generation. 

3. Bayesian networks and Dynamic

Bayesian Networks 

The problem of wind power generation is the 

variability of its power fluctuation and availability. I 

mean, it’s an uncertain question. Among the ideal ar-

tificial intelligence methods for dealing with uncer-

tain problems, Bayesian network (BN) has been 

proved to be practical in general practical applica-

tions, especially in alternative energy[14]. BN repre-

sents the dependent and independent relationship be-

tween process or system variables. They are based on 

Bayes’ theorem, which links the conditional proba-

bility of events or assumptions H of given evidence 

E and P (H|E) with the conditional probability h and 

P (H|E) of given evidence E, 

( ) ( )
( )

( )

P E H P H
P H E

P E
=

∣
∣ (2) 

BNs are AI methods because they allow the 

knowledge of certain processes to be represented in 

two ways. First, the network structure represents the 

dependence and independence between varia-

bles.Second, the parameters represent the quantita-

tive knowledge of the process. Parameters refer to 

the terms P (E|H) and P (H). The term P (E|h) is eas-

ily found in historical data, such as disease and 

symptoms, equipment failure and impact measure-

ment. Then P (H/E) is given by equation (2). 

Formally speaking, BN is a directed acyclic 
( , )G N E=

 , that allows the representation of 

knowledge in applications dealing with uncer-

tainty[12,15]. A N  node represents a set of 
 1 2, , , nX X X X= 

 random variables. The arcs E

in the structure represents the probabilistic relation-

ship between nodes. If 
( )iPa X

 is the parent node 

set 
*i

X
  of a node, the Bayesian network structure 

corresponds to the joint probability distribution of 

the application, as shown below: 

( ) ( )( )1 2

1

, , ,
n

n i i

i

P X X X P X Pa X
=

 = ∣ (3) 

Among ( )iPa X  them, it represents the parent

node of the variable node, which further means that for 

each variable in iX the network, BN, , iRB X when it 

has the information of the parent node, it is condition-

ally independent of the non child nodes in ( )iPa X  the

network. In summary, BN represents the dependency 

and independence between variables in the application. 

For dependencies, they are quantified in the form 

of the Conditional Probability Table (CPT) of the child 

node value, given the value of the parent node P (E|H). 

All TPCS and a priori probability vectors P (H) of child 
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nodes need to be provided. 

Once the process knowledge is captured in the 

analysis, the probabilistic inference process can be 

performed, that is, the evidence e is used to assign a 

value to the cone node, and the probability of some 

assumptions P (H|E = e) can be calculated. This is 

equivalent to calculating the marginal probability of 

the unknown variable, given the known variable P 

(X|e)). 

The BN described so far infers according to the 

information at a given time point and the evidence in 

the model. In other words, there is no time dependence. 

However, some applications, such as wind forecasting, 

want to establish conditional models between current 

and past meteorological variables to calculate future 

values. In order to consider weather factors in Bayesian 

prediction model, dynamic Bayesian network (RBD) is 

developed. 

In dynamic applications, the working universe is 

not only a variable, but also a time series variable that 

changes with time. Space now consists of 

 ( ) ( ) ( ) ( )

1 2, , ,t t t t

nX X X X=   a ( )t

iX  collection of iX

time t  variables. Then, the prediction ( )( )T t

i jP X X∣

problem T

iX becomes a time ,T i j variable. 

Obviously, the spatial combination of variables at 

different time points represents a very complex set. 

Therefore, the assumptions are as follows: 

(1) They are considered time intervals, or discrete 

1 time. Therefore, (0) (1) ( ), , ,t tX X X X y=   therefore.

( ) ( )
1

(0: ) ( 1) (0: )

0

T
T t t

t

P X P X X
−

+

=

= ∣  This means that some

values of the T future depend on all values of the past 

(0 : )T and present. 

(2) The system is Markovian. This 

( )(0) (1) (T), , ,P X X X = . ( )
1

( 1) ( )

0

T
t t

t

P
−

+

=

 X X∣ . In other 

words, the future has nothing to do with the past and 

the present. 

(3) The system is stationary. That’s ( )( 1) ( )t tP X X+∣ it. 

1 The symbols used are as follows. Bold capital letters represent 

variable sets, such as X. capital letters represent variables, such 

Everything’s t  is the same. This means that the state 

of the next process depends on the current state, just 

like in any part of the sample (every year, spring or win-

ter). 

The BDN creation program developed in this pro-

ject was inspired by the BDN proposal[1]. This mecha-

nism, as well as the assumption that the system is Mar-

kovian, allows the creation of a two-stage Bayesian 

Network ( )( 1) ( )t tP +
X X∣  to define t  anything in the 

process. This network is called a transition network. 

Figure 2 shows the network transformation learned in 

the case study. Each node represents the meteorological 

variables involved in the analysis, in which the left 

layer corresponds to the weather and t  the right layer 

corresponds 1t +  to the weather. Note that all varia-

bles depend on the previous time, and some variables, 

such as temperature (Temp_1), depend on the current 

value of solar radiation in addition to the previous Rel-

ative Humidity (RH) and Solar Radiation (SR). 

Under the third assumption, the system is such that 

the BND required for future unit time prediction is re-

alized by expanding the transition network at (N + 1) 

layer or stage. For example, if time data is used and 

needs to be predicted to 5 hours, BDN is formed by ex-

panding the transmission network to layer 6. Consider-

ing that the first layer corresponds to the input layer and 

each of the five layers contains a prediction for the next 

hour, it is considered to be six layers. Figure 3 shows 

the BDN results of wind forecast on the 5-hour horizon. 

To sum up, the learning process of 5-hour 

power prediction in this project is summarized as fol-

lows: 

(1) Divide the historical database into two 

groups. Data for training NBD and data for verifying 

NBD performance. Note that the data must be a time 

series, not just a set of records. 

(2) If the time base of the original data is less 

than the required time base, the average value is 

mapped to the variable value in the required step. 

(3) Use uniform division to discrete continuous 

values. 

as X. 
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(4) Copy training data in two columns of NAS, in-

cluding records in each row (x (T), X (T + 1)). The learn-

ing algorithm of Bayesian network is used to construct the 

transition network. In this project, the hugin package[16] 

was used to build the network in Figure 2. 

Figure 2. Experimental case study of network tran-

sition 

Figure 3. Dynamic Bayesian network results for 5-

hour prediction 

(5) Expand the transition network on the (N + 1) 

time slice to form the BND as shown in Figure 3. As 

mentioned earlier, for the horizon with N stages in 

the future, the (N + 1) layer is required. 

(6) The EM algorithm (Expectation-Maximiza-

tion)[17] is used to learn the model parameters corre-

sponding to the child node conditional probability 

matrix and the root node prior probability vector in 

Figure 3. 

The size of BND increases in layers according 

to the stages of the predicted horizon. However, this 

method is limited to the prediction of small stages in 

the future, because more than 10 or 12 stages will 

make the Bayesian model impractical due to the 

number of nodes in reasoning[18]. 

The reasoning in the model includes assigning 

values in the variable layer of time t and predicting 

the probability of the sixth layer in the network. The 

result is the posterior probability distribution of all 

variables including wind speed. 

4. Experiments and result

These experiments were conducted at INEEL 

regional wind energy technology center (CERT) in 

Ventosa, Oaxaca, Mexico. Its infrastructure is de-

signed to install up to 5 MW of wind power, which 

can be integrated with different capacities and mod-

els of wind turbines. 

CERT sells electricity produced by Japan’s 300 

kW KOMAI wind turbine, which was donated to 

INEEL by the global environment facility (GEF) 

through the United Nations Development Pro-

gramme (UNDP). 

The historical wind data and other meteorolog-

ical variables obtained from the center consist of 

time series marked with date and time, which lasted 

for more than two years. The information collected 

includes: Ambient temperature (Temp), Relative Hu-

midity (RH), Solar Radiation (SR), Wind Direction 

(DirV) and wind speed (VelV) at two different 

heights on the ground. Record the data every ten 

minutes. The data of 2012 and 2013 are used for 

training, and the data of January and February 2014 

are used to test our system. Preliminary results are 

presented in[19]. 

As mentioned above, the model is learned from 

the weather data of CERT from January 2012 to De-

cember 2013. The model is shown in Figure 3. The 

experiment was tested on the time data from January 

to February 2014. In order to evaluate the perfor-

mance of the prediction system according to specific 

weather conditions, experiments under charging cur-

rent conditions were carried out in a specific time. 

For example, we loaded the evidence at 0:00 (mid-

night) and compared it with the prognosis at 5:00. 

The experiment was conducted from 12:00 to 17:00 

(half a day). There are significant differences in solar 

radiation and temperature between the two periods. 
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The experiment was carried out by the follow-

ing methods: 

(1) Obtain historical data from the meteorolog-

ical record variables of a location, mainly including 

speed and wind direction.  

(2) The learning prediction model follows the 

method described in the previous section.  

(3) Use the historical test data of to learn BND 

feedback with value at a given time point. Through 

probability propagation, the future posterior proba-

bility distribution of N layer wind speed is obtained. 

This is achieved through the Hugin package or any 

other probabilistic model processing package.  

(5) Numerical calculation and comparison with 

the measured data file. This will be described in de-

tail below.  

(6) Difference calculation and prediction error 

estimation. 

Alternatively, RBD training (step 3) can use the 

current value to predict the next N hours (or stages) 

in some cases. It is worth mentioning that the predic-

tion error is calculated after n stages are completed. 

Figure 4 shows the wind speed forecast results 

in February. The vertical axis represents the wind 

speed (M/s). The horizontal axis represents an exam-

ple of the experiment, once every hour every day. 

The lines with “Measured” and “Estimated”  repre-

sent the measured and predicted wind speed do, re-

spectively. As shown in the figure, the predicted 

value is very close to the actual value in some times, 

while the difference is more significant in others. 

The deviation between the predicted value and 

the measured value is quantified by error.  The iner-

tial measurement error is calculated by the following 

formula: 

( )

( )
real foreast 

Inst 

max min

100
VelV VelV

E
V V

−
= 

−
 (4) 

Velocity real VelV  measurement and VelV predic-

tion are predictive. Instrument engineers use this mech-

anism when evaluating equipment. This value is di-

vided by the difference between the actual value and 

the predicted value by the full scale of the instrument. 

In this project, we assume 

max min25m / s, y 0m / sV V= = . 

Wind speed is a difficult variable to predict be-

cause of its uncertainty and natural volatility. The av-

erage error of 0–5 hours is 8.21%, and the average 

error of 12–17 hours is 5.76%. In Figure 4, the max-

imum error is more than 19%, while the minimum 

error is almost 0. Most errors are less than 5%. Alt-

hough this seems to be a huge error in somecase, the 

literature shows that a wind prediction system with 

this average error is promising[20]. 

The literature suggests that in addition to the 

measurement of single point prediction error, the un-

certainty of probability prediction should also be 

considered[5,21]. These references suggest the neces-

sity of calculating probabilistic models given numer-

ical weather prediction (NWP) models. Because our 

prediction mechanism is probabilistic, we get the 

probability distribution of wind speed under given 

weather conditions in the next 5 hours. To calculate 

the NWP, the expected value of the posterior proba-

bility vector was used, that is, Vest=sn V elViPi where 

V elVi is the central value of the interval i, and Pi is 

the probability of the interval. 

The uncertainty estimation of wind forecast is cal-

culated by Quantile mechanism[20]. The posterior prob-

ability distribution of a given wind speed, t k
P + where 

t   the current time is k   the current time and is the 

prediction range (the number of previous t kq

+  time

slices), [0,1]  and the quantile with parameters x is 

( )prob t kP x +  = defined as the given value.
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Figure 4. The experimental results of wind speed in 0-5 hours and 12-17 hours are predicted by partial plot. 

The lines marked “Measured” and “Estimated” represent actual and predicted values. Actual and predicted 

values are in M/s.

Figure 5 shows the results of the same experi-

ment as Figure 4 with the two quantiles of 20% and 

80%, forming a confidence interval with a probabil-

ity of 60%. The mechanism stipulates that the ex-

pected power generation of a given horizon is 1 to 

1.6 MW, with a probability of 60%. In order to com-

plete the evaluation of the experiment, Table 1 

shows the different error measurements of the above 

two experiments[21]. As we have observed, the exper-

iments carried out from 12 to 17 show small errors. 

On the other hand, another measure for calculating 

the error in the prediction problem is the average 

quadratic error (RMS), which is consistent with the 

average error of prediction, which is defined as (Os-

man, 2001): 
1

2
2

lnst 

1

1 n

i

rms E
n =

 
=  
 
 (5) 

Where lnst E  is the instrument error defined in 

equation 3. 

The errors reported in Table 1 are derived from 

the data of 30 cases of 0 hours (or 12 hours), i.e. 1 

month. In each experiment, the actual value was 

compared with the predicted value. Calculate the er-

ror using equations 3 and 5. A negative number in the 

first line indicates overestimation because the esti-

mated value is greater than the actual value. Table 1 

compares the predicted values of different indicators 

of the two experiments. Efforts during the day 

are better than efforts at night. 

In order to compare our prediction results with 

other traditional time series statistical methods, Ta-

ble 2 shows the results of these methods, which are 

obtained from a set of experience in the same scene 

and data set.

Table 1. Experimental result error 

Error type Experiment 0-5h Experiment 12–17 hours 

Percentage -4.4 -2.3 

Absolute percentage 8.21 5.67 

Minimum value 0.17 0.18 

Maximum 19.4 17.36 

Mean square error 9.84 7.28 
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Table 2. Experimental result error of traditional method 

AR model command Ma command Map Reach 

Human Re-

sources De-

partment 

44 0 0.235171 45 

Arms 12 30 0.271023 52.5 

Alima (a) 6 27 0.365057 27.5 

Alima (b) 6 27 0.280259 35 

(a) Average adjustment 

(b) Do not adjust the average 

The first column shows the experimental model. 

AR is a 44 order autoregressive model. ARMA is an 

autoregressive model of moving average (MA), with 

AR of order 12 and MA of order 30. The latter two 

models are the 6th and 27th order AR integrals of AR 

and MA, respectively[22]. The difference between the 

two methods is that in data preprocessing, the aver-

age value is subtracted from all values to predict time 

invariance (adjusted to the average value). The 

fourth and fifth columns are absolute error - half per-

centage point (MAPE) and directional accuracy 

(DA). MAPE and DA measure the accuracy of the 

model and predict the future accuracy respectively. 

Both indicators are expressed as percentages. Ideally, 

a good prediction model can obtain low map and 

high DA. MAPE and DA are calculated by compar-

ing the predicted value with the actual value. Figure 

6 shows the results of a short experiment using time 

series statistics. 

By qualitatively comparing the BND results 

(Figure 4) with the results of the time series method 

(Figure 6), it can be seen that the fact of using mul-

tiple variables rather than historical variables in the 

prediction represents a performance advantage. Fig-

ure 4 shows that the curve tracking between meas-

urement and prediction is larger than that in Figure 

6. 

Figure 5. The experimental results are 0–5 hours and 12–17 hours, with certain uncertainty. The area shown 

represents a 60% probability. Red indicates the measured speed and blue indicates the estimated speed. 
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Figure 6. ARMA and ARIMA methods are used to 

match the experimental results. The red line repre-

sents the actual value and the blue line represents 

the predicted value. Horizontal axis timing. 

5. Conclusions and future work

The prediction of wind power generation is an 

inevitable requirement for the expansion of clean 

power generation. Bayesian network is a technology 

used to deal with intelligent systems with uncertainty. 

This paper presents a new application of dynamic 

Bayesian network in wind power generation predic-

tion. The most important contribution of this paper is 

the development of dynamic models dedicated to 

short-term power forecasting and the methods of 

learning these models. The innovation of our BND 

lies in the corresponding relationship between the as-

sumption of prediction problem and the formation of 

BND structure, which corresponds to the BND clas-

sical structure proposed by Murphy[1]. 

A method of building wind prediction model us-

ing dynamic Bayesian network and multi-layer per-

ceptron is proposed[23]. The two prediction models 

are evaluated and compared to select the model with 

the highest performance. In the case of Bayesian 

model, it is recalibrated recursively to restore the ac-

curacy lost due to variable discretization. The nov-

elty of this method is that it compares two techniques 

with different property variables (discrete variables 

and continuous variables) and different strength. In 

this way, it can make better use of the power of ap-

proximate functions and methods to deal with uncer-

tainty. 

This paper introduces the development of the 

mathematical formula of dynamic Bayesian network. 

Preliminary results were published in Ibargüengoytia 
[19]. In addition, the construction method and theory 

of Bayesian network proposed by us are described in 

detail. This paper also describes the measurement er-

ror, and discusses the supplementary use of Bayesian 

model and artificial neural network. 

The experiment is carried out on the data of 

CERT and INEEL meteorological station in La Ven-

tosa, Oaxaca. The results show that artificial intelli-

gence is very helpful in solving the problem of re-

newable energy. Artificial intelligence provides 

learning and knowledge representation mechanism, 

which can be transformed into more effective prob-

lem solving methods. 

This research work is a preface to a broad theme. 

Future work in this area will focus on analyzing 

whether there is any place nearby that can provide 

useful information for improving prediction, that is, 

developing dynamic spatial models to improve pre-

diction performance. In addition, the condition that 

the prediction process is a Markovian process will be 

studied, and the consequences of this restriction 

will be analyzed. Finally, the time series will be re-

viewed to determine whether they are time series, 

and if not, a BND model will be defined for each 

stage. This method is compared with other nonlinear 

time series prediction models. 
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