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ABSTRACT 

This paper introduces the design, structure and control method of a five-bar planar mechanism with five revolute 

joints and two degrees of freedom. The control is realized by calculating the torque in the joint space to obtain the 

required trajectory. The direct and inverse kinematics of position and velocity are proposed, and the inverse kinematics 

of acceleration is taken as the parameter required by the control law. The method selected for this parallel robot is 

advantageous because it allows to obtain the dynamic equations similar to the traditional series robot modeling, which 

is helpful to the realization of nonlinear control technology. The effectiveness of the method and the functionality of the 

controller are verified by experiments, and a circular trajectory is generated by the actuator. Although the simulation 

results are consistent with the experimental results, it is suggested that the future work is to change the control strategy 

to compensate for the influence of the unmodeled system.  
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1. Introduction

The five-bar mechanism is one widely studied in mechanism and 

machinery literature[1-4], partly because of its simple structure and easy 

manufacture. It is widely used in the research of kinematics and dy-

namics of planar mechanism. Some studies using this mechanism in-

clude using it as a function generator[5], trajectory generator[6], motion 

design of task related links[7], and various robot applications[8-10]. A 

particularly interesting application of robotics in this mechanism is its 

use for the rehabilitation of patients with upper limb disabilities[11]. 

From the perspective of kinematics, the topological structure of the 

five-bar mechanism is characterized by two kinematic chains composed 

of rotating joints, the first of which is the driven joint, so it is named 

2-RR[12,13]. The five bar mechanism is an ideal mechanical system to 

study the basic theoretical concepts of parallel robot dynamics, dy-

namics and control. An example of this is Quanser’s distributed teach-

ing platform, which is named “2-DOF Robot”[14]. However, despite the 

problem of commercialization, it is still necessary to build a system in 

line with the needs of the times to study this problem. In this regard, 

research shows DEXTAR’s development in the laboratories of the École 

de Technologie Supérieure (ÉTS), Canada[15,16]; it is used for sports 

school alignment[13], and then for minimum time trajectory control[17]. 

With regard to system control, a control method for hybrid per-

formance is described[8], that is, a DC motor with speed control on one 

joint and a servo motor with position control on another degree of 

freedom of the system. Research shows various nonlinear control 
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techniques applied to five bar mechanisms[18-20]. See lit-

erature[21,22] for other examples of hybrid performance 

control. The control progress of five-bar planar mecha-

nism also enables it to be used in teleoperation applica-

tions of parallel robots, such as the PAROLA laborato-

ry[23], which has a five-bar manipulator, Delta robot and 

3-RRR robot. Other challenges in controlling the mech-

anism are proposed in the case of flexible link actuator 

positioning, which is realized through the research on 

QFT control and model-based vibration suppression 

control[24,25]. 

This paper introduces the first part of the ongoing 

research on the five-bar mechanism at the Universidad 

Tecnológica de Bolívar, Cartagena, Colombia. This re-

port includes design, construction, modeling and control. 

The first section describes the implementation of the 

design and the construction of the prototype. Then, the 

kinematics and dynamics models are introduced. The 

latter is realized by the method used by Stewart Gough 

space robot in space mission, but this paper is developed 

in joint space. It is consistent with the simulation of cal-

culated torque control and the experiment of calculated 

torque dynamic control. 

2. Methodology

2.1 Description of the prototype 

The mechanism was manufactured at the Univer-

sidad Tecnológica de Bolívar using CNC milling ma-

chines, ordinary lathes and drill bits. The system uses two 

60 W Maxon Motor RE30 actuators with 66:1 reduction, 

and 500 pulses per revolution encoder. The connecting 

rod is made of aluminum, processed on a HAAS TM-1P 

milling machine, and made of 2-inch wide and 1/2-inch 

thick pressing plates. Figure 1 shows the CAD model of 

the assembly developed in SolidEdge, while Figure 2 

shows the prototype of the final assembly. Table 1 

summarizes the dimensions of the mechanism links. 

Figure 1. Mechanical CAD model. 

Figure 2. Built prototype. 

Table 1. Link lengths 

Link 1 2 3 4 5 

Length (mm) 200 150 300 300 150 
Width (mm) - 30 30 30 30 

Thickness (mm) - 6 10 10 6 

2.2 Position kinematics 

Figure 3 shows the terminology used in the kine-

matic analysis of the five-bar mechanism. The inertial 

reference frame is located at point A, and points B, C, D 

and P are used to define the position of the swivel. Point P 

further defines the desired position of the mechanism, 

that is, the position of the end effector. The vectors, where 

i is from 1 to 5, are used to determine the position and 

direction of each link. The angle θi defines the rotation of 

the connecting rod relative to the x-axis. The position of 

the center of gravity of each link is given by the vector, 

and the rotation angle of the vector relative to each vector 

is expressed by βi. Position analysis includes inverse 

kinematics, which is usually used for end effector motion 

planning, and direct kinematics, which is used to close 

the end effector position control loop. The naming of the 
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definition allows the vector equation of the loop to be 

established in equation (1), as shown in Figure 3. 

𝑟1 + 𝑟2 + 𝑟3 = 𝑟5 + 𝑟4

(1) 

2.2.1 Inverse position kinematics 

The five-bar mechanism has two degrees of freedom, 

so it is necessary to control two actuators to define the 

position of the actuator. Inverse kinematics is responsible 

for calculating the value of the driven joints, θ2 and θ5, as 

a function of the desired position of point P and the other 

parameters of the mechanism. The left side of the loop in 

equation (1) can be written in its components to generate 

the scalar equation given in equations (2) and (3), 

knowing that the components of point P are Px and Py. 

𝑃𝑥 = 𝐿1 + 𝐿2𝑐2 + 𝐿3𝑐3

(2) 

𝑃𝑦 = 𝐿2𝑠2 + 𝐿3𝑠3

(3) 

where 𝑐𝑖 = 𝑐𝑜𝑠𝜃𝑖  and 𝑠𝑖 = 𝑠𝑖𝑛𝜃𝑖 . By abstracting

for θ2 from equations (2) and (3) after canceling the terms 

of the angle θ3 by squaring both sides of equations (2) and 

(3), finding the sum term to term, and substituting it into 

the identity of the mean angular tangent to obtain the 

equation (4), 

𝜃2 = 2𝑡𝑎𝑛−1 (
𝐵2

2 + 𝐶2
2 − 𝐴2

2

2(𝐴2 + 𝐶2)
)

(4) 

where 𝐴2 = 2(𝐿1 − 𝑃𝑥)𝐿2 , 𝐵2 = −2𝑃𝑦𝐿2 , 𝐶2 =

𝐿3
2 − 𝐿1

2 − 𝐿2
2 − 𝑃𝑥

2−𝑃𝑦
2 + 2𝐿1𝑃𝑥.

Figure 3. Labeling for kinematic analysis. 

Similarly, in order to obtain the expression of θ5, the 

initial equations (4) and (5) are obtained through ele-

ments 4 and 5 from the origin of the inertial frame to the 

actuator point P. 

𝑃𝑥 = 𝐿5𝑐5 + 𝐿4𝑐4

(5) 

𝑃𝑦 = 𝐿5𝑆5 + 𝐿4𝑆4

(6) 

By abstracting θ5 from equations (5) and (6), equa-

tion (7) can be obtained. 

𝜃5 = 2𝑡𝑎𝑛−1 (
𝐵5 + √𝐵5

2 + 𝐶5
2 − 𝐴3

2

2(𝐴5 + 𝐶5)
) 

(7) 

where 𝐴5 = 2𝐿5𝑃𝑥 , 𝐵5 = 2𝐿5𝑃𝑦 , 𝐶5 = 𝐿5
2 − 𝐿4

2 +

𝑃𝑥
2 + 𝑃𝑦

2.

By resolving the vector equation (1), the remaining 

position angle is obtained, and by repeating the trigo-

nometric method, the position angle is obtained, 

𝜃3 = 2𝑡𝑎𝑛−1 (
𝐵3 + √𝐵3

2 + 𝐶3
2 − 𝐴3

2

2(𝐴3 + 𝐶3)
)

(8) 

where 𝐴3 = 2𝐿3𝑟𝑥 , 𝐵3 = 2𝐿3𝑟𝑦 , 𝐶3 = 𝐿4
2 − 𝐿3

2 −

𝑟𝑥
2 − 𝑟𝑦

2, and

𝜃4 = 2𝑡𝑎𝑛−1 (
𝐵4 + √𝐵4

2 + 𝐶4
2 − 𝐴4

2

2(𝐴4 + 𝐶4)
) 

(9) 

where 𝐴4 = 2𝐿4𝑟𝑥 , 𝐵4 = 2𝐿4𝑟𝑦 , 𝐶4 = 𝐿4
2 − 𝐿3

2 +

𝑟𝑥
2 + 𝑟𝑦

2.

2.2.2 Direct position kinematics 

For the direct kinematics of position, the coordinates 

of point P are calculated through the information pro-

vided by the encoders located in the actuators, angles θ2 

and θ5, and the fulfillment of equations (2) and (5) for Px, 

and equations (3) and (6) for Py is verified. 

2.3 Velocity kinematics 
Velocity analysis is used to link the speed of actua-

tors 2 and 5 with the velocity of the end effector Vp. As in 
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position analysis, there are direct kinematics analysis and 

inverse kinematics analysis.

2.3.1 Inverse velocity kinematics

When exporting equations (2) and (3), equations (10) 

and (11) can be obtained, which relate the velocity of the 

end effector to the angular velocities of links 2 and 3, 

respectively.

𝑉𝑝,𝑥 = −𝐿2𝜔2𝑠2 − 𝐿3𝜔3𝑠3

(10) 

𝑉𝑝,𝑦 = 𝐿2𝜔2𝑐2 + 𝐿3𝜔3𝑐3

(11)

Deleting 𝜔3 from the system of equations (10) and (11)

yields the velocity ratio between the end effector and the 

actuated link 2, as shown in equation (12), with 𝑠𝑖−𝑗 =

sin (𝜃𝑖 − 𝜃𝑗).

𝜔2 = −𝑉𝑝,𝑥

𝑐3

𝐿2𝑠2−3
− 𝑉𝑝,𝑦

𝑠3

𝐿2𝑠2−3

(12) 

Similarly, θ2 is removed from equations (10) and (11) to 

relate the angular velocity of link 3 to the velocity of the 

end effector, given in equation (13).

𝜔3 = 𝑉𝑝,𝑥

𝑐2

𝐿3𝑠2−3
+ 𝑉𝑝,𝑦

𝑠2

𝐿2𝑠2−3

(13) 

In order to relate angular velocities 𝜔4 and 𝜔5 to the

end-effector velocity Vp, equations (5) and (6) are derived 

to generate equations (14) and (15). 

𝑉𝑝,𝑥 = −𝐿4𝜔4𝑠4 − 𝐿5𝜔5𝑠5

(14) 

𝑉𝑝,𝑦 = 𝐿4𝜔4𝑐4 + 𝐿5𝜔5𝑐5

(15) 

The angular velocities 𝜔5 and 𝜔4 from the system of

equations (14) and (15) as a function of the effector veloc-

ity to obtain equations (16) and (17), respectively. 

𝜔5 = −𝑉𝑝,𝑥

𝑐4

𝐿5𝑠5−4
− 𝑉𝑝,𝑦

𝑠4

𝐿5𝑠5−4

(16) 

𝜔4 = 𝑉𝑝,𝑥

𝑐5

𝐿4𝑠5−4
+ 𝑉𝑝,𝑦

𝑠5

𝐿5𝑠5−4

(17) 

2.3.2 Inverse Jacobian 

Equations (12) and (16) containing the ratios of 

change of the actuated links 2 and 5, respectively, are 

grouped to find inverse Jacobian of velocities, J–1, by 

equation (18), where the velocity of point P Vp is ex-

pressed in the equation (19). The velocity vector of the 

actuated joints is 𝜔 given in the equation (20). The in-

verse Jacobian connects the angular velocity of the actu-

ator with the velocity of the end actuator and is derived 

from the equation (18) and clearly presented in equation 

(21). 

𝜔 = 𝐽−1𝑉𝑝

(18) 

𝑉𝑝 = [𝑉𝑝,𝑥
𝑇 𝑉𝑝,𝑦

𝑇 ]
𝑇

(19) 

𝜔 = [𝜔2𝜔5]
𝑇

(20) 

𝐽−1 = [

𝑐3

𝐿2𝑠3−2

𝑠3

𝐿2𝑠3−2
𝑐4

𝐿5𝑠4−5

𝑠4

𝐿5𝑠4−5

] 

(21) 

2.3.3 Direct movement velocity 

Now we have an expression that relate the angular 

velocities 𝜔3 and 𝜔4 to the end-effector velocity Vp, as

a function of the known angular velocities of the actua-

tors 𝜔2 and 𝜔5. Starting with the derivative of equations

(2), (3), (5) and (6) with respect to time, they are equal-

ized by components to obtain equations (22) and (23). 

−𝐿2𝜔2𝑠2 − 𝐿3𝜔3𝑠3 = −𝐿5𝜔5𝑠5 − 𝐿4𝜔4𝑠4

(22) 

𝐿2𝜔2𝑐2 + 𝐿3𝜔3𝑐3 = 𝐿4𝜔4𝑐4 + 𝐿5𝜔5𝑐5

(23) 

The known velocities are 𝜔2 and 𝜔5, so the angu-

lar velocity 𝜔4  can be eliminated from the system of
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equations (22) and (23) to obtain the expression for 𝜔3

given in equation (24). 

𝜔3 = (𝜔5

𝐿5

𝐿3
− 𝜔2

𝐿2

𝐿3
)
𝑠4−2

𝑠4−3

(24) 

Similarly, 𝜔2  is deleted from equations (22) and

(23) to find the expression for 𝜔4 in the equation (25).

𝜔4 = (𝜔2

𝐿2

𝐿3
− 𝜔5

𝐿5

𝐿4
)
𝑠3−2

𝑆3−4

(25) 

By replacing equations (24) and (25) in equations of 

(10) and (11), and (14) and (15), the relationship between 

the end-effector velocities and the input angular veloci-

ties are obtained. By rearranging the items and consid-

ering that the results must be the same, because it is the 

same output variable with the same input variable, the 

expression of the end-effector velocities in the coordi-

nates x and y can be obtained, presented in equations (26) 

and (27), respectively. 

𝑉𝑝,𝑥 = 𝜔2

𝐿2𝑠4𝑠2−3

𝑠3−4
+ 𝜔5

𝐿5𝑠3𝑠4−5

𝑠3−4

(26) 

𝑉𝑝,𝑦 = 𝜔2

𝐿2𝑠4𝑠2−3

𝑠3−4
− 𝜔5

𝐿5𝑠3𝑠4−3

𝑠3−4

(27) 

2.3.4 Jacobian 

Equation (18) can be rewritten as shown in equation 

(28), and the Jacobian expression of the system J shown 

in the equation (29) can be determined, that is, a matrix 

that links the tool speed to the speed of the actuated joints. 

Equation (29) is consistent with the inverse solution of 

the equation (21) as expected. 

𝑉𝑝 = 𝐽𝜔

(28) 

𝐽 =

[
 
 
 
𝐿2𝑠4𝑠2−3

𝑠3−4

𝐿5𝑠3𝑠4−5

𝑠3−4

𝐿2𝑐4𝑠2−3

𝑠4−3

𝐿5𝑐3𝑠4−5

𝑠4−3 ]
 
 
 

(29) 

2.3.5 Jacobian links 

The Jacobian of the connecting rod 𝐽𝜃,𝑖 represent-

ed by is used in the dynamic model to connect the center 

of gravity velocity of each connecting 𝑉𝑐𝑔,𝑖 rod with the

angular velocity of the actuator, which is expressed as the 

velocity vector of 𝜔 the joint shown in the equation (20). 

The general expression for link i is shown in the equation 

(30). 

𝑉𝑐𝑔,𝑖 = 𝐽𝜃,𝑖𝜔

(30) 

For link 2, the center of gravity speed is deter-

mined by 

𝑉𝑐𝑔,2 = [
𝑉𝑐𝑔,2𝑥

𝑉𝑐𝑔,2𝑦
] 

(31) 

With a given velocity component 

𝑉𝑐𝑔,2𝑥 = −𝜔2𝑟2
𝑐𝑔

𝑠2+𝛽2

(32) 

𝑉𝑐𝑔,2𝑦 = 𝜔2𝑟2
𝑐𝑔

𝑠2+𝛽2

(33) 

where 𝑠𝑖+𝛽𝑖 = sin (𝜃𝑖 + 𝛽𝑖)  and 𝑐𝑖+𝛽𝑖 =

cos (𝜃𝑖 + 𝛽𝑖).

From equations (32) and (33), the Jacobian of the 

second link can be derived in the equation (34). 

𝐽𝜃,2 = [

−𝑟2
𝑐𝑔

𝑠2+𝛽2 0

𝑟2
𝑐𝑔

𝑐2+𝛽2 0

1 0

] 

(34) 

Similarly, for the centroid velocity of the fifth con-

necting rod, equations in (35) and (36) are established, 

from which the Jacobian of the fifth link, presented in 

equation (37) can be deducted. 

𝑉𝑐𝑔,5𝑥 = −𝜔5𝑟5
𝑐𝑔

𝑠5+𝛽5

(35) 

𝑉𝑐𝑔,5𝑦 = 𝜔5𝑟5
𝑐𝑔

𝑐5+𝛽5
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(36) 

𝐽𝜃,5 = [

0 −𝑟5
𝑐𝑔

𝑠5+𝛽5

0 𝑟5
𝑐𝑔

𝑐5+𝛽5

0 1

] 

(37) 

For the third link, the center of gravity velocity is 

calculated by equations (38) and (39). 

𝑉𝑐𝑔,3𝑥 = −𝜔2𝐿2𝑠2 − 𝜔3𝑟3
𝑐𝑔

𝑠3+𝛽3

(38) 

𝑉𝑐𝑔,3𝑦 = 𝜔2𝐿2𝑐2 + 𝜔3𝑟3
𝑐𝑔

𝑐3+𝛽3

(39) 

When replacing equation (24) in equations (38) and 

(39), the velocity components of the center of mass of the 

third link are expressed in terms of the actuated joints to 

obtain the third Jacobian, given by, 

𝐽𝜃,3 =

[
 
 
 
 
 
 
𝐿2𝑟3

𝑐𝑔
𝑠𝑠243

𝐿3𝑠3−4
− 𝐿2𝑠2

𝐿5𝑟3
𝑐𝑔

𝑠𝑠453

𝐿3𝑠3−4

𝐿2𝑐2 −
𝐿2𝑟3

𝑐𝑔
𝑠𝑐243

𝐿3𝑠3−4
−

𝐿5𝑟3
𝑐𝑔

𝑠𝑐453

𝐿3𝑠3−4

𝐿2𝑠4−2

𝐿3𝑠3−4

𝐿2𝑠4−2

𝐿3𝑠3−4 ]
 
 
 
 
 
 

(40) 

where 𝑠𝑠243 = 𝑠2−4𝑠3+𝛽3 , 𝑠𝑠453 = 𝑠4−5𝑠3+𝛽3 ,

𝑠𝑐243 = 𝑠2−4𝑠𝑐3+𝛽3, 𝑠𝑐453 = 𝑠4−5𝑐3+𝛽3.

Finally, for connecting rod 4, the expression of 

center of gravity velocity is expressed in equations (41) 

and (42). 

𝑉𝑐𝑔,4𝑥 = −𝜔5𝐿5𝑠5 − 𝜔4𝑟4
𝑐𝑔

𝑠4+𝛽4

(41) 

𝑉𝑐𝑔,4𝑦 = 𝜔5𝐿5𝑐5 + 𝜔4𝑟4
𝑐𝑔

𝑐4+𝛽4

(42) 

By replacing the equations (25) in equations (41) 

and (42) after rearranging the items, we get 

𝐽𝜃,4 =

[
 
 
 
 
 
 

𝐿2𝑟4
𝑐𝑔

𝑠𝑠244

𝐿4𝑠3−4

𝐿5𝑟4
𝑐𝑔

𝑠𝑠354

𝐿4𝑠3−4

−
𝐿2𝑟4

𝑐𝑔
𝑠𝑐244

𝐿4𝑠3−4
𝐿5𝑐5 −

𝐿5𝑟4
𝑐𝑔

𝑠𝑐344

𝐿4𝑠3−4

𝐿2𝑠3−2

𝐿4𝑠3−4
−

𝐿5𝑠3−5

𝐿4𝑠3−4 ]
 
 
 
 
 
 

(43) 

where 𝑠𝑠244 = 𝑠2−4𝑠4+𝛽4 , 𝑠𝑠354 = 𝑠3−5𝑠4+𝛽4 ,

𝑠𝑐244 = 𝑠2−4𝑠𝑐4+𝛽4, 𝑠𝑐354 = 𝑠3−5𝑐4+𝛽4.

2.4 Inverse kinematics acceleration 

Since the dynamic formula will be based on the 

principle of virtual work, the dynamic analysis is trans-

formed into the derivation of the Jacobian derivative of 

the connecting rod. However, for the calculated torque 

control, it is necessary to know the expected acceleration 

of the driven joint, which is one of the disadvantages of 

this control strategy. Then, it is necessary to carry out 

reverse acceleration analysis to determine the expected 

acceleration of the joint from the expected acceleration of 

the end effector. By deriving equation (18), the expres-

sion of the acceleration of the acting joint and the accel-

eration of the end effector given in (44) is obtained. 

𝛼 = 𝐽−1𝐴𝑝 + 𝐽−1𝑉𝑝

(44) 

This term can be obtained either by explicitly de-

riving the inverse Jacobian expression of equation (21) 

and multiplying the result by the end-effector velocity; 

or by clearing the corresponding item from the derivative 

of equations (10) and (11); and (14) and (15), in which 

case the expression given in the equations (45) is ob-

tained. 

𝐽−1𝑉𝑝 =

[
 
 
 
 
𝐿2𝜔2

2𝑐3−2 + 𝐿3𝜔3
2

𝐿2𝑠3−2

𝐿5𝜔5
2𝑐4−5 + 𝐿4𝜔4

2

𝐿5𝑠4−5 ]
 
 
 
 

(45) 

2.5 Dynamic analysis 

Using the same method as that used by Stewart 

Gough space parallel robot in space task[26,27], the dy-
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namic analysis of planar five-bar parallel robot is carried 

out; the dynamic model in this paper is calculated in the 

joint space. The dynamic equation is represented by the 

model:  

𝜏𝜃 = 𝑀𝜃(𝜃)�̈� + 𝐶𝜃(𝜃, �̇�)�̇� + 𝑔𝜃(𝜃)

(46) 

where M, C and g are generalized mass matrix, 

Coriolis matrix and gravitational vector in joint space 

respectively, and are generalized or external force (and/or 

moment) vectors. In calculating these terms, the contri-

bution of each link should be taken into account, as fol-

lows: 

𝑀𝜃 = ∑𝐽𝜃,𝑖
𝑇 𝑀𝑖𝐽𝜃,𝑖

(47) 

𝐶𝜃 = ∑𝐽𝜃,𝑖
𝑇 𝐶𝑖𝐽𝜃,𝑖 + ∑𝐽𝜃,𝑖

𝑇 𝑀𝑖𝐽
.

𝜃,𝑖

(48) 

𝑔𝜃 = ∑𝐽𝜃,𝑖
𝑇 𝑔𝑖

(49) 

Among them, Mi, Ci and gi represent the mass matrix, 

Coriolis and gravity vector matrices, of each link ex-

pressed in the reference frame of its center of gravity. For 

the five-bar mechanism, the Coriolis matrix represent-

ed by the center of gravity is null, 𝐶𝑖 = [0], because it is

a planar mechanism, but the mass matrix and gravity 

vector do exist. The format of the quality matrix for each 

link is: 

𝑀𝑖 = [

𝑚𝑖 0 0
0 𝑚𝑖 0
0 0 𝐼𝑧𝑧

] 

(50) 

where, mi is the mass of the link and Izz is the mo-

ment of inertia of the link around the axis perpendicular 

to the two-dimensional plane of the robot. The gravity 

vector of each link, gi, shall be determined by the gravity 

vector expression in the mechanism reference system, as 

shown in Figure 3. It defines the gravitational 𝑔 =

[𝑔𝑥; 𝑔𝑦; 0]𝑇 vector and helps to define the gravitational

vector of each link given in equation (51). 

𝑔𝑖 = 𝑚𝑖𝑔

(51) 

Finally, the matrix 𝐽𝜃,𝑗  represents the Jacobian of

the links previously proposed in equations (34), (37), (40) 

and (43), matrices represent their derivatives. In dynamic 

modeling, obtaining these items may be the most cum-

bersome, especially for matrices linking 3 and 4. How-

ever, if symbolic processing software such as Mathe-

matica or maple is used to generate the expressions of 

mass matrix, Coriolis and gravity vector, the dynamic 

algorithm is relatively easy to program. The results 

can be output to Matlab for simulation of control algo-

rithm, and can also be directly output to C language for 

programming of embedded control system. 

2.6 Calculated torque control 

Computational torque control is an ideal nonlinear 

control method for robot control based on dynamic model. 

The method is summarized in the literature[28, 29]. Starting 

from the dynamic model equation (52), a way is sought to 

eliminate the nonlinear term of Coriolis and gravity, and 

establish a control law, namely equation (53), where is 

the expected acceleration vector on the connecting rod 

and u is the acceleration error variable defined by the 

equation (54), then expressed explicitly by equation (55) 

according to the error vector e, its change rate and posi-

tive definite matrix Kp and Kv, thus simplifying the ex-

pression to equation (56). 

𝜏 = 𝑀�̇� + 𝐶�̇� + 𝑔 

(50) 

𝜏 = 𝑀(�̈�𝑑 + 𝑢) + 𝐶�̇� + 𝑔

(51) 

𝑢 = �̈� − �̈�𝑑

(52) 

𝑢 = 𝐾𝑝𝑒 + 𝑘𝑣�̇�

(53) 

�̈� + 𝐾𝑝𝑒 + 𝑘𝑣�̇� = 0

(54) 
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Substitution equation (55) in the equation (53) al-

lows to express the control law: 

𝜏 = 𝑀(�̈�𝑑 + 𝐾𝑝𝑒 + 𝐾𝑣�̇�) + 𝐶�̇� + 𝑔

(57) 

However, this paper adopts the following format: 

𝜏 = 𝑀𝜃(𝛼𝑑 + 𝐾𝑝(�̃�) + 𝐾𝑣(�̃�)) + 𝐶𝜃𝜔 + 𝑔𝜃

(58) 

where, 𝛼𝑑 is the required joint acceleration vector,

and defined the joint angular velocity error vectors, ex-

pressed respectively by equations (59) and (60). 

�̃� = 𝜃𝑑 − 𝜃

(57) 

�̃� = 𝜔𝑑 − 𝜔

(58) 

2.7 Calculation and simulation 

The simulation is carried out in Simulink to verify 

the established dynamic model and the control law to be 

realized. Figure 4 shows the control architecture used. 

The task to be performed is the circular motion of the 

robot end effector. The trajectory scheduler outputs the 

required point, linear velocity and acceleration according 

to the simulation time. These data are transferred to in-

verse kinematics, which calculates the position θi, veloc-

ity 𝜔𝑖  and angular acceleration 𝛼𝑖  of each connecting

rod and transmits the results to the controller. The block 

calculates a position error 𝜃𝑑 − 𝜃  and velocity error

matrix that 𝜔𝑑 − 𝜔 converts the mass of 𝑀𝜃, the Cori-

olis matrix 𝐶𝜃, and the gravity vector 𝑔𝜃 for subsequent

evaluation of the control law in equation (58). 

Figure 4. Blocks for Simulink simulation. 

The controller calculates the torque of each motor 

and transmits the results to a module in Simmechanics, 

which performs the direct dynamic simulation of the 

system by returning the joint position of the input link. 

Finally, the motion block performs direct motion ac-

cording to the information provided by the actuator to 

evaluate the position and speed of the current system. To 

facilitate viewing the task, use the model in Figure 6. The 

CAD model of the mechanism is established by using 

Siemens NX10, and the mass, inertia and center of grav-

ity position of each connecting rod in Simmechanics are 

obtained. The dimensions of the link are shown in Table 

1, while the dynamic characteristics used in the simula-

tion are shown in Table 2. As shown in the CAD system 

design Figure 3, the angle 𝛽𝑖 used to locate the center of

gravity of each connecting rod must be zero. The simu-

lation was performed for gain values set at 𝐾𝑝 = 20𝐼2𝑥2

and 𝐾𝑣 = 10𝐼2𝑥2. Gravity is on the y-axis and has a value

of –9.8 m/s2. Since the friction at the joint is not simulated, 

a constant 𝐾𝑣 is required in the simulation. The results

are shown in Figures 7, 8, 9 and 10. 
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Figure 5. SimMechanics robot model. 

Figure 6. Simmechanics view. 

Table 2. Link properties. 
Link Mass [kg] Inertia [kg-mm2] 𝑟𝑖

𝑐𝑔
 [mm]

2 0.079 186.95 80.43 

3 0.196 1589.29 124.92 

4 0.194 1517.91 122.84 

5 0.079 186.95 80.43 

As can be seen from Figure 7, the required trajec-

tory is a circle with a diameter of 100 mm, and the center 

is [77.5; 350; 0] mm, which is slightly different from the 

trajectory generated by the robot in the simulation. Fig-

ure 8 illustrates the positioning error of the actuator. The 

maximum tracking error is 0.014 rad. Figure 9 shows the 

angular velocity error of the actuator, and the maximum 

velocity tracking error is 0.008 rad/s. The torque required 

for the engine to operate is shown in Figure 10. The 

maximum torque required is 0.4 N-m for engine 1 acting 

on gasket 2 and–0.4 N-m for engine 2 acting on gasket 5. 
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Figure 7. Real and simulated paths. 

Figure 8. Activation joint errors. 

Figure 9. Joint velocity errors. 

Figure 10. Motors torques. 

3. Results and discussion

The control system is installed on the PC-104 em-

bedded card, Advantech reference PCM-3362N-S6A1E. 

The card is connected to the PC-104 bus through a sensor 

card 526 with four analog outputs and four encoder inputs. 

The operating system is Linux, 64 bit Debian Jessie, and 

Pengutronix distributed real-time kernel is added[30]. The 

control system is connected to the Maxon EPOS 2 24/2 

amplifier. The torque constant Kt of Maxon Motors is 

25.9 mN-m/A, which means that using reducer GP-32, 

the deceleration rate is 66:1, and the average efficiency is 

50%. The motor reducer assembly can provide a maxi-

mum continuous torque of 1.7 N-m. 

The control algorithm is designed in Matlab and 

output to C language with codegen tool of Matlab. The 

main program on Linux is based on the real-time appli-

cation example, which is located on the RT PREEMPT 

patch page[31]. The control is performed at a priority of 49 

and a frequency of 1000 Hz. 

Because the friction of the system and the mechan-

ical deviation from the theoretical model are small, it is 

necessary to add an integral part to the calculated torque 

controller. The final values of the constants used are 

𝐾𝑝 = 100𝐼2𝑥2 , 𝐾𝑣 = 500𝐼2𝑥2  and 𝐾𝑖 = 10𝐼2𝑥2 . From

the theoretical simulation, it can be seen that the fric-

tion between joints plays an important role in the test part, 

which explains the constant 𝐾𝑝 and 𝐾𝑣.
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Figure 11. Real robot trajectories. 

Figure 12. Joint position errors. 

Figure 13. Joint velocity errors. 

Figure 14. Real joint torques. 

Figure 11 shows the actual trajectory executed by 

the robot end effector. It points out that there is an obvi-

ous tracking error initially, which decreases after 3 sec-

onds (within [5,8] s), which can be better seen in Figure 

12. This figure illustrates the actual angular position error

of the robot. Starting from the initial position of 0° of 

joint 2 and 180° of joint 5, it can be seen that the maxi-

mum position error during circular trajectory tracking is 

5°. 

Figure 13 shows the angular velocity error of joints 

2 and 5 during the experiment. The form of angular ve-

locity error simulation is similar, as shown in Figure 9. 

The maximum error recorded in the tracking phase is 5º/s. 

Finally, Figure 14 shows the torque on joints 2 and 5, and 

the noise caused by friction can be seen. 

4. Conclusion

The application of computational torque control 

technology in planar 2-DOF parallel robot is introduced. 

Computational torque control is suitable for nonlinear 

systems and requires an explicit dynamic model of the 

robot. The calculation model is an ideal calculation 

model for torque control, because it is a complete model, 

including the dynamic contribution of each link in the 

kinematic chain. Through simulation calculation, the 

effectiveness of the proposed control algorithm is veri-

fied, and a small tracking error is given. Experiments 

confirm that the tracking error needs to increase the 

proportion and velocity constant used in the simula-

tion, because the controller does not consider the un-

modeled terms of the dynamic equation, such as friction. 
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From the consistency between the experimental results and 

the experimental results, the scheme is satisfactory, but in 

the future work, it is proposed to apply other nonlinear 

control strategies to the same trajectory, and its performance 

is compared.
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