
Journal of Autonomous Intelligence (2023) Volume 6 Issue 1
doi: 10.32629/jai.v6i1.559

1

Original Research Article

A hybrid software defects prediction model for imbalance datasets us-
ing machine learning techniques: (S-SVM model)
Mohd. Mustaqeem*, Tamanna Siddiqui

Department of Computer Science, Aligarh Muslim University (AMU), Aligarh, U.P, India. E-mail: mohdmus-

taqeem34@gmail.com

ABSTRACT

Software defect prediction (SDP) is an essential task for developing quality software, and various models have been

developed for this purpose. However, the imbalanced nature of software defect datasets has challenged these models,

resulting in decreased performance. To address this challenge, the author has proposed a hybrid machine learning model

that combines Synthetic Minority Oversampling Technique (SMOTE) with Support Vector Machine (SVM)—SMOTE-

SVM (S-SVM) model. The author has empirically examined SDP using multiple datasets (CM1, PC1, JM1, PC3, KC1,

EQ and JDT) from the PROMISE and AEEEM repositories. The experimental study indicates that the S-SVM model

involved training and compared with previously developed balanced and imbalanced test datasets using four evaluation

metrics: Precision, Recall, F1-score, and Accuracy. For the balanced dataset, the S-SVM model achieved precision values

ranging from 70 to 96, recall values ranging from 52 to 94, F1-score values ranging from 67 to 90, and accuracy values

ranging from 69 to 98. For the imbalanced dataset, the S-SVM model achieved precision values ranging from 60 to 93,

recall values ranging from 64 to 97, F1-score values ranging from 69 to 91, and accuracy values ranging from 67 to 87.

The proposed S-SVM model outperforms other models’ ability to classify and predict software defects. Therefore, the

hybridisation of SMOTE and SVM improved the model’s ability to categories and predict balanced and imbalanced da-

tasets when sufficient defective and non-defective data is provided.

Keywords: Software Defect Prediction (SDP); SVM; SMOTE; Empirical Software Engineering; Software Quality; Bal-

anced & Imbalanced Learning

ARTICLE INFO

Received: 3 March, 2023
Accepted: 7 May, 2023
Available online: 16 June, 2023

COPYRIGHT

Copyright © 2023 by author(s).
Journal of Autonomous Intelligence is pub-
lished by Frontier Scientific Publishing.
This work is licensed under the Creative
Commons Attribution-NonCommercial 4.0
International License (CC BY-NC 4.0).
https://creativecommons.org/licenses/by-
nc/4.0/

1. Introduction
Nowadays, the software industry is rising. The demand for software

is very high in the market, and challenging to maintain software quality.
The first focus should be the quality of the software[1]. In software devel-
opment, there are many test factors. However, SDP is one of the most
critical factors in measuring the software’s quality; due to this, it devel-
oped an interest in researchers working on it. The SDP’s primary goal is
to anticipate defects in defect-prone modules. Detecting the software
defects later may lead to considerable losses to the company and software
users. Nevertheless, early detection of the defects and those modules
which are less priority and risk-prone for the project may reduce the loss
and other software quality testing expenses. To get better prediction
results, SDP has to work on multiple portions, like enhancing the accu-
racy. Necessary data attributes include imbalanced & balanced datasets
ratio, performance measurements, and classification algorithms[2]. Re-
searchers have proposed various models of SDP over the years by using
new technology, tools, and techniques. Various models are developed

2

based on the same training and testing version of the
project’s dataset. Some are based on cross-project[1–

6]. Predicting software defects by hybridising ma-
chine learning techniques has enhanced the SDP.
Traditional and conventional defect prediction meth-
ods have only worked on a single version of the pro-
ject, and model training is limited by the similarity
of the trained and test datasets[3]. The empirical re-
search is based on the hybridisation of machine
learning technologies and dataset balancing tech-
niques that can first resolve the imbalanced classes
in the dataset. The output deviates much from the ac-
tual and accurate result. That is why balancing the
data is very important to get real results. Secondly,
after balancing data, the author has used a machine
learning technique to predict the defects in the given
datasets so that SDP has precise and high accuracy.
The author has trained the model through seven da-
tasets of the PROMISE repository (publically avail-
able) and compared the trained model with another
SDP model that was developed earlier[7,8]. The
trained model has a high rate of accuracy than others.
After that, the author divided the given dataset
into balanced and imbalanced parts in combined
form. The trained model is implemented in both sec-
tions successfully. Four measurements of perfor-
mance, precision, recall, F1-score, and accuracy,
have been calculated. The trained model has shown
deviation in the accuracy towards the balanced da-
taset and has provided many accurate results of SDP.

The manuscript can be categorised in the fol-
lowing manner. Section 2 represents related work in
which conventional approaches are discussed. Sec-
tion 3 describes the experimental work. Section 4
presents the results & discussions, and the final Sec-
tion 5 includes a conclusion with a future work win-
dow.

2. Related work
Several traditional models have been developed

for SDP in recent years, like just-in-time, software
metrics defects prediction, optimisation techniques,
and other hybrid approaches to defect prediction.
The author has used an imbalanced dataset in their
work so that accuracy is ultimately high, which is not
a good approach. In his manuscript[7], the author

mentioned using Naïve Bayes and Logistic Regres-
sion as a classifier to develop a defect prediction
model. Other classification algorithms, Decision
Tree (DT), Random Forest (RF), and ANN, can be
used. Metrics assessment can be implemented to
measure the performance of the classification met-
rics[7,9].

2.1 Traditional and conventional software
defect prediction

Software Development Life Cycle (SDLC) is
essential for developing software. The author has
seen recently that the early detection of software de-
fects is a much-needed and challenging task for the
project coordinator[10]. In this modern world, new
features have been included in domains of complex
problems, enhancing the software’s performance un-
certainty. Despite checking all the documents care-
fully in an organised manner, a few warnings
and bugs are inescapable, which can decrease the
performance of the software.

According to Hassan et al.[11], software applica-
tions are tested in unstable situations for a particular
period, called reliability probability. Traditional SDP
models use software, process, and object-oriented
metrics[4,12]. The dataset of SDP is divided into two
categories. First part is training, and the second is
testing. Within project, the single dataset is divided
into train and test. Manjula and Florence[13] men-
tioned in their manuscript, defects can be predicted
through a deep neural network (DNN) hybrid ap-
proach. The previous authors have experimented us-
ing NASA PROMISE datasets in their manuscript.
Their accuracy is enhanced up to 98% (approx) be-
cause they have used imbalanced datasets even
though they have not broken their dataset into the test
and trained formats and calculated from the same
data with which they train the model.

According to Jayanthi and Florence[3], an inves-
tigation of PROMISE NASA datasets repository us-
ing NN-based classification. They have claimed their
performance enhancement up to 97.2%
AUC based, but their dataset is imbalanced. Accord-
ing to Chidamer[14], software metrics predict defects.
Whether object-oriented design metrics are suitable
for defect prediction or not was examined by

3

Basili[15]. He has collected eight software applica-
tions to carry out his work. Alsawalqah et al.[16] said
in their manuscript that defects can be predicted us-
ing the hybrid SMOTE-Ensemble technique using
four datasets. They have used conventional methods
to balance it and enhance the model’s accuracy. He
et al.[17] used their manuscript’s adaptive synthetic
sampling (ADASYN) approach. This approach im-
proves the learning of data distribution through two
methods: first, it reduces the bias that appears due to
an imbalanced class, and second, it shifts adaptively
towards the classification decision boundary. They
have done their analysis on five evaluation metrics.

Nevertheless, this approach has some limita-
tions, i.e., each region may only include one minority
example for sparsely distributed minority cases. Be-
cause of its versatility, ADASYN precision may de-
grade[18]. According to Mirzaei et al.[19], their re-
search has balanced the imbalanced dataset using the
under-sampling technique DBSCAN algorithms.
They have worked on 15 imbalanced datasets, com-
pared them with six other algorithms, and got good
results, but their model lacks performance with var-
ying density clusters. It also suffers from high di-
mensionality data. The research of Hasanin and
Khoshgoftaar[20] has shown the effects of random un-
der-sampling with class imbalance big data and con-
verting the data into a 50:50 ratio to enhance perfor-
mance. However, this random under-sampling can
discard the potentially helpful information that
can be useful in classifiers. It may be that biased
samples. Bach et al.[21] have proposed a method
to balance the imbalanced dataset using under-sam-
pling. They have removed high-density and low-den-
sity information to get better results, but their model
can be lost various critical information that is much
needed for classification. Moreover, Sawangarreerak
and Thanathamathee[22] used random forest and sam-
pling techniques to balance the imbalance university
student depression dataset, but this model performs
inferior to the complex dataset. It also requires sig-
nificant memory storage for information retention.

Due to the highly imbalanced data distribution,
it is challenging to tackle the complex problem. In
this situation, many above-mentioned conventional

algorithms can classify the significant ones and ig-
nore the small ones in various cases of SDP problems.
Therefore, it may lead to the poor performance of the
classifier. This problem can be handled using the
SMOTE algorithm for SDP in various imbalanced
datasets. The experimental result of this hybrid
model shows far better results in the performance
and accuracy of defects prediction.

3. Experimental studies
The experimental investigations for SDP em-

ploying the suggested hybrid learning model are de-
scribed in the following subsections. This paper uses
a hybrid technique, SMOTE and SVM, for da-
taset balance and classification, using Python and
Spyder, with SK learn as the coding library. The au-
thor has used the PROMISE software defect dataset
repository for this research[23].

3.1 Dataset description and data processing
details

CM1, JM1, PC3, and KC1 datasets represent
what the author has extracted and divided into train-
ing and testing datasets used for SDP. Though vari-
ous studies have been carried out on these datasets,
the author has presented comparative studies of SDP
on balanced and imbalanced datasets that show the
true significance of the proposed hybrid model.
Moreover, the datasets used for computation present
the following features in Table 1.

The dataset description may include infor-
mation on dataset names, modules, and defective and
non-defective classes, with their percentage shown
in Table 2. The other dataset AEEEM (Appraisal-
Based Evaluation of Effort Models), is a collection
of software projects annotated with information
about the effort required to fix different defects. The
author has used the EQ and JDT dataset to help re-
searchers and practitioners evaluate software defect
prediction models and techniques. The features in-
cluded in the dataset are a combination of static and
dynamic metrics, which provide information about
various aspects of the code, including its complexity,
size, and maintainability. Table 2 shows the features
description.

4

Table 1. PROMISE SDP features details
Features name Description
LOC Module total number of line count
Loblank Number of total blank lines in the module
D Difficulty measurement
v(g) Cyclomatic complexity measurement (McCabe)
B Effort’s estimation
N Module numeral operators
Iv(g) (McCabe) complexity design analysis
V Volume
Branchcount Number of total branch in the software module
L Length of program
E Measurement
I Intelligence measurement
total_op Number of total operators
Locodeandcomment Number of the total line of code and comments
Total_opnd Number of total operators
T Estimator of time
Defects/Problems Defects regarding information, whether it is present or not
uniq_op Number of total unique operators
uniq_opnd Number of total unique operand
Ev(g) McCabe complexity
Locomment Software module line of comment

Table 2. Project AEEEM datasets attributes
Dataset
name

Total
element

Non-defective Defective Percentage
non-defective

Percentage
defective

CM1 1,988 1,942 46 97.6 2.4
PC1 705 644 61 91.3 8.7
JM1 7,782 6,110 1,672 78.5 21.5
PC3 1,077 943 134 87.5 12.5
KC1 145 85 60 58.6 41.3
EQ 324 195 129 60.1 39.8
JDT 997 791 206 79.3 20.6

Table 3. Dataset detail division
Metrics Description No. of attributes
Source Code Metric (SCM) Source code computation [17]
Churn of Source Code Metric
(COSCM)

Analysis of SCM-based code churn as an artificial
metrics

[17]

Entropy of Source Code Metric
(EOSCM)

Entropy-based SCM computed on artificial met-
rics

[17]

Previous Defects Metric (PDM) The revisions and defective metrics computation [5]
Entropy of Changes Metric
(EOCM)

Entropy-based changes for artificial metrics com-
putation

[5]

Table 3 shows the characteristics of datasets
used in the study on software defect prediction. The
datasets are named CM1, PC1, JM1, PC3, KC1, EQ
and JDT, each containing various elements. Each da-
taset’s total number of elements is shown in the “To-
tal element” column. The following two columns
show the number of non-defective and defective

elements in each dataset. The CM1 dataset has 1,942
non-defective and 46 defective features. The “Per-
centage non-defective” and “Percentage defective”
columns show the proportion of non-defective and
defective parts in each dataset, expressed as a per-
centage. For instance, the PC3 dataset has 943 non-
defective elements, approximately 87.5% of the total

5

features, while the remaining 12.5% are defective
(134). These statistics are essential in software defect
prediction because the datasets are usually imbal-
anced, with a higher proportion of non-defective el-
ements than defective elements. This imbalance can
affect the performance of prediction models. There-
fore, it is essential to consider the balance of the

dataset when building and evaluating models. Defec-
tive and non-defective classes with graphs can be
shown below. Figure 1(a) shows CM1, Figure 1(b)
shows PC1 and Figure 1 shows PC3 (c), Figure 1(d)
shows JM1, Figure 1(e) shows KC1, Figure 1(f)
shows EQ & Figure 1(g) shows JDT.

(a) CM1 defective & non-defective (b) PC1 defective & non-defective

(c) JM1 defective & non-defective (d) PC3 defective & non-defective

(e) KC1 defective & non-defective (f) EQ defective & non-defective

6

(g) JDT defective & non-defective

Figure 1. CM1, PC1, PC3, JM1, KC1, EQ and JDT defective & non-defective results.

3.2 Proposed model

The given section represents the proposed ap-
proach for SDP. The model has been divided into two
sections. In the first section, the author has balanced
the imbalanced dataset using SMOTE, and in the
second section, SVM has been applied for classifica-
tion.

3.2.1 SMOTE

Highly imbalanced datasets were previously
used to predict software defects. Classification algo-
rithms have great difficulty detecting small classes.
As a result, the imbalanced dataset has to be balanced
for precise SDP. There is a variety of balancing tech-
niques. However, the proposed model implemented
SMOTE, an oversampling strategy presented in the
research of Kovács et al.[24]. It creates the synthetic
data samples and modifies class allotment by over-
sampling the small class as a substitute of over-
sampling using replacement. These data samples are
created using attribute space operations. The small
class is oversampled by removing every data value
and creating synthetic values with the line segments
that connect all nearest neighbors small k classes.

Its generation begins with selecting k-nearest
neighbors, followed by developing synthetic sam-
ples based on the variations between feature vectors
of the value in question. It’s the nearest neighbor. It
adds the interpretation to the feature vector under
consideration by multiplying it with a random
value between OFF (0) & ON (1). A random location
with a line segment between 2 distinct characteristics

is chosen in the form of a result. As a result, SMOTE
has expanded the data region of minority classes and
pushed the class’s decision region to become more
generic.

When one class (the minority class) is greatly
underrepresented relative to the other type in a binary
categorisation task, SMOTE is a prominent strategy
employed to tackle the issue of class disparity in ar-
tificial intelligence (the majority class). To rebalance
the class distribution, SMOTE creates artificial rep-
resentations of the minority class and adds them to
the data.

Mathematically, SMOTE can be represented as
follows:

Given:
A minority class example 𝑥𝑖 with features

𝑥𝑖ଵ, 𝑥𝑖ଶ, ⋯ , 𝑥𝑖,
A k-nearest neighbor of 𝑥𝑖 , denoted as 𝑥𝑖 ,

with features 𝑥𝑖భ
, 𝑥𝑖మ

, ⋯,𝑥𝑖
,

A random number 𝑟 between 0 and 1.
The synthetic example 𝑥𝑖௦௬௧௧ with fea-

tures 𝑥𝑖௦௬௧௧భ
 , 𝑥𝑖௦௬௧௧మ

 , ..., 𝑥𝑖௦௬௧௧
 is

generated as follows for a specific feature j:
𝑥𝑖௦௬௧௧ೕ

 = 𝑥𝑖 + 𝑟 ∗ ሺ𝑥𝑖ೕ
െ 𝑥𝑖ሻ

where 𝑥𝑖 is the feature value of 𝑥𝑖 for feature j,
and 𝑥𝑖ೕ

 is the feature value of 𝑥𝑖 for feature j.

𝐸 ቀ𝑥𝑖௦௬௧௧ೕ
ቁ ൌ 𝐸൫𝑥𝑖൯ െ 𝐸ሺ𝑟ሻ𝐸൫𝑥𝑖൯

 𝐸ሺ𝑟ሻ𝐸ሺ𝑥𝑖ೕ
ሻ

𝐸 ቀ𝑥𝑖௦௬௧௧ೕ
ቁ ൌ

1
2

ሺ𝐸൫𝑥𝑖൯ 𝐸 ቀ𝑥𝑖ೕ
ቁሻ

The author demonstrated that 𝐸 ቀ𝑥𝑖௦௬௧௧ೕ
ቁ

= 𝐸൫𝑥𝑖൯, indicating that the anticipated amount of

7

the synthetic instances generated by stable SMOTE
equals both the initial minority class instances and
the artificial incidents produced by SMOTE, follow-
ing Blagus and Elreedy’s conclusion that 𝐸൫𝑥𝑖൯ =

𝐸 ቀ𝑥𝑖ೕ
ቁ . SMOTE is a simple yet effective tech-

nique for addressing the class imbalance in machine
learning datasets.

3.2.2 SVM

Machine learning algorithms can be categorised
as follows:

 Supervised
 Unsupervised
 Semi-supervised
It can also solve issues like regression, classifi-

cation, and clustering. The SDP challenge problem is
similar to a classification one. The data has two
forms: defects and the other without.

There are numerous algorithms offered to attain
classification problems as artificial intelligence pro-
gresses, such as Logistic Regression, Decision Tree,
Random Forest, and so on; for work, the SVM[25] is
the best-supervised learning paradigm with ad-
vantages:

 To prevent overfitting, L2 Regularization
is used,

 Compatible with small datasets and give
appropriate results,

 To fit the complex function and relation-
ships among the features of various Kernel-Tricks,

 Handled the Non-linearity of the data,
 Model stability can be maintained by using

the hyperplane dividing rule,
 High-dimensionality of the data can be

managed.
SVM’s goal is to maximise the classification

decision boundaries. The hyperplane separates clas-
ses, like +1 (positive class) or –1 (negative class), ra-
ther than minimising prediction error. High-dimen-
sional (n-dimensional) datasets that cannot be
viewed can be employed in the SVM. As a result,
processing data with n = 2 (2D) can be represented
on a 2-Dimensional graph (Figure 2), with the hy-
perplane line that can separate classes. Furthermore,
when the data is n-dimensional, the hyperplane is an
(n – 1) vector function, which may be represented

mathematically.
𝑦 ൌ 𝑝𝑤 𝑝ଵ𝑤ଵ ⋯ 𝑝ିଵ𝑤ିଵ

 𝑐

(1)

It can also show as:
𝑦 ൌ 𝑃்𝑊 𝑐

(2)
where 𝑊 a weight vector, 𝑋 an input feature vec-
tor, and 𝑏 is bias. Once a hyperplane is found, the
hypothesis based on SVM can be formulated below.

𝑓ሺ𝑦ሻ ൌ ൜
𝐶𝑙𝑎𝑠𝑠 1 𝑖𝑓𝑦 0
𝐶𝑙𝑎𝑠𝑠 2 𝑖𝑓𝑦 0

(3)

Figure 2. 2D graph Hyperplane.

Many hyperplanes can be drawn by adjusting p
and c, but the hyperplane with the best margin will be
chosen. The ideal margin is the maximum possible
perpendicular distance between the hyperplane and
each class. For example, hyperplane 1 in Figure 2
has the best margin from classes 1 and 2. The optimal
margin is established by minimising the cost or ob-
jective function. For example, the cost function is de-
fined below:

𝐽ሺ𝑝ሻ ൌ
1
2

‖𝑝‖ଶ
1
𝑛

 max ሺ0, ሺ1 െ 𝑦

ୀ
∗ ሺ𝑃்𝑤 𝑐ሻሻ

(4)

However, the predictions are correct, and data
is correctly categorised through hypothesis; SVM is
fined for all. 𝑦 close to the boundaryሺ0 ൏ 𝑦 ൏ 1ሻ.
Minimising 𝐽ሺ𝑝ሻ is the primary goal in terms of op-
timal 𝑃; therefore, the author has extracted the gra-
dient of the cost function by differentiating equation
4 concerning 𝑃.

8

∇𝐽ሺ𝑃ሻ ൌ
𝜕𝐽ሺ𝑃ሻ

𝜕𝑃

ൌ
1
𝑛

 ൜
𝑃𝑖𝑓max ሺ0, ሺ1 െ 𝑦 ∗ ሺ𝑃்𝑊 𝐶ሻሻ

𝑃 െ 𝑦𝑤𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

ୀ

(5)
As far as the author has calculated 𝛻𝐽ሺ𝑃ሻ, now

it can be updated weights ሺ𝑃ሻ using equation 3:
𝑃௪ ൌ 𝑃ௗ െ 𝛼ሾ𝐽ሺ𝑃ሻሿ

(6)
Repeat till the smallest 𝐽ሺ𝑃ሻ found.
Because data is rarely linearly separable, the au-

thor must draw a decision boundary between the
classes rather than separating them by a hyperplane.
Dealing with the dataset’s non-linearity, convert
equation 2 in decision boundary.

𝑦 ൌ 𝑃. 𝜙ሺ𝑊ሻ 𝑐
(7)

In equation 7, 𝜙ሺ𝑊ሻ , the kernel function is
what it’s called. Various kernel functions are availa-
ble to construct SVM, including linear, polynomial,
exponential, and so on. However, the proposed
model employs the Radial Basis Function (RBF)[26].
That is based on Euclidean distance, and the bound-
aries smoothness is defined by a parameter[27].

𝜙ሺ𝑤ሻ ൌ exp ቆെ
‖𝑤 െ 𝑤ഥ‖ଶ

2𝜎ଶ ቇ

(8)

where, ‖𝑤 െ 𝑤ഥ‖ଶ is the Euclidean square, and the
distance w between every single observation and the
training sample’s means 𝑤ഥ .

Algorithm
Start
Step-1 Import Libraries // Import all the sufficient libraries and files to implementation
Step-2 Data = read (File) // Read the available data
Step-3 Initialise weights W and bias b with any arbitrary number
Step-4 Feature Optimisation // Select the appropriate attributes for the prediction
Step-5 Train DataSet, Testing Data Sets = Data. Split (Ratio) // Splitting the data in two-part, one

model training, another model testing in the suitable ratio
Step-6 Define y // Equations 2 or 7
Step-7 Define h(y) // Equation 3
Step-8 Define J(P) // Equation 4
Step-9 Calculate ∇୮𝐽ሺ𝑃ሻ // Equation 5

Step-10 Repeat for minimum J(P):
Update P // minute variations in weights to find the optimal margin (equation 6)
Call Steps 6–9 // Re-calculate the ∇𝐽ሺ𝑃ሻ by making a prediction using updated P
End

Step-11 Accuracy calculation // To check the efficiency of the model

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ←
𝑇𝑜𝑡𝑎𝑙𝑛𝑜. 𝑜𝑓𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙𝑛𝑜. 𝑜𝑓𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
∗ 100

Step-12 Output // Accuracy of the model as output
Stop

3.3 Performance evaluation

Model performance testing evaluation is one of
the significant tasks. It shows the operational perfor-
mance with test data. For measuring performance,

the confusion matrix technique is used. This tech-
nique stores predicted and actual class data to obtain
the classification results. The confusion matrix helps
compute the most common five evaluation metrics
of SDP used in the proposed model.

Table 4. Confusion matrix
Actual value Predicted value

Non-defective Defective
Non-defective False negative (FN) True positive (TP)
Defective True negative (TN) False positive (FP)

9

1) Accuracy: The number of correct answers
given in a classification. In a confusion matrix, there
are two types of answers: True positive (TP) (where
the defective value has been identified as defective)
and True negative (TN) (where the defective value
has not been determined as defective) (where non-
defective value identified as non-defective). The fol-
lowing formula can be used to calculate accuracy:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ൌ
ሺ𝑇𝑃ሻ ሺ𝑇𝑁ሻ

ሺ𝑇𝑃 𝐹𝑁 𝐹𝑃 𝑇𝑁ሻ

2) Precision: Measure correctly answered de-
fective values to the total predicted defective values
in the given classification. Can be represented as:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൌ
ሺ𝑇𝑃ሻ

ሺ𝑇𝑃ሻ ሺ𝐹𝑃ሻ

3) Recall: Measure truly answered defective
values, all actual defective values in the classifica-
tion. Can be represented as:

𝑅𝑒𝑐𝑎𝑙𝑙 ൌ
ሺ𝑇𝑃ሻ

ሺ𝑇𝑃ሻ ሺ𝐹𝑁ሻ

4) F1-score: Weighted average Precision and
Recall. It can be represented as:

𝐹 ൌ
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑅𝑒𝑐𝑎𝑙𝑙

4. Implementation

The proposed model can be implemented in the
following ways: the author has coded in Python and
used the Spyder platform. The author has used the
following datasets to test the suggested model.

4.1 Using CM1 dataset

In Table 5, confusion matrix CM1 datasets with
the proposed model S-SVM.

4.2 Using PC1 dataset

In Table 6, confusion metrics PC1 dataset with
S-SVM.

4.3 Using JM1 dataset

In Table 7, confusion metrics demonstration
with JM1 dataset using S-SVM.

4.4 Using PC3 dataset

In Table 8, confusion metrics demonstration
with the PC3 dataset using S-SVM.

Table 5. Confusion matrix for CM1 dataset using S-SVM
 Predicted
 Defective Non-defective
Actual Defective 366 23

Non-defective 91 297

Table 6. Confusion matrix for PC1 dataset using S-SVM
 Predicted
 Defective Non-defective
Actual Defective 11 8

Non-defective 66 73

Table 7. Confusion matrix for JM1 dataset using SMOTE-SVM
 Predicted
 Defective Non-defective
Actual Defective 1,016 230

Non-defective 430 768

Table 8. Confusion matrix for PC3 dataset using S-SVM
 Predicted
 Defective Non-defective
Actual Defective 151 16

Non-defective 69 142

The author examined merging both techniques sequentially to improve the SDP’s performance in

10

the current manuscript. A hybrid approach called
SMOTE + SVM is used to achieve the best results,
as shown in Figure 3. The SMOTE algorithm aims
to generate synthetic values for a minority class that
is a defect class to the dataset. It can distribute the
number of occurrences in each class more evenly,

allowing the classifier to consider the minority class.
The SVM classifier will then be trained using a new
oversampled dataset. The SVM classifiers’ defect de-
tection rates have produced the most promising and
genuine findings.

Figure 3. Hybrid S-SVM model for SDP.

4.5 Using KC1 dataset

In Table 9, confusion metrics demonstration

with the KC1 dataset using SMOTE-SVM.

Table 9. Confusion matrix for KC1 dataset using SMOTE-SVM
 Predicted
 Defective Non-defective
Actual Defective 4 9

Non-defective 1 20

Table 9 represents the confusion matrix for the
KC1 dataset using S-SVM for handling imbalanced
data. In the context of binary classification, the con-
fusion matrix summarises the performance of a ma-
chine learning model by comparing its predicted la-
bels to the true labels of the dataset. The rows in the
table represent the actual labels of the dataset, while
the columns represent the predicted labels by the S-
SVM model. The entries in the table represent the
counts of instances that fall into each category: The
top-left entry (4) represents the number of cases that
are truly “Defective” in the dataset and were cor-
rectly predicted as “Defective” by the S-SVM model.
The top-right entry (9) represents the number of

instances that are actually “Defective” in the da-
taset but were mistakenly predicted as “Non-defec-
tive” by the S-SVM model. The bottom-left entry (1)
represents the number of instances that are actually
“Non-defective” in the dataset but were mistakenly
predicted as “Defective” by the S-SVM model.
The bottom-right entry (20) represents the number of
instances that are true “Non-defective” in the dataset
and were correctly predicted as “Non-defective” by
the S-SVM model. From this table, the author can
see that the model correctly predicted the “Non-de-
fective” instances with high accuracy (20 out of 21
instances). The accuracy for “Defective” samples is
lower (4 out of 13 instances). This suggests that the

Major class

Major

Minor

Imbalanced
dataset

Preprocessing

SMOTE

Minor

Balanced
dataset

SVM

Dataset
Training

Testing-
dataset

Assessment
(Accuracy)

Major

Defective Non-defective

11

S-SVM model may have difficulty accurately pre-
dicting the “Defective” instances in the KC1 dataset.
Further analysis and tuning of the model may be nec-
essary to improve its performance.

4.6 Using AEEEM project EQ dataset

In Table 10, confusion metrics are demon-
strated with the EQ dataset using SMOTE-SVM.

Table 10. Confusion matrix for EQ dataset using SMOTE-SVM
 Predicted
 Defective Non-defective
Actual Defective 29 17

Non-defective 6 26

Table 10 represents the confusion matrix for the
EQ dataset using the proposed model for handling
imbalanced data. The EQ dataset is a project EQ da-
taset from the AEEEM repository, commonly used in
software defect prediction research. In the context
of binary classification, the confusion matrix sum-
marises the performance of a machine learning
model by comparing its predicted labels to the true
labels of the dataset. The rows in the table represent
the actual labels of the dataset, while the columns
represent the predicted labels by the S-SVM model.
The top-left entry (29) represents the number of in-
stances that are truly “Defective” in the dataset and
were correctly predicted as “Defective” by the S-
SVM model. The top-right entry (17) represents the
number of instances that are actually “Defective” in
the dataset but were mistakenly predicted as “Non-
Defective” by the S-SVM model. The bottom-left
entry (6) represents the number of instances that are
actually “Non-defective” in the dataset but were

mistakenly predicted as “Defective” by the S-SVM
model. The bottom-right entry (26) represents the
number of instances that are true “Non-defective” in
the dataset and were correctly predicted as “Non-de-
fective” by the S-SVM model. From this table, the
model correctly predicted the “Defective” instances
with relatively high accuracy (29 out of 46). The ac-
curacy for “Non-defective” samples is also relatively
high (26 out of 32 instances). However, some in-
stances were misclassified, with 17 instances of “De-
fective” being predicted as “Non-defective” and six
instances of “Non-defective” being predicted as “De-
fective”. Further analysis and fine-tuning of the
model may be necessary to improve its performance
on the EQ dataset.

4.7 Using AEEEM project JDT dataset

In Table 11, confusion metrics demonstration
with the JDT dataset using SMOTE-SVM.

Table 11. Confusion matrix for EQ dataset using SMOTE-SVM
 Predicted
 Defective Non-defective
Actual Defective 134 26

Non-defective 5 152

Table 11 represents the confusion matrix for the
JDT dataset using a proposed model for handling im-
balanced data, referred to as SMOTE-SVM. The JDT
dataset is a software defect prediction dataset. In the
context of binary classification, the confusion matrix
summarises the performance of a machine learning
model by comparing its predicted labels to the true
labels of the dataset. The rows in the table represent
the actual labels of the dataset, while the columns
represent the predicted labels by the S-SVM model.

The entries in the table represent the counts of in-
stances that fall into each category: The top-left entry
(134) represents the number of instances that are
truly “Defective” in the dataset and were correctly
predicted as “Defective” by the S-SVM model. The
top-right entry (26) represents the number of in-
stances that are actually “Defective” in the da-
taset but were mistakenly predicted as “Non-defec-
tive” by the S-SVM model. The bottom-left entry (5)
represents the number of instances that are actually

12

“Non-defective” in the dataset but were mistakenly
predicted as “Defective” by the S-SVM model.
The bottom-right entry (152) represents the number
of instances that are true “Non-defective” in the da-
taset and were correctly predicted as “Non-defec-
tive” by the S-SVM model. Similar to the previous
tables you provided, this confusion matrix helps
evaluate the performance of the S-SVM model on the
JDT dataset. From this table, the model correctly pre-
dicted the “Defective” instances with relatively high
accuracy (134 out of 160). The accuracy for “Non-
defective” samples is also relatively high (152 out of
157 instances). However, some instances were mis-
classified, with 26 instances of “Defective” being
predicted as “Non-defective” and five instances of
“Non-defective” being predicted as “Defective”.
Further analysis and fine-tuning of the model may be
necessary to improve its performance on the JDT da-
taset. Figure 3 shows the complete model demon-
stration. Table 12 shows the imbalanced and bal-
anced dataset of non-defective and defective classes.
The balancing of the dataset has been experimentally
performed by using SMOTE technique.

Table 12. Non-defective and defective classes measure
Dataset Non-defective Defective
CM1 Imbalanced 363 35

Balanced 499 499
PC1 Imbalanced 555 65

Balanced 144 144
JM1 Imbalanced 4,891 1,334

Balanced 6,110 6,110
PC3 Imbalanced 659 94

Balanced 943 943

KC1

Imbalanced 85 60
Balanced 85 85

EQ

Imbalanced 195 129
Balanced 195 195

JDT

Imbalanced 791 206
Balanced 791 791

5. Results and discussion
SDP models developed earlier have broken

their data into test and train sets. A non-defective ma-
jority dataset can perform well for the non-defective
test dataset, but the model will not perform well for
the defective majority dataset. If the imbalanced da-
taset is taken, the performance will be much high, but
that will not be very objective. So, building a model
with a balanced dataset is necessary. The author has

used four PROMISE REPOSITORY and two AEEM
project datasets (CM1, PC1, JM1, PC3, KC1, EQ
and JDT). Initially, the datasets were imbalanced, but
the author applied a balancing technique to ensure
the performance was unbiased and genuine. The au-
thor has experimented in two parts for the model’s
comparative analysis and performance measurement.
First, the author experimented with the imbalanced
dataset and applied a hybrid technique to balance and
classify the dataset. And the results show the signifi-
cant differences between using balanced and imbal-
anced datasets. The results can be shown in Table 12.
There are seven datasets, each broken into train and
test sets. So, expected two major simulations can oc-
cur that are listed below.

5.1 For CM1 dataset

1) Balanced dataset: The model’s performance
is shown in Table 12, which has a precision of 80, a
recall value of 94 with an F1-score is 87 and an ac-
curacy of 98.

2) Imbalanced dataset: The model’s perfor-
mance can be achieved in Table 12, which has a pre-
cision of 93, a recall value of 77, an F1-score of 84,
and an accuracy of 84.

5.2 For PC1 dataset

1) Balanced dataset: The model’s performance
is shown in Table 12, which has a precision of 92, a
recall value of 52 with an F1-score is 67, and an ac-
curacy is 92.

2) Imbalanced Dataset: The model’s perfor-
mance can be achieved in Table 12, which has a pre-
cision of 66, a recall value of 95, an F1-score of 78
and an accuracy of 74.

5.3 For JM1 dataset

1) Balanced Dataset: The model’s performance
is shown in Table 12, which has a precision of 70, a
recall value of 82 with an F1-score is 75, and an ac-
curacy is 69.

2) Imbalanced Dataset: The model’s perfor-
mance can be achieved in Table 12, which has a pre-
cision of 77, recall value of 64, F1-score of 70 and
accuracy of 73.

13

5.4 For PC3 dataset

1) Balanced dataset: The model’s performance
is shown in Table 12, which has a precision of 69, a
recall value of 90 with an F1-score is 78, and an ac-
curacy is 78.

2) Imbalanced dataset: The model’s perfor-
mance can be achieved in Table 12, which has a pre-
cision of 90, recall value of 67, F1-score of 77 and
accuracy of 79, respectively.

5.5 For KC1 dataset

1) Balanced dataset: The model’s performance
is shown in Table 12, which has a precision of 80, a
recall value of 31 with an F1-score is 44, and an ac-
curacy is 71.

2) Imbalanced dataset: The model’s perfor-
mance can be achieved in Table 12, which has a pre-
cision of 69, recall value of 95, F1-score of 80 and
accuracy of 67, respectively.

5.6 For EQ dataset

1) Balanced dataset: The model’s performance
is shown in Table 12, which has a precision of 83, a

recall value of 63 with an F1-score is 72, and an ac-
curacy is 77.

2) Imbalanced dataset: The model’s perfor-
mance can be achieved in Table 12, which has a pre-
cision of 60, recall value of 81, F1-score of 69 and
accuracy of 71, respectively.

5.7 For JDT dataset

1) Balanced dataset: The model’s performance
is shown in Table 12, which has a precision of 96, a
recall value of 84 with an F1-score is 90, and an ac-
curacy is 90.

2) Imbalanced dataset: The model’s perfor-
mance can be achieved in Table 12, which has a pre-
cision of 85, recall value of 97, F1-score of 91 and
accuracy of 87, respectively.

In the last, the author can show that the perfor-
mance measure of SDP with an imbalanced dataset
is much higher than the balanced one. And the hybrid
model performance decreases when the model is
treated with the balanced dataset. That successfully
shows the difference among the performance with
different measurable metrics.

Table 13. Evaluation measures using considered metrics with imbalanced & balanced datasets
Hybrid model The performance measure with SMOTE-SVM hybrid model (S-SVM model)
datasets Precision Recall F1-score Accuracy
CM1 Balanced 80 94 87 98

Imbalanced 93 77 84 84
PC1 Balanced 92 52 67 92

Imbalanced 66 95 78 74
JM1 Balanced 70 82 75 69

Imbalanced 77 64 70 73
PC3 Balanced 69 90 78 78

Imbalanced 90 67 77 79
KC1 Balanced 80 31 44 71

Imbalanced 69 95 80 67
EQ Balanced 83 63 72 77

Imbalanced 60 81 69 71
JDT Balanced 96 84 90 90

Imbalanced 85 97 91 87

Table 13 shows the performance measures of a
hybrid model (S-SVM model) on seven datasets:
CM1, PC1, JM1, PC3, KC1, EQ, and JDT. The
model is evaluated under two different scenar-
ios: balanced and imbalanced datasets. In the bal-
anced scenario, the dataset has an equal proportion
of the positive and negative classes, while in the

imbalanced method, one class is underrepresented
compared to the other. The performance measures
reported in the table include precision, recall, F1-
score, and accuracy. On the CM1 dataset, in the bal-
anced scenario, the S-SVM model achieves a preci-
sion of 80%, recall of 94%, F1-score of 87%, and
accuracy of 98%. In the imbalanced scenario, the

14

Figure 4. Comparative analysis with balanced & imbalanced dataset of S-SVM hybrid model.

model achieves a higher precision of 93% but a
lower recall of 77%, resulting in an F1-score of 84%
and an accuracy of 84%. On the PC1 dataset, the S-
SVM model performs better in the imbalanced sce-
nario, achieving a precision of 66%, recall of 95%,
F1-score of 78%, and accuracy of 74%, compared to
the balanced scenario, where it achieves a precision
of 92%, recall of 52%, F1-score of 67%, and accu-
racy of 92%. Similar trends are observed on the JM1,
PC3, KC1, EQ, and JDT datasets, where the perfor-
mance of the S-SVM model varies depending on the
dataset and the scenario. For example, on the JM1
dataset, in the balanced scenario, the model achieves
a precision of 70%, recall of 82%, F1-score of 75%,
and accuracy of 69%, while in the imbalanced sce-
nario, it achieves a precision of 77%, recall of 64%,
F1-score of 70%and accuracy of 73%. On the PC3
dataset, in the balanced scenario, the model achieves
a precision of 69%, recall of 90%, F1-score of 78%,
and accuracy of 78%, while in the imbalanced sce-
nario, it achieves a precision of 90%, recall of 67%,
F1-score of 77%, and accuracy of 79%. On the KC1
dataset, in the balanced scenario, the S-SVM model
achieves a precision of 80%, recall of 31%, F1-score
of 44%, and accuracy of 71%, while in the imbal-
anced scenario, it achieves a precision of 69%, recall

of 95%, F1-score of 80%, and accuracy of 67%. On
the EQ dataset, in the balanced scenario, the model
achieves a precision of 83%, recall of 63%, F1-score
of 72%, and accuracy of 77%, while in the imbal-
anced scenario, it achieves a precision of 60%, recall
of 81%, F1-score of 69%, and accuracy of 71%. On
the JDT dataset, in the balanced scenario, the model
achieves a precision of 96%, recall of 84%, F1-score
of 90%, and accuracy of 90%, while in the imbal-
anced scenario, it achieves a precision of 85%, recall
of 97%, F1-score of 91%, and accuracy of 87%.
Overall, the performance of the S-SVM hybrid
model varies across different datasets and scenarios,
with higher precision and recall generally observed
in the imbalanced scenario. In contrast, higher accu-
racy is often achieved in a balanced scenario. The
F1-score, which provides a balanced measure of pre-
cision and recall, also varies depending on the da-
taset and method. These results highlight the im-
portance of considering the class distribution of the
dataset and choosing appropriate evaluation
measures when using the S-SVM hybrid model for
classification tasks. Figure 4 shows the graphical
representation of the balanced and imbalanced da-
taset on the S-SVM model.

0 10 20 30 40 50 60 70 80 90 100

Balanced

Imbalanced

Balanced

Imbalanced

Balanced

Imbalanced

Balanced

Imbalanced

Balanced

Imbalanced

Balanced

Imbalanced

Balanced

Imbalanced

C
M
1

P
C
1

JM
1

P
C
3

K
C
1

EQ
JD
T

S‐SVM‐Model

Accuracy F1‐score Recall Precision

15

5.8 Comparative analysis of the previously
developed models with the S-SVM model

The comparative analysis with previously de-
veloped models on the NASA dataset using the S-
SVM (SMOTE-SVM hybrid) model reveals various
findings. For the CM1 dataset, the S-SVM model
achieved a precision of 80.00%, recall of 94.00%,
F1-score of 87.00%, and accuracy of 98.00%. This
performance is competitive with other models such
as Naïve Bayes, Random Forest, C4.5 Miner, and
ANN-ABC, outperforming them in precision, recall,
and accuracy. Similarly, for the PC1 dataset, the S-
SVM model achieved a precision of 92.00%, recall

of 52.00%, F1-score of 67.00%, and accuracy of
92.00%. The S-SVM model’s precision and accuracy
are significantly higher than other models like
SMOTE+Naïve Bayes, AdaBoost+SMOTE+Naïve
Bayes, and Bagging+SMOTE+Naïve Bayes. These
results suggest that the S-SVM model can be a viable
option for classification tasks on the NASA dataset,
especially in scenarios where precision and accuracy
are essential. However, researchers should carefully
consider the trade-offs between different perfor-
mance measures and choose the appropriate
model based on the specific requirements of their re-
search or application.

Table 14. Performance analysis of previously developed models with the proposed model
NASA datasets Techniques Precision Recall F-m Accuracy
CM1 Naïve Bayes[29,30] 86.20 78.65 34.09 64.57

Random Forest[29,31] 71.10 71.29 32.17 60.98
C4.5 Miner[32,33] 74.91 74.66 27.68 66.71
Immunos[32,33] 73.65 75.02 30.99 66.03
ANN-ABC[32,33] 75.00 81.00 33.00 68.00
Hybrid self-organizing map[32,34] 70.12 78.96 30.65 72.37
SVM[29,35] 81.20 79.08 31.27 78.69
Majority vote[32,36] 79.80 80.00 30.46 77.01
AntMiner+[32,36] 80.65 78.88 30.90 73.43
ADBBO-RBFNN[32,37] 81.92 80.96 29.71 82.57
NN GAPO+B[38] - - - 74.40
Decision Tree[29,35] 83.30 74.23 81.20 73.49
KNN[31]
MLP[31]

83.90
90.40

84.70
95.50

84.30
92.90

--
86.73

SMOTE+Naïve Bayes[39] 20.22 71.42 31.51 60.24
AdaBoost+SMOTE+Naïve Bayes[39] 14.28 64.28 23.36 45.87
Bagging+SMOTE+Naïve Bayes[39] 20.00 71.42 31.24 59.63
Proposed Model (S-SVM) 80.00 94.00 87.00 98.00

PC1 Naïve Bayes[31] 96.00 90.00 97.20 90.30
Random Forest[31] 97.00 - 98.80 97.69
C4.5 Miner[32] 76.58 81.76 34.05 62.18
Immunos[32] 81.99 79.66 36.92 61.73
ANN-ABC[32] 89.00 83.00 33.00 65.00
Hybrid self-organizing map[32] 86.79 85.67 35.67 95.87
SVM[32] 80.98 86.59 98.00 92.45
Majority vote[32] 84.61 84.37 30.98 92.50
AntMiner+[32] 89.34 87.12 26.11 91.85
ADBBO-RBFNN[32] 90.89 89.33 20.24 -
NN GAPO+B[31] - - - -
Decision Tree[31] 97.00 - 98.00 -
KNN[31]
MLP[31]

95.00
97.00

90.00
99.00

98.00
98.00

95.71
96.00

SMOTE+Naïve Bayes[39] 10.97 83.63 19.39 43.74
AdaBoost+SMOTE+Naïve Bayes[39] 10.97 82.14 19.35 43.74
Bagging+SMOTE+Naïve Bayes[39] 11.19 83.63 19.73 44.92
Proposed Model (S-SVM) 92.00 52.00 67.00 92.00

16

5.9 Comparative analysis of SMOTE-Tomek
and SMOTE-ENN with SMOTE-SVM
model using CM1, PC1 and KC1 datasets
experimental study

SMOTE is a popular data augmentation tech-
nique used to address the issue of class imbalance in
machine learning datasets. It generates synthetic ex-
amples of the minority class by interpolating be-
tween minority class instances. SMOTE-SVM is an
extension of SMOTE that incorporates information
from an SVM classifier to generate synthetic sam-
ples.

On the other hand, SMOTE-Tomek and
SMOTE-ENN are hybrid methods that combine
SMOTE with Tomek links and Edited Nearest
Neighbors (ENN) techniques, respectively, to im-
prove further the effectiveness of SMOTE in han-
dling class imbalance. CM1, PC1, and KC1 are da-
tasets used for SDP, where the objective is to predict
whether a software module is defective. Using these
datasets, the author has now analysed the perfor-
mance of SMOTE-Tomek, SMOTE-ENN, and
SMOTE-SVM models.

Table 15. Performance analysis of various SMOTE techniques with the proposed model
Techniques Datasets Precision Recall F1-score Accuracy
SMOTE-Tomek-SVM CM1 99.0 99.0 99.0 99.0

PC1 98.0 96.0 97.0 96.5
KC1 89.0 83.0 90.0 89.0

SMOTE-ENN-SVM CM1 99.0 100.0 99.0 99.0
PC1 98.0 98.0 98.0 98.0
KC1 92.0 89.0 90.0 89.0

SMOTE-SVM CM1 97.0 98.0 97.0 97.0
PC1 97.0 96.0 97.0 96.2
KC1 91.0 92.0 89.0 90.9

SMOTE-Tomek-SVM, SMOTE-ENN-SVM,
and SMOTE-SVM are evaluated on three datasets:
CM1, PC1, and KC1. The evaluation metrics re-
ported for each model on each dataset are precision,
recall, F1-score, and accuracy. SMOTE-Tomek-
SVM: CM1 dataset: The precision, recall, F1-score,
and accuracy are reported as 99.0, 99.0, 99.0, and
99.0, respectively. PC1 dataset: The precision, recall,
F1-score, and accuracy are reported as 98.0, 96.0,
97.0, and 96.5, respectively. KC1 dataset: The preci-
sion, recall, F1-score, and accuracy are reported as
89.0, 83.0, 90.0, and 89.0, respectively. SMOTE-
ENN-SVM: CM1 dataset: The precision, recall, F1-
score, and accuracy are reported as 99.0, 100.0, 99.0,
and 99.0, respectively. PC1 dataset: The precision,
recall, F1-score, and accuracy are reported as 98.0,
98.0, 98.0, and 98.0, respectively. KC1 dataset: The
precision, recall, F1-score, and accuracy are reported
as 92.0, 89.0, 90.0, and 89.0, respectively. S-SVM:
CM1 dataset: The precision, recall, F1-score, and ac-
curacy are reported as 97.0, 98.0, 97.0, and 97.0, re-
spectively. PC1 dataset: The precision, recall, F1-
score, and accuracy are reported as 97.0, 96.0, 97.0,

and 96.2, respectively. KC1 dataset: The precision,
recall, F1-score, and accuracy are reported as 91.0,
92.0, 89.0, and 90.9, respectively. From the reported
metrics, the author can see that SMOTE-Tomek-
SVM and SMOTE-ENN-SVM models have high
precision, recall, F1-score, and accuracy values, in-
dicating good performance on the datasets. However,
it’s important to note that the recall for SMOTE-
ENN-SVM is very high (100.0) on the CM1 dataset,
which may indicate an issue with class imbalance or
data quality. Based on the information in the table,
the models SMOTE-Tomek-SVM and SMOTE-
ENN-SVM may have been overfitted, while S-SVM
may not have been overfitted. The reason is that
SMOTE-Tomek and SMOTE-ENN are variants of
the SMOTE that combine oversampling (SMOTE)
with undersampling (Tomek links or Edited Nearest
Neighbors, respectively) to address the class imbal-
ance. Therefore, “SMOTE” in the model names sug-
gests that oversampling may have been applied in
these models. On the other hand, S-SVM has no ad-
ditional undersampling technique mentioned in its
name, indicating that only SMOTE might have been

17

used in this model without any undersampling. Over-
sampling is an approach to address the class imbal-
ance, and its effectiveness depends on various factors,
such as the dataset, the algorithm used, and the spe-
cific implementation.

6. Conclusion
In conclusion, the author presents a solution to

the issue of dataset balancing in SDP by formulating
it as a classification problem and proposing a hybrid
SMOTE+SVM model. The author evaluated their
model on different NASA and AEEM repository da-
tasets: CM1, PC1, JM1, PC3, KC1, EQ and JDT and
compared their performance using balanced and im-
balanced datasets. The result shows that the perfor-
mance of the SMOTE-SVM model is highly depend-
ent on the dataset and scenario. Generally, the model
performs better on balanced datasets than on imbal-
anced ones. For instance, on the CM1 dataset, the
proposed model achieved an accuracy of 98% in
the balanced scenario compared to 84% in the imbal-
anced scenario.

Similarly, on the PC1 dataset, the model
achieved an accuracy of 92% in the balanced system
and 74% in the imbalanced system. The author’s
findings indicate that balancing the dataset using the
SMOTE technique improves the authenticity and
quality of defect prediction results. This technique
helped us achieve better quality and authentic results
of defect prediction, even though it may reduce the
accuracy in some cases. In future work, the authors
plan to apply their proposed model to other datasets
further to verify its performance and effectiveness.
Overall, the hybrid SMOTE+SVM model can be
considered a promising solution to the issue of im-
balanced datasets in SDP.

Acknowledgments
Not applicable.

Authors’ contributions
Each author contributed equally to this work.

Availability of supporting data
PROMISE software engineering repository[28]

(http://promise.site.uottawa.ca/SERepository/da-
tasets-page.html).

Conflict of interest
The authors declare no conflict of interest.

Consent for publication
All authors agreed.

Ethical approval and consent to
participate

Not applicable.

Funding
The authors declare that no funds, grants, or

other support were received during the preparation
of this manuscript.

References

1. Amasaki S. On applicability of cross-project defect
prediction method for multi-versions projects. In:
Proceedings of the 13th International Conference on
Predictive Models and Data Analytics in Software
Engineering; 2017 Nov 8; Toronto Canada. New
York: Association for Computing Machinery; 2017.
p. 93–96. doi: 10.1145/3127005.3127015.

2. Shukla S, Radhakrishnan T, Muthukumaran K, Neti
LBM. Multi-objective cross-version defect
prediction. Soft Computing 2018; 22(6): 1959–
1980. doi: 10.1007/s00500-016-2456-8.

3. Jayanthi R, Florence L. Software defect prediction
techniques using metrics based on neural network
classifier. Cluster Computing 2019; 22(1): 77–88.
doi: 10.1007/s10586-018-1730-1.

4. Liu M, Miao L, Zhang D. Two-stage cost-sensitive
learning for software defect prediction. IEEE
Transactions on Reliability 2014; 63(2): 676–686.
doi: 10.1109/TR.2014.2316951.

5. Herbold S, Trautsch A, Grabowski J. Global vs.
local models for cross-project defect prediction.
Empirical Software Engineering 2017; 22(4): 1866–
1902. doi: 10.1007/s10664-016-9468-y.

6. Zhang F, Zheng Q, Zou Y, Hassan AE. Cross-
project defect prediction using a connectivity-based
unsupervised classifier. In: 2016 IEEE/ACM 38th
International Conference on Software Engineering
(ICSE); 2016 May 14–22; Austin, TX. New York:
IEEE; 2017. p. 309–320. doi:
10.1145/2884781.2884839.

7. Hosseini S, Turhan B, Gunarathna D. A systematic
literature review and meta-analysis on cross project
defect prediction. IEEE Transactions on Software
Engineering 2019; 45(2): 111–147. doi:

18

10.1109/TSE.2017.2770124.
8. Wahono RS. A systematic literature review of

software defect prediction: Research trends,
datasets, methods and frameworks. Journal of
Software Engineering 2007; 1(1): 1–16. doi:
10.3923/jse.2007.1.12.

9. Malhotra R. A systematic review of machine
learning techniques for software fault prediction.
Applied Soft Computing 2015; 27: 504–518. doi:
10.1016/j.asoc.2014.11.023.

10. Benediktsson O, Dalcher D, Thorbergsson H.
Comparison of software development life cycles: A
multiproject experiment. IET Software 2006;
153(3): 87–101. doi: 10.1049/ip-sen:20050061.

11. Hassan MM, Afzal W, Blom M, et al. Testability
and software robustness: A systematic literature
review. In: 2015 41st Euromicro Conference on
Software Engineering and Advanced Applications;
2015 Aug 26–28; Madeira, Portugal. New York:
IEEE; 2015. p. 341–348. doi:
10.1109/SEAA.2015.47.

12. Shepperd M, Bowes D, Hall T. Researcher bias:
The use of machine learning in software defect
prediction. IEEE Transactions on Software
Engineering 2014; 40(6): 603–616. doi:
10.1109/TSE.2014.2322358.

13. Manjula C, Florence L. Deep neural network based
hybrid approach for software defect prediction
using software metrics. Cluster Computing 2019;
22: 9847–9863. doi: 10.1007/s10586-018-1696-z.

14. Chidamber SR, Kemerer CF. A metrics suite for
object oriented design. IEEE Transactions on
Software Engineering 1994; (6): 476–493. doi:
10.1109/32.295895.

15. Basili VR, Briand LC, Melo WL. A validation of
object-oriented design metrics as quality indicators.
IEEE Transactions on Software Engineering 1996;
22(10): 751–761. doi: 10.1109/32.544352.

16. Alsawalqah H, Faris H, Aljarah I, et al. Hybrid
SMOTE-ensemble approach for software defect
prediction. Advances in Intelligent Systems and
Computing 2017; 575: 355–366. doi: 10.1007/978-
3-319-57141-6_39.

17. He H, Bai Y, Garcia EA, Li S. ADASYN: Adaptive
synthetic sampling approach for imbalanced
learning. In: 2008 IEEE International Joint
Conference on Neural Networks; 2008 Jun 1–8;
Hong Kong. New York: IEEE; 2008. p. 1322–1328.
doi: 10.1109/IJCNN.2008.4633969.

18. Nian R. Fixing imbalanced datasets: An
introduction to ADASYN (with code!) [Internet].
San Francisco: Medium; 2018 [published 2018 Dec
23]. Available from:
https://medium.com/@ruinian/an-introduction-to-
adasyn-with-code-1383a5ece7aa.

19. Mirzaei B, Nikpour B, Nezamabadi-Pour H. An
under-sampling technique for imbalanced data
classification based on DBSCAN algorithm. In:
2020 8th Iranian Joint Congress on Fuzzy and
intelligent Systems (CFIS); 2020 Sept 2–4;

Mashhad, Iran. New York: IEEE; 2020. p. 21–26.
doi: 10.1109/CFIS49607.2020.9238718.

20. Hasanin T, Khoshgoftaar TM. The effects of
random undersampling with simulated class
imbalance for big data. In: 2018 IEEE International
Conference on Information Reuse and Integration
(IRI); 2018 Jul 6–9; Salt Lake City, UT. New York:
IEEE; 2018. p. 70–79. doi:
10.1109/IRI.2018.00018.

21. Bach M, Werner A, Palt M. The proposal of
undersampling method for learning from
imbalanced datasets. Procedia Computer Science
2019; 159: 125–134. doi:
10.1016/j.procs.2019.09.167.

22. Sawangarreerak S, Thanathamathee P. Random
forest with sampling techniques for handling
imbalanced prediction of university student
depression. Information 2020; 11(11): 1–13. doi:
10.3390/info11110519.

23. Software Defect Dataset. Promise software
engineering repository [Internet]. Ottawa:
University of Ottawa; 2004. Available from:
http://promise.site.uottawa.ca/SERepository/dataset
s-page.html.

24. Kovács B, Tinya F, Németh C, Ódor P. Unfolding
the effects of different forestry treatments on
microclimate in oak forests: Results of a 4-yr
experiment. Ecological Applications 2020; 30(2):
321–357. doi: 10.1002/eap.2043.

25. Wilson MD. Support vector machines. In:
Encyclopedia of ecology. Amsterdam, Netherlands:
Elsevier Science; 2008. p. 3431–3437. doi:
10.1016/B978-008045405-4.00168-3.

26. Zoppis I, Mauri G, Dondi R. Kernel methods:
Support vector machines. Ranganathan R, Gribskov
M, Nakai K, et al. (editors). Oxford: Academic
Press; 2019. p. 503–510.

27. Chang YW, Hsieh CJ, Chang KW, et al. Training
and testing low-degree polynomial data mappings
via linear SVM. The Journal of Machine Learning
Research 2010; 11(48): 1471–1490.

28. Sayyad Shirabad J, Menzies TJ. The PROMISE re-
pository of software engineering databases [Inter-
net]. Ottawa: University of Ottawa; 2005. Available
from: http://promise.site.uottawa.ca/SERepository.

29. Alkhasawneh MS. Software defect prediction
through neural network and feature selections. Ap-
plied Computational Intelligence and Soft Compu-
ting 2022; 2022: 2581832. doi:
10.1155/2022/2581832.

30. Mustaqeem M, Saqib M. Principal compo-
nent based support vector machine (PC-SVM): A
hybrid technique for software defect detection.
Cluster Computing 2021; 24(3): 2581–2595. doi:
10.1007/s10586-021-03282-8.

31. Abualigah L. Group search optimiser: A nature-in-
spired meta-heuristic optimisation algorithm with
its results, variants, and applications. Neural Com-
puting and Applications 2021; 33: 2949–2972. doi:
10.1007/s00521-020-05107-y.

19

32. Abualigah L. Multi-verse optimiser algorithm: A
comprehensive survey of its results, variants, and
applications. Neural Computing and Applications
2020; 32: 12381–12401. doi: 10.1007/s00521-020-
04839-1.

33. Rahim A, Hayat Z, Abbas M, et al. Software defect
prediction with naïve bayes classifier. In: 2021 In-
ternational Bhurban Conference on Applied Sci-
ences and Technologies (IBCAST); 2021 Jan 12–
16; Islamabad, Pakistan. New York: IEEE; 2021. p.
293–297. doi: 10.1109/IB-
CAST51254.2021.9393250.

34. Soe YN, Santosa PI, Hartanto R. Software defect
prediction using random forest algorithm. In: 2018
12th South East Asian Technical University Consor-
tium (SEATUC); 2018 Mar 12–13; Yogyakarta, In-
donesia. New York: IEEE; 2019. p. 1–5. doi:
10.1109/SEATUC.2018.8788881.

35. Wang J, Shen B, Chen Y. Compressed C4.5 models
for software defect prediction. In: 2012 12th Interna-
tional Conference on Quality Software; 2012 Aug

27–29; Xi’an, China. New York: IEEE; 2012. p.
13–16. doi: 10.1109/QSIC.2012.19.

36. Haouari AT, Souici-Meslati L, Atil F, Meslati D.
Empirical comparison and evaluation of Artificial
Immune Systems in inter-release software fault pre-
diction. Applied Soft Computing 2020; 96: 106686.
doi: 10.1016/j.asoc.2020.106686.

37. Arar ÖF, Ayan K. Software defect prediction using
cost-sensitive neural network. Applied Soft Compu-
ting 2015; 33: 263–277. doi:
10.1016/j.asoc.2015.04.045.

38. Abaei G, Selamat A, Fujita H. An empirical
study based on semi-supervised hybrid self-organis-
ing map for software fault prediction. Knowledge-
Based Systems 2015; 74: 28–39. doi:
10.1016/j.knosys.2014.10.017.

39. Saifudin A, Hendric SWHL, Soewito B, et al.
Tackling imbalanced class on cross-project defect
prediction using ensemble SMOTE. IOP Publishing
2019; 662(6): 062011. doi: 10.1088/1757-
899X/662/6/062011.

