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ABSTRACT 

Software defect prediction (SDP) is an essential task for developing quality software, and various models have been 

developed for this purpose. However, the imbalanced nature of software defect datasets has challenged these models, 

resulting in decreased performance. To address this challenge, the author has proposed a hybrid machine learning model 

that combines Synthetic Minority Oversampling Technique (SMOTE) with Support Vector Machine (SVM)—SMOTE-

SVM (S-SVM) model. The author has empirically examined SDP using multiple datasets (CM1, PC1, JM1, PC3, KC1, 

EQ and JDT) from the PROMISE and AEEEM repositories. The experimental study indicates that the S-SVM model 

involved training and compared with previously developed balanced and imbalanced test datasets using four evaluation 

metrics: Precision, Recall, F1-score, and Accuracy. For the balanced dataset, the S-SVM model achieved precision values 

ranging from 70 to 96, recall values ranging from 52 to 94, F1-score values ranging from 67 to 90, and accuracy values 

ranging from 69 to 98. For the imbalanced dataset, the S-SVM model achieved precision values ranging from 60 to 93, 

recall values ranging from 64 to 97, F1-score values ranging from 69 to 91, and accuracy values ranging from 67 to 87. 

The proposed S-SVM model outperforms other models’ ability to classify and predict software defects. Therefore, the 

hybridisation of SMOTE and SVM improved the model’s ability to categories and predict balanced and imbalanced da-

tasets when sufficient defective and non-defective data is provided. 

Keywords: Software Defect Prediction (SDP); SVM; SMOTE; Empirical Software Engineering; Software Quality; Bal-

anced & Imbalanced Learning 

ARTICLE INFO 

 

Received: 3 March, 2023 
Accepted: 7 May, 2023 
Available online: 16 June, 2023 

COPYRIGHT
 

Copyright © 2023 by author(s). 
Journal of Autonomous Intelligence is pub-
lished by Frontier Scientific Publishing. 
This work is licensed under the Creative 
Commons Attribution-NonCommercial 4.0 
International License (CC BY-NC 4.0). 
https://creativecommons.org/licenses/by-
nc/4.0/ 
 
 
 
 
 
 
 
 
 

1. Introduction 
Nowadays, the software industry is rising. The demand for software 

is very high in the market, and challenging to maintain software quality. 
The first focus should be the quality of the software[1]. In software devel-
opment, there are many test factors. However, SDP is one of the most 
critical factors in measuring the software’s quality; due to this, it devel-
oped an interest in researchers working on it. The SDP’s primary goal is 
to anticipate defects in defect-prone modules. Detecting the software 
defects later may lead to considerable losses to the company and software 
users. Nevertheless, early detection of the defects and those modules 
which are less priority and risk-prone for the project may reduce the loss 
and other software quality testing expenses. To get better prediction 
results, SDP has to work on multiple portions, like enhancing the accu-
racy. Necessary data attributes include imbalanced & balanced datasets 
ratio, performance measurements, and classification algorithms[2]. Re-
searchers have proposed various models of SDP over the years by using 
new technology, tools, and techniques. Various models are developed   
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based on the same training and testing version of the 
project’s dataset. Some are based on cross-project[1–

6]. Predicting software defects by hybridising ma-
chine learning techniques has enhanced the SDP. 
Traditional and conventional defect prediction meth-
ods have only worked on a single version of the pro-
ject, and model training is limited by the similarity 
of the trained and test datasets[3]. The empirical re-
search is based on the hybridisation of machine 
learning technologies and dataset balancing tech-
niques that can first resolve the imbalanced classes 
in the dataset. The output deviates much from the ac-
tual and accurate result. That is why balancing the 
data is very important to get real results. Secondly, 
after balancing data, the author has used a machine 
learning technique to predict the defects in the given 
datasets so that SDP has precise and high accuracy. 
The author has trained the model through seven da-
tasets of the PROMISE repository (publically avail-
able) and compared the trained model with another 
SDP model that was developed earlier[7,8]. The 
trained model has a high rate of accuracy than others. 
After that, the author divided the given dataset 
into balanced and imbalanced parts in combined 
form. The trained model is implemented in both sec-
tions successfully. Four measurements of perfor-
mance, precision, recall, F1-score, and accuracy, 
have been calculated. The trained model has shown 
deviation in the accuracy towards the balanced da-
taset and has provided many accurate results of SDP. 

The manuscript can be categorised in the fol-
lowing manner. Section 2 represents related work in 
which conventional approaches are discussed. Sec-
tion 3 describes the experimental work. Section 4 
presents the results & discussions, and the final Sec-
tion 5 includes a conclusion with a future work win-
dow. 

2. Related work 
Several traditional models have been developed 

for SDP in recent years, like just-in-time, software 
metrics defects prediction, optimisation techniques, 
and other hybrid approaches to defect prediction. 
The author has used an imbalanced dataset in their 
work so that accuracy is ultimately high, which is not 
a good approach. In his manuscript[7], the author 

mentioned using Naïve Bayes and Logistic Regres-
sion as a classifier to develop a defect prediction 
model. Other classification algorithms, Decision 
Tree (DT), Random Forest (RF), and ANN, can be 
used. Metrics assessment can be implemented to 
measure the performance of the classification met-
rics[7,9].  

2.1 Traditional and conventional software 
defect prediction 

Software Development Life Cycle (SDLC) is 
essential for developing software. The author has 
seen recently that the early detection of software de-
fects is a much-needed and challenging task for the 
project coordinator[10]. In this modern world, new 
features have been included in domains of complex 
problems, enhancing the software’s performance un-
certainty. Despite checking all the documents care-
fully in an organised manner, a few warnings 
and bugs are inescapable, which can decrease the 
performance of the software. 

According to Hassan et al.[11], software applica-
tions are tested in unstable situations for a particular 
period, called reliability probability. Traditional SDP 
models use software, process, and object-oriented 
metrics[4,12]. The dataset of SDP is divided into two 
categories. First part is training, and the second is 
testing. Within project, the single dataset is divided 
into train and test. Manjula and Florence[13] men-
tioned in their manuscript, defects can be predicted 
through a deep neural network (DNN) hybrid ap-
proach. The previous authors have experimented us-
ing NASA PROMISE datasets in their manuscript. 
Their accuracy is enhanced up to 98% (approx) be-
cause they have used imbalanced datasets even 
though they have not broken their dataset into the test 
and trained formats and calculated from the same 
data with which they train the model. 

According to Jayanthi and Florence[3], an inves-
tigation of PROMISE NASA datasets repository us-
ing NN-based classification. They have claimed their 
performance enhancement up to 97.2% 
AUC based, but their dataset is imbalanced. Accord-
ing to Chidamer[14], software metrics predict defects. 
Whether object-oriented design metrics are suitable 
for defect prediction or not was examined by 
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Basili[15]. He has collected eight software applica-
tions to carry out his work. Alsawalqah et al.[16] said 
in their manuscript that defects can be predicted us-
ing the hybrid SMOTE-Ensemble technique using 
four datasets. They have used conventional methods 
to balance it and enhance the model’s accuracy. He 
et al.[17] used their manuscript’s adaptive synthetic 
sampling (ADASYN) approach. This approach im-
proves the learning of data distribution through two 
methods: first, it reduces the bias that appears due to 
an imbalanced class, and second, it shifts adaptively 
towards the classification decision boundary. They 
have done their analysis on five evaluation metrics. 

Nevertheless, this approach has some limita-
tions, i.e., each region may only include one minority 
example for sparsely distributed minority cases. Be-
cause of its versatility, ADASYN precision may de-
grade[18]. According to Mirzaei et al.[19], their re-
search has balanced the imbalanced dataset using the 
under-sampling technique DBSCAN algorithms. 
They have worked on 15 imbalanced datasets, com-
pared them with six other algorithms, and got good 
results, but their model lacks performance with var-
ying density clusters. It also suffers from high di-
mensionality data. The research of Hasanin and 
Khoshgoftaar[20] has shown the effects of random un-
der-sampling with class imbalance big data and con-
verting the data into a 50:50 ratio to enhance perfor-
mance. However, this random under-sampling can 
discard the potentially helpful information that 
can be useful in classifiers. It may be that biased 
samples. Bach et al.[21] have proposed a method 
to balance the imbalanced dataset using under-sam-
pling. They have removed high-density and low-den-
sity information to get better results, but their model 
can be lost various critical information that is much 
needed for classification. Moreover, Sawangarreerak 
and Thanathamathee[22] used random forest and sam-
pling techniques to balance the imbalance university 
student depression dataset, but this model performs 
inferior to the complex dataset. It also requires sig-
nificant memory storage for information retention.  

Due to the highly imbalanced data distribution, 
it is challenging to tackle the complex problem. In 
this situation, many above-mentioned conventional 

algorithms can classify the significant ones and ig-
nore the small ones in various cases of SDP problems. 
Therefore, it may lead to the poor performance of the 
classifier. This problem can be handled using the 
SMOTE algorithm for SDP in various imbalanced 
datasets. The experimental result of this hybrid 
model shows far better results in the performance 
and accuracy of defects prediction. 

3. Experimental studies 
The experimental investigations for SDP em-

ploying the suggested hybrid learning model are de-
scribed in the following subsections. This paper uses 
a hybrid technique, SMOTE and SVM, for da-
taset balance and classification, using Python and 
Spyder, with SK learn as the coding library. The au-
thor has used the PROMISE software defect dataset 
repository for this research[23].  

3.1 Dataset description and data processing 
details 

CM1, JM1, PC3, and KC1 datasets represent 
what the author has extracted and divided into train-
ing and testing datasets used for SDP. Though vari-
ous studies have been carried out on these datasets, 
the author has presented comparative studies of SDP 
on balanced and imbalanced datasets that show the 
true significance of the proposed hybrid model. 
Moreover, the datasets used for computation present 
the following features in Table 1. 

The dataset description may include infor-
mation on dataset names, modules, and defective and 
non-defective classes, with their percentage shown 
in Table 2. The other dataset AEEEM (Appraisal-
Based Evaluation of Effort Models), is a collection 
of software projects annotated with information 
about the effort required to fix different defects. The 
author has used the EQ and JDT dataset to help re-
searchers and practitioners evaluate software defect 
prediction models and techniques. The features in-
cluded in the dataset are a combination of static and 
dynamic metrics, which provide information about 
various aspects of the code, including its complexity, 
size, and maintainability. Table 2 shows the features 
description. 
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Table 1. PROMISE SDP features details 
Features name Description 
LOC Module total number of line count 
Loblank Number of total blank lines in the module 
D Difficulty measurement 
v(g) Cyclomatic complexity measurement (McCabe) 
B Effort’s estimation 
N Module numeral operators 
Iv(g) (McCabe) complexity design analysis 
V Volume 
Branchcount Number of total branch in the software module 
L Length of program 
E Measurement 
I Intelligence measurement 
total_op Number of total operators 
Locodeandcomment Number of the total line of code and comments 
Total_opnd Number of total operators 
T Estimator of time 
Defects/Problems Defects regarding information, whether it is present or not 
uniq_op Number of total unique operators 
uniq_opnd Number of total unique operand 
Ev(g) McCabe complexity 
Locomment Software module line of comment 

Table 2. Project AEEEM datasets attributes 
Dataset 
name 

Total  
element 

Non-defective Defective Percentage 
non-defective 

Percentage 
defective 

CM1 1,988 1,942 46 97.6 2.4 
PC1 705 644 61 91.3 8.7 
JM1 7,782 6,110 1,672 78.5 21.5 
PC3 1,077 943 134 87.5 12.5 
KC1 145 85 60 58.6 41.3 
EQ 324 195 129 60.1 39.8 
JDT 997 791 206 79.3 20.6 

Table 3. Dataset detail division 
Metrics Description   No. of attributes
Source Code Metric (SCM) Source code computation  [17] 
Churn of Source Code Metric 
(COSCM) 

Analysis of SCM-based code churn as an artificial 
metrics  

[17] 

Entropy of Source Code Metric 
(EOSCM) 

Entropy-based SCM computed on artificial met-
rics  

[17] 

Previous Defects Metric (PDM) The revisions and defective metrics computation [5] 
Entropy of Changes Metric 
(EOCM) 

Entropy-based changes for artificial metrics com-
putation 

[5] 

Table 3 shows the characteristics of datasets 
used in the study on software defect prediction. The 
datasets are named CM1, PC1, JM1, PC3, KC1, EQ 
and JDT, each containing various elements. Each da-
taset’s total number of elements is shown in the “To-
tal element” column. The following two columns 
show the number of non-defective and defective 

elements in each dataset. The CM1 dataset has 1,942 
non-defective and 46 defective features. The “Per-
centage non-defective” and “Percentage defective” 
columns show the proportion of non-defective and 
defective parts in each dataset, expressed as a per-
centage. For instance, the PC3 dataset has 943 non-
defective elements, approximately 87.5% of the total 
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features, while the remaining 12.5% are defective 
(134). These statistics are essential in software defect 
prediction because the datasets are usually imbal-
anced, with a higher proportion of non-defective el-
ements than defective elements. This imbalance can 
affect the performance of prediction models. There-
fore, it is essential to consider the balance of the 

dataset when building and evaluating models. Defec-
tive and non-defective classes with graphs can be 
shown below. Figure 1(a) shows CM1, Figure 1(b) 
shows PC1 and Figure 1 shows PC3 (c), Figure 1(d) 
shows JM1, Figure 1(e) shows KC1, Figure 1(f) 
shows EQ & Figure 1(g) shows JDT. 

 
(a) CM1 defective & non-defective       (b) PC1 defective & non-defective 

 
(c) JM1 defective & non-defective          (d) PC3 defective & non-defective 

 
(e) KC1 defective & non-defective            (f) EQ defective & non-defective 
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(g) JDT defective & non-defective 

Figure 1. CM1, PC1, PC3, JM1, KC1, EQ and JDT defective & non-defective results.

3.2 Proposed model 

The given section represents the proposed ap-
proach for SDP. The model has been divided into two 
sections. In the first section, the author has balanced 
the imbalanced dataset using SMOTE, and in the 
second section, SVM has been applied for classifica-
tion.   

3.2.1 SMOTE 

Highly imbalanced datasets were previously 
used to predict software defects. Classification algo-
rithms have great difficulty detecting small classes. 
As a result, the imbalanced dataset has to be balanced 
for precise SDP. There is a variety of balancing tech-
niques. However, the proposed model implemented 
SMOTE, an oversampling strategy presented in the 
research of Kovács et al.[24]. It creates the synthetic 
data samples and modifies class allotment by over-
sampling the small class as a substitute of over-
sampling using replacement. These data samples are 
created using attribute space operations. The small 
class is oversampled by removing every data value 
and creating synthetic values with the line segments 
that connect all nearest neighbors small k classes. 

Its generation begins with selecting k-nearest 
neighbors, followed by developing synthetic sam-
ples based on the variations between feature vectors 
of the value in question. It’s the nearest neighbor. It 
adds the interpretation to the feature vector under 
consideration by multiplying it with a random 
value between OFF (0) & ON (1). A random location 
with a line segment between 2 distinct characteristics 

is chosen in the form of a result. As a result, SMOTE 
has expanded the data region of minority classes and 
pushed the class’s decision region to become more 
generic. 

When one class (the minority class) is greatly 
underrepresented relative to the other type in a binary 
categorisation task, SMOTE is a prominent strategy 
employed to tackle the issue of class disparity in ar-
tificial intelligence (the majority class). To rebalance 
the class distribution, SMOTE creates artificial rep-
resentations of the minority class and adds them to 
the data. 

Mathematically, SMOTE can be represented as 
follows: 

Given: 
A minority class example  𝑥𝑖  with features 

𝑥𝑖ଵ, 𝑥𝑖ଶ, ⋯ , 𝑥𝑖, 
A k-nearest neighbor of 𝑥𝑖 , denoted as 𝑥𝑖 , 

with features 𝑥𝑖భ
, 𝑥𝑖మ

, ⋯,𝑥𝑖
, 

A random number 𝑟 between 0 and 1. 
The synthetic example 𝑥𝑖௦௬௧௧  with fea- 

tures 𝑥𝑖௦௬௧௧భ
 , 𝑥𝑖௦௬௧௧మ

 , ..., 𝑥𝑖௦௬௧௧
  is 

generated as follows for a specific feature j: 
𝑥𝑖௦௬௧௧ೕ

 = 𝑥𝑖  + 𝑟 ∗ ሺ𝑥𝑖ೕ
െ 𝑥𝑖ሻ 

where 𝑥𝑖 is the feature value of 𝑥𝑖 for feature j, 
and 𝑥𝑖ೕ

 is the feature value of 𝑥𝑖 for feature j. 

𝐸 ቀ𝑥𝑖௦௬௧௧ೕ
ቁ ൌ 𝐸൫𝑥𝑖൯ െ 𝐸ሺ𝑟ሻ𝐸൫𝑥𝑖൯

 𝐸ሺ𝑟ሻ𝐸ሺ𝑥𝑖ೕ
ሻ 

𝐸 ቀ𝑥𝑖௦௬௧௧ೕ
ቁ ൌ

1
2

ሺ𝐸൫𝑥𝑖൯  𝐸 ቀ𝑥𝑖ೕ
ቁሻ 

The author demonstrated that 𝐸 ቀ𝑥𝑖௦௬௧௧ೕ
ቁ 

= 𝐸൫𝑥𝑖൯, indicating that the anticipated amount of 
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the synthetic instances generated by stable SMOTE 
equals both the initial minority class instances and 
the artificial incidents produced by SMOTE, follow- 
ing Blagus and Elreedy’s conclusion that 𝐸൫𝑥𝑖൯ = 

𝐸 ቀ𝑥𝑖ೕ
ቁ . SMOTE is a simple yet effective tech- 

nique for addressing the class imbalance in machine 
learning datasets. 

3.2.2 SVM  

Machine learning algorithms can be categorised 
as follows:  

 Supervised 
 Unsupervised 
 Semi-supervised 
It can also solve issues like regression, classifi-

cation, and clustering. The SDP challenge problem is 
similar to a classification one. The data has two 
forms: defects and the other without. 

There are numerous algorithms offered to attain 
classification problems as artificial intelligence pro-
gresses, such as Logistic Regression, Decision Tree, 
Random Forest, and so on; for work, the SVM[25] is 
the best-supervised learning paradigm with ad-
vantages: 

 To prevent overfitting, L2 Regularization 
is used, 

 Compatible with small datasets and give 
appropriate results, 

 To fit the complex function and relation-
ships among the features of various Kernel-Tricks,    

 Handled the Non-linearity of the data,  
 Model stability can be maintained by using 

the hyperplane dividing rule, 
 High-dimensionality of the data can be 

managed. 
SVM’s goal is to maximise the classification 

decision boundaries. The hyperplane separates clas-
ses, like +1 (positive class) or –1 (negative class), ra-
ther than minimising prediction error. High-dimen-
sional (n-dimensional) datasets that cannot be 
viewed can be employed in the SVM. As a result, 
processing data with n = 2 (2D) can be represented 
on a 2-Dimensional graph (Figure 2), with the hy-
perplane line that can separate classes. Furthermore, 
when the data is n-dimensional, the hyperplane is an 
(n – 1) vector function, which may be represented 

mathematically. 
𝑦 ൌ 𝑝𝑤  𝑝ଵ𝑤ଵ  ⋯  𝑝ିଵ𝑤ିଵ

 𝑐 
 
(1)

It can also show as: 
𝑦 ൌ 𝑃்𝑊  𝑐  

(2)
where 𝑊 a weight vector, 𝑋 an input feature vec-
tor, and 𝑏 is bias. Once a hyperplane is found, the 
hypothesis based on SVM can be formulated below. 

𝑓ሺ𝑦ሻ ൌ ൜
𝐶𝑙𝑎𝑠𝑠 1 𝑖𝑓𝑦  0
𝐶𝑙𝑎𝑠𝑠 2 𝑖𝑓𝑦  0 

 
 
(3)

 
Figure 2. 2D graph Hyperplane. 

Many hyperplanes can be drawn by adjusting p 
and c, but the hyperplane with the best margin will be 
chosen. The ideal margin is the maximum possible 
perpendicular distance between the hyperplane and 
each class. For example, hyperplane 1 in Figure 2 
has the best margin from classes 1 and 2. The optimal 
margin is established by minimising the cost or ob-
jective function. For example, the cost function is de-
fined below: 

𝐽ሺ𝑝ሻ ൌ
1
2

‖𝑝‖ଶ 
1
𝑛

 max ሺ0, ሺ1 െ 𝑦



ୀ
∗ ሺ𝑃்𝑤  𝑐ሻሻ 

 
 
 
 
(4)

However, the predictions are correct, and data 
is correctly categorised through hypothesis; SVM is 
fined for all. 𝑦 close to the boundaryሺ0 ൏ 𝑦 ൏ 1ሻ. 
Minimising 𝐽ሺ𝑝ሻ is the primary goal in terms of op-
timal 𝑃; therefore, the author has extracted the gra-
dient of the cost function by differentiating equation 
4 concerning 𝑃. 
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∇𝐽ሺ𝑃ሻ ൌ
𝜕𝐽ሺ𝑃ሻ

𝜕𝑃

ൌ
1
𝑛

 ൜
𝑃𝑖𝑓max ሺ0, ሺ1 െ 𝑦 ∗ ሺ𝑃்𝑊  𝐶ሻሻ

𝑃 െ 𝑦𝑤𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒



ୀ

(5) 
As far as the author has calculated 𝛻𝐽ሺ𝑃ሻ, now 

it can be updated weights ሺ𝑃ሻ using equation 3: 
𝑃௪ ൌ 𝑃ௗ െ 𝛼ሾ𝐽ሺ𝑃ሻሿ  

(6)
Repeat till the smallest 𝐽ሺ𝑃ሻ found.  
Because data is rarely linearly separable, the au-

thor must draw a decision boundary between the 
classes rather than separating them by a hyperplane. 
Dealing with the dataset’s non-linearity, convert 
equation 2 in decision boundary. 

𝑦 ൌ 𝑃. 𝜙ሺ𝑊ሻ  𝑐  
(7)

In equation 7, 𝜙ሺ𝑊ሻ , the kernel function is 
what it’s called. Various kernel functions are availa-
ble to construct SVM, including linear, polynomial, 
exponential, and so on. However, the proposed 
model employs the Radial Basis Function (RBF)[26]. 
That is based on Euclidean distance, and the bound-
aries smoothness is defined by a parameter[27].  

𝜙ሺ𝑤ሻ ൌ exp ቆെ
‖𝑤 െ 𝑤ഥ‖ଶ

2𝜎ଶ ቇ 
 
 
 
(8)

where, ‖𝑤 െ 𝑤ഥ‖ଶ is the Euclidean square, and the 
distance w between every single observation and the 
training sample’s means 𝑤ഥ .  

 
Algorithm 
Start 
Step-1  Import Libraries // Import all the sufficient libraries and files to implementation 
Step-2 Data = read (File) // Read the available data 
Step-3 Initialise weights W and bias b with any arbitrary number 
Step-4 Feature Optimisation // Select the appropriate attributes for the prediction 
Step-5 Train DataSet, Testing Data Sets = Data. Split (Ratio) // Splitting the data in two-part, one 

model training, another model testing in the suitable ratio 
Step-6 Define y // Equations 2 or 7 
Step-7 Define h(y) // Equation 3 
Step-8 Define J(P) // Equation 4 
Step-9 Calculate ∇୮𝐽ሺ𝑃ሻ // Equation 5 

Step-10 Repeat for minimum J(P): 
Update P // minute variations in weights to find the optimal margin (equation 6) 
Call Steps 6–9 // Re-calculate the ∇𝐽ሺ𝑃ሻ by making a prediction using updated P 
End 

Step-11 Accuracy calculation // To check the efficiency of the model  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ←
𝑇𝑜𝑡𝑎𝑙𝑛𝑜. 𝑜𝑓𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙𝑛𝑜. 𝑜𝑓𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
∗ 100 

Step-12 Output // Accuracy of the model as output 
Stop  

3.3 Performance evaluation 

Model performance testing evaluation is one of 
the significant tasks. It shows the operational perfor-
mance with test data. For measuring performance, 

the confusion matrix technique is used. This tech-
nique stores predicted and actual class data to obtain 
the classification results. The confusion matrix helps 
compute the most common five evaluation metrics 
of SDP used in the proposed model. 

Table 4. Confusion matrix 
Actual value Predicted value 

Non-defective               Defective 
Non-defective False negative (FN)           True positive (TP) 
Defective  True negative (TN)    False positive (FP) 
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1) Accuracy: The number of correct answers 
given in a classification. In a confusion matrix, there 
are two types of answers: True positive (TP) (where 
the defective value has been identified as defective) 
and True negative (TN) (where the defective value 
has not been determined as defective) (where non-
defective value identified as non-defective). The fol-
lowing formula can be used to calculate accuracy: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ൌ
ሺ𝑇𝑃ሻ  ሺ𝑇𝑁ሻ

ሺ𝑇𝑃  𝐹𝑁  𝐹𝑃  𝑇𝑁ሻ
 

2) Precision: Measure correctly answered de-
fective values to the total predicted defective values 
in the given classification. Can be represented as: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൌ
ሺ𝑇𝑃ሻ

ሺ𝑇𝑃ሻ  ሺ𝐹𝑃ሻ 
 

3) Recall: Measure truly answered defective 
values, all actual defective values in the classifica-
tion. Can be represented as: 

𝑅𝑒𝑐𝑎𝑙𝑙 ൌ
ሺ𝑇𝑃ሻ

ሺ𝑇𝑃ሻ  ሺ𝐹𝑁ሻ
 

4) F1-score: Weighted average Precision and 
Recall. It can be represented as: 

𝐹 ൌ
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  𝑅𝑒𝑐𝑎𝑙𝑙
 

4. Implementation 

The proposed model can be implemented in the 
following ways: the author has coded in Python and 
used the Spyder platform. The author has used the 
following datasets to test the suggested model. 

4.1 Using CM1 dataset 

In Table 5, confusion matrix CM1 datasets with 
the proposed model S-SVM. 

4.2 Using PC1 dataset 

In Table 6, confusion metrics PC1 dataset with 
S-SVM. 

4.3 Using JM1 dataset 

In Table 7, confusion metrics demonstration 
with JM1 dataset using S-SVM. 

4.4 Using PC3 dataset 

In Table 8, confusion metrics demonstration 
with the PC3 dataset using S-SVM. 

 

Table 5. Confusion matrix for CM1 dataset using S-SVM 
  Predicted 
  Defective Non-defective 
Actual Defective 366 23 

Non-defective 91 297 

Table 6. Confusion matrix for PC1 dataset using S-SVM 
  Predicted 
  Defective Non-defective 
Actual Defective 11 8 

Non-defective 66 73 

Table 7. Confusion matrix for JM1 dataset using SMOTE-SVM 
  Predicted 
  Defective Non-defective 
Actual Defective 1,016 230 

Non-defective 430 768 
 

Table 8. Confusion matrix for PC3 dataset using S-SVM 
  Predicted 
  Defective Non-defective 
Actual Defective 151 16 

Non-defective 69 142 

The author examined merging both techniques sequentially to improve the SDP’s performance in 
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the current manuscript. A hybrid approach called 
SMOTE + SVM is used to achieve the best results, 
as shown in Figure 3. The SMOTE algorithm aims 
to generate synthetic values for a minority class that 
is a defect class to the dataset. It can distribute the 
number of occurrences in each class more evenly, 

allowing the classifier to consider the minority class. 
The SVM classifier will then be trained using a new 
oversampled dataset. The SVM classifiers’ defect de-
tection rates have produced the most promising and 
genuine findings. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Hybrid S-SVM model for SDP. 

4.5 Using KC1 dataset 

In Table 9, confusion metrics demonstration 

with the KC1 dataset using SMOTE-SVM. 

Table 9. Confusion matrix for KC1 dataset using SMOTE-SVM 
  Predicted 
  Defective Non-defective 
Actual Defective 4 9 

Non-defective 1 20 

Table 9 represents the confusion matrix for the 
KC1 dataset using S-SVM for handling imbalanced 
data. In the context of binary classification, the con-
fusion matrix summarises the performance of a ma-
chine learning model by comparing its predicted la-
bels to the true labels of the dataset. The rows in the 
table represent the actual labels of the dataset, while 
the columns represent the predicted labels by the S-
SVM model. The entries in the table represent the 
counts of instances that fall into each category: The 
top-left entry (4) represents the number of cases that 
are truly “Defective” in the dataset and were cor-
rectly predicted as “Defective” by the S-SVM model. 
The top-right entry (9) represents the number of 

instances that are actually “Defective” in the da-
taset but were mistakenly predicted as “Non-defec-
tive” by the S-SVM model. The bottom-left entry (1) 
represents the number of instances that are actually 
“Non-defective” in the dataset but were mistakenly 
predicted as “Defective” by the S-SVM model. 
The bottom-right entry (20) represents the number of 
instances that are true “Non-defective” in the dataset 
and were correctly predicted as “Non-defective” by 
the S-SVM model. From this table, the author can 
see that the model correctly predicted the “Non-de-
fective” instances with high accuracy (20 out of 21 
instances). The accuracy for “Defective” samples is 
lower (4 out of 13 instances). This suggests that the 

Major class 

Major 

Minor 

Imbalanced  
dataset

Preprocessing 

SMOTE 

Minor 

Balanced 
dataset 

SVM 

Dataset 
Training  

Testing-
dataset 

Assessment 
(Accuracy) 

Major

Defective Non-defective 



 

11 

S-SVM model may have difficulty accurately pre-
dicting the “Defective” instances in the KC1 dataset. 
Further analysis and tuning of the model may be nec-
essary to improve its performance. 

4.6 Using AEEEM project EQ dataset 

In Table 10, confusion metrics are demon-
strated with the EQ dataset using SMOTE-SVM. 

Table 10. Confusion matrix for EQ dataset using SMOTE-SVM 
  Predicted 
  Defective Non-defective 
Actual Defective 29 17 

Non-defective 6 26 

Table 10 represents the confusion matrix for the 
EQ dataset using the proposed model for handling 
imbalanced data. The EQ dataset is a project EQ da-
taset from the AEEEM repository, commonly used in 
software defect prediction research. In the context 
of binary classification, the confusion matrix sum-
marises the performance of a machine learning 
model by comparing its predicted labels to the true 
labels of the dataset. The rows in the table represent 
the actual labels of the dataset, while the columns 
represent the predicted labels by the S-SVM model. 
The top-left entry (29) represents the number of in-
stances that are truly “Defective” in the dataset and 
were correctly predicted as “Defective” by the S-
SVM model. The top-right entry (17) represents the 
number of instances that are actually “Defective” in 
the dataset but were mistakenly predicted as “Non-
Defective” by the S-SVM model. The bottom-left 
entry (6) represents the number of instances that are 
actually “Non-defective” in the dataset but were 

mistakenly predicted as “Defective” by the S-SVM 
model. The bottom-right entry (26) represents the 
number of instances that are true “Non-defective” in 
the dataset and were correctly predicted as “Non-de-
fective” by the S-SVM model. From this table, the 
model correctly predicted the “Defective” instances 
with relatively high accuracy (29 out of 46). The ac-
curacy for “Non-defective” samples is also relatively 
high (26 out of 32 instances). However, some in-
stances were misclassified, with 17 instances of “De-
fective” being predicted as “Non-defective” and six 
instances of “Non-defective” being predicted as “De-
fective”. Further analysis and fine-tuning of the 
model may be necessary to improve its performance 
on the EQ dataset. 

4.7 Using AEEEM project JDT dataset 

In Table 11, confusion metrics demonstration 
with the JDT dataset using SMOTE-SVM. 

 

Table 11. Confusion matrix for EQ dataset using SMOTE-SVM 
  Predicted 
  Defective Non-defective 
Actual Defective 134 26 

Non-defective 5 152 

Table 11 represents the confusion matrix for the 
JDT dataset using a proposed model for handling im-
balanced data, referred to as SMOTE-SVM. The JDT 
dataset is a software defect prediction dataset. In the 
context of binary classification, the confusion matrix 
summarises the performance of a machine learning 
model by comparing its predicted labels to the true 
labels of the dataset. The rows in the table represent 
the actual labels of the dataset, while the columns 
represent the predicted labels by the S-SVM model. 

The entries in the table represent the counts of in-
stances that fall into each category: The top-left entry 
(134) represents the number of instances that are 
truly “Defective” in the dataset and were correctly 
predicted as “Defective” by the S-SVM model. The 
top-right entry (26) represents the number of in-
stances that are actually “Defective” in the da-
taset but were mistakenly predicted as “Non-defec-
tive” by the S-SVM model. The bottom-left entry (5) 
represents the number of instances that are actually 
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“Non-defective” in the dataset but were mistakenly 
predicted as “Defective” by the S-SVM model. 
The bottom-right entry (152) represents the number 
of instances that are true “Non-defective” in the da-
taset and were correctly predicted as “Non-defec-
tive” by the S-SVM model. Similar to the previous 
tables you provided, this confusion matrix helps 
evaluate the performance of the S-SVM model on the 
JDT dataset. From this table, the model correctly pre-
dicted the “Defective” instances with relatively high 
accuracy (134 out of 160). The accuracy for “Non-
defective” samples is also relatively high (152 out of 
157 instances). However, some instances were mis-
classified, with 26 instances of “Defective” being 
predicted as “Non-defective” and five instances of 
“Non-defective” being predicted as “Defective”. 
Further analysis and fine-tuning of the model may be 
necessary to improve its performance on the JDT da-
taset. Figure 3 shows the complete model demon-
stration. Table 12 shows the imbalanced and bal-
anced dataset of non-defective and defective classes. 
The balancing of the dataset has been experimentally 
performed by using SMOTE technique.  

Table 12. Non-defective and defective classes measure 
Dataset Non-defective Defective 
CM1 Imbalanced  363 35 

Balanced 499 499
PC1 Imbalanced  555 65 

Balanced 144 144
JM1 Imbalanced  4,891 1,334

Balanced 6,110 6,110
PC3 Imbalanced  659 94 

Balanced 943 943
  
KC1 

Imbalanced  85 60 
Balanced 85 85 

EQ 
 

Imbalanced  195 129
Balanced 195 195

JDT 
 

Imbalanced  791 206
Balanced 791 791

5. Results and discussion 
SDP models developed earlier have broken 

their data into test and train sets. A non-defective ma-
jority dataset can perform well for the non-defective 
test dataset, but the model will not perform well for 
the defective majority dataset. If the imbalanced da-
taset is taken, the performance will be much high, but 
that will not be very objective. So, building a model 
with a balanced dataset is necessary. The author has 

used four PROMISE REPOSITORY and two AEEM 
project datasets (CM1, PC1, JM1, PC3, KC1, EQ 
and JDT). Initially, the datasets were imbalanced, but 
the author applied a balancing technique to ensure 
the performance was unbiased and genuine. The au-
thor has experimented in two parts for the model’s 
comparative analysis and performance measurement. 
First, the author experimented with the imbalanced 
dataset and applied a hybrid technique to balance and 
classify the dataset. And the results show the signifi-
cant differences between using balanced and imbal-
anced datasets. The results can be shown in Table 12. 
There are seven datasets, each broken into train and 
test sets. So, expected two major simulations can oc-
cur that are listed below. 

5.1 For CM1 dataset 

1) Balanced dataset: The model’s performance 
is shown in Table 12, which has a precision of 80, a 
recall value of 94 with an F1-score is 87 and an ac-
curacy of 98. 

2) Imbalanced dataset: The model’s perfor-
mance can be achieved in Table 12, which has a pre-
cision of 93, a recall value of 77, an F1-score of 84, 
and an accuracy of 84. 

5.2 For PC1 dataset 

1) Balanced dataset: The model’s performance 
is shown in Table 12, which has a precision of 92, a 
recall value of 52 with an F1-score is 67, and an ac-
curacy is 92. 

2) Imbalanced Dataset: The model’s perfor-
mance can be achieved in Table 12, which has a pre-
cision of 66, a recall value of 95, an F1-score of 78 
and an accuracy of 74. 

5.3 For JM1 dataset 

1) Balanced Dataset: The model’s performance 
is shown in Table 12, which has a precision of 70, a 
recall value of 82 with an F1-score is 75, and an ac-
curacy is 69. 

2) Imbalanced Dataset: The model’s perfor-
mance can be achieved in Table 12, which has a pre-
cision of 77, recall value of 64, F1-score of 70 and 
accuracy of 73. 
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5.4 For PC3 dataset 

1) Balanced dataset: The model’s performance 
is shown in Table 12, which has a precision of 69, a 
recall value of 90 with an F1-score is 78, and an ac-
curacy is 78. 

2) Imbalanced dataset: The model’s perfor-
mance can be achieved in Table 12, which has a pre-
cision of 90, recall value of 67, F1-score of 77 and 
accuracy of 79, respectively. 

5.5 For KC1 dataset 

1) Balanced dataset: The model’s performance 
is shown in Table 12, which has a precision of 80, a 
recall value of 31 with an F1-score is 44, and an ac-
curacy is 71. 

2) Imbalanced dataset: The model’s perfor-
mance can be achieved in Table 12, which has a pre-
cision of 69, recall value of 95, F1-score of 80 and 
accuracy of 67, respectively. 

5.6 For EQ dataset 

1) Balanced dataset: The model’s performance 
is shown in Table 12, which has a precision of 83, a 

recall value of 63 with an F1-score is 72, and an ac-
curacy is 77. 

2) Imbalanced dataset: The model’s perfor-
mance can be achieved in Table 12, which has a pre-
cision of 60, recall value of 81, F1-score of 69 and 
accuracy of 71, respectively. 

5.7 For JDT dataset 

1) Balanced dataset: The model’s performance 
is shown in Table 12, which has a precision of 96, a 
recall value of 84 with an F1-score is 90, and an ac-
curacy is 90. 

2) Imbalanced dataset: The model’s perfor-
mance can be achieved in Table 12, which has a pre-
cision of 85, recall value of 97, F1-score of 91 and 
accuracy of 87, respectively. 

In the last, the author can show that the perfor-
mance measure of SDP with an imbalanced dataset 
is much higher than the balanced one. And the hybrid 
model performance decreases when the model is 
treated with the balanced dataset. That successfully 
shows the difference among the performance with 
different measurable metrics.  

Table 13. Evaluation measures using considered metrics with imbalanced & balanced datasets 
Hybrid model The performance measure with SMOTE-SVM hybrid model (S-SVM model) 
datasets Precision Recall F1-score Accuracy 
CM1 Balanced 80 94 87 98 

Imbalanced 93 77 84 84 
PC1 Balanced 92 52 67 92 

Imbalanced 66 95 78 74 
JM1 Balanced 70 82 75 69 

Imbalanced 77 64 70 73 
PC3 Balanced 69 90 78 78 

Imbalanced 90 67 77 79 
KC1 Balanced 80 31 44 71 

Imbalanced 69 95 80 67 
EQ Balanced 83 63 72 77 

Imbalanced 60 81 69 71 
JDT Balanced 96 84 90 90 

Imbalanced 85 97 91 87 
 

Table 13 shows the performance measures of a 
hybrid model (S-SVM model) on seven datasets: 
CM1, PC1, JM1, PC3, KC1, EQ, and JDT. The 
model is evaluated under two different scenar-
ios: balanced and imbalanced datasets. In the bal-
anced scenario, the dataset has an equal proportion 
of the positive and negative classes, while in the 

imbalanced method, one class is underrepresented 
compared to the other. The performance measures 
reported in the table include precision, recall, F1-
score, and accuracy. On the CM1 dataset, in the bal-
anced scenario, the S-SVM model achieves a preci-
sion of 80%, recall of 94%, F1-score of 87%, and 
accuracy of 98%. In the imbalanced scenario, the  
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Figure 4. Comparative analysis with balanced & imbalanced dataset of S-SVM hybrid model. 

model achieves a higher precision of 93% but a 
lower recall of 77%, resulting in an F1-score of 84% 
and an accuracy of 84%. On the PC1 dataset, the S-
SVM model performs better in the imbalanced sce-
nario, achieving a precision of 66%, recall of 95%, 
F1-score of 78%, and accuracy of 74%, compared to 
the balanced scenario, where it achieves a precision 
of 92%, recall of 52%, F1-score of 67%, and accu-
racy of 92%. Similar trends are observed on the JM1, 
PC3, KC1, EQ, and JDT datasets, where the perfor-
mance of the S-SVM model varies depending on the 
dataset and the scenario. For example, on the JM1 
dataset, in the balanced scenario, the model achieves 
a precision of 70%, recall of 82%, F1-score of 75%, 
and accuracy of 69%, while in the imbalanced sce-
nario, it achieves a precision of 77%, recall of 64%, 
F1-score of 70%and accuracy of 73%. On the PC3 
dataset, in the balanced scenario, the model achieves 
a precision of 69%, recall of 90%, F1-score of 78%, 
and accuracy of 78%, while in the imbalanced sce-
nario, it achieves a precision of 90%, recall of 67%, 
F1-score of 77%, and accuracy of 79%. On the KC1 
dataset, in the balanced scenario, the S-SVM model 
achieves a precision of 80%, recall of 31%, F1-score 
of 44%, and accuracy of 71%, while in the imbal-
anced scenario, it achieves a precision of 69%, recall 

of 95%, F1-score of 80%, and accuracy of 67%. On 
the EQ dataset, in the balanced scenario, the model 
achieves a precision of 83%, recall of 63%, F1-score 
of 72%, and accuracy of 77%, while in the imbal-
anced scenario, it achieves a precision of 60%, recall 
of 81%, F1-score of 69%, and accuracy of 71%. On 
the JDT dataset, in the balanced scenario, the model 
achieves a precision of 96%, recall of 84%, F1-score 
of 90%, and accuracy of 90%, while in the imbal-
anced scenario, it achieves a precision of 85%, recall 
of 97%, F1-score of 91%, and accuracy of 87%. 
Overall, the performance of the S-SVM hybrid 
model varies across different datasets and scenarios, 
with higher precision and recall generally observed 
in the imbalanced scenario. In contrast, higher accu-
racy is often achieved in a balanced scenario. The 
F1-score, which provides a balanced measure of pre-
cision and recall, also varies depending on the da-
taset and method. These results highlight the im-
portance of considering the class distribution of the 
dataset and choosing appropriate evaluation 
measures when using the S-SVM hybrid model for 
classification tasks. Figure 4 shows the graphical 
representation of the balanced and imbalanced da-
taset on the S-SVM model. 
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5.8 Comparative analysis of the previously 
developed models with the S-SVM model 

The comparative analysis with previously de-
veloped models on the NASA dataset using the S-
SVM (SMOTE-SVM hybrid) model reveals various 
findings. For the CM1 dataset, the S-SVM model 
achieved a precision of 80.00%, recall of 94.00%, 
F1-score of 87.00%, and accuracy of 98.00%. This 
performance is competitive with other models such 
as Naïve Bayes, Random Forest, C4.5 Miner, and 
ANN-ABC, outperforming them in precision, recall, 
and accuracy. Similarly, for the PC1 dataset, the S-
SVM model achieved a precision of 92.00%, recall 

of 52.00%, F1-score of 67.00%, and accuracy of 
92.00%. The S-SVM model’s precision and accuracy 
are significantly higher than other models like 
SMOTE+Naïve Bayes, AdaBoost+SMOTE+Naïve 
Bayes, and Bagging+SMOTE+Naïve Bayes. These 
results suggest that the S-SVM model can be a viable 
option for classification tasks on the NASA dataset, 
especially in scenarios where precision and accuracy 
are essential. However, researchers should carefully 
consider the trade-offs between different perfor-
mance measures and choose the appropriate 
model based on the specific requirements of their re-
search or application.  

Table 14. Performance analysis of previously developed models with the proposed model 
NASA datasets Techniques Precision Recall F-m Accuracy
CM1 Naïve Bayes[29,30]  86.20 78.65 34.09 64.57

Random Forest[29,31]  71.10 71.29 32.17 60.98
C4.5 Miner[32,33] 74.91 74.66 27.68 66.71 
Immunos[32,33] 73.65 75.02 30.99 66.03 
ANN-ABC[32,33] 75.00 81.00 33.00 68.00 
Hybrid self-organizing map[32,34]  70.12 78.96 30.65 72.37 
SVM[29,35]  81.20 79.08 31.27 78.69 
Majority vote[32,36] 79.80 80.00 30.46 77.01 
AntMiner+[32,36]  80.65 78.88 30.90 73.43 
ADBBO-RBFNN[32,37]  81.92 80.96 29.71 82.57 
NN GAPO+B[38]  - - - 74.40 
Decision Tree[29,35]  83.30 74.23 81.20 73.49 
KNN[31] 
MLP[31] 

83.90 
90.40 

84.70 
95.50 

84.30 
92.90 

-- 
86.73 

SMOTE+Naïve Bayes[39] 20.22 71.42 31.51 60.24 
AdaBoost+SMOTE+Naïve Bayes[39] 14.28 64.28 23.36 45.87 
Bagging+SMOTE+Naïve Bayes[39] 20.00 71.42 31.24 59.63 
Proposed Model (S-SVM) 80.00 94.00 87.00 98.00 

PC1 Naïve Bayes[31]  96.00 90.00 97.20 90.30 
Random Forest[31]  97.00 - 98.80 97.69 
C4.5 Miner[32]  76.58 81.76 34.05 62.18 
Immunos[32]  81.99 79.66 36.92 61.73 
ANN-ABC[32]  89.00 83.00 33.00 65.00 
Hybrid self-organizing map[32]  86.79 85.67 35.67 95.87 
SVM[32]  80.98 86.59 98.00 92.45 
Majority vote[32]  84.61 84.37 30.98 92.50 
AntMiner+[32]  89.34 87.12 26.11 91.85 
ADBBO-RBFNN[32]  90.89 89.33 20.24     - 
NN GAPO+B[31] - - -     - 
Decision Tree[31]  97.00 - 98.00     - 
KNN[31]  
MLP[31]  

95.00 
97.00 

90.00 
99.00 

98.00 
98.00 

95.71 
96.00 

SMOTE+Naïve Bayes[39] 10.97 83.63 19.39 43.74 
AdaBoost+SMOTE+Naïve Bayes[39] 10.97 82.14 19.35 43.74 
Bagging+SMOTE+Naïve Bayes[39] 11.19 83.63 19.73 44.92 
Proposed Model (S-SVM) 92.00 52.00 67.00 92.00 
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5.9 Comparative analysis of SMOTE-Tomek 
and SMOTE-ENN with SMOTE-SVM 
model using CM1, PC1 and KC1 datasets 
experimental study  

SMOTE is a popular data augmentation tech-
nique used to address the issue of class imbalance in 
machine learning datasets. It generates synthetic ex-
amples of the minority class by interpolating be-
tween minority class instances. SMOTE-SVM is an 
extension of SMOTE that incorporates information 
from an SVM classifier to generate synthetic sam-
ples. 

On the other hand, SMOTE-Tomek and 
SMOTE-ENN are hybrid methods that combine 
SMOTE with Tomek links and Edited Nearest 
Neighbors (ENN) techniques, respectively, to im-
prove further the effectiveness of SMOTE in han-
dling class imbalance. CM1, PC1, and KC1 are da-
tasets used for SDP, where the objective is to predict 
whether a software module is defective. Using these 
datasets, the author has now analysed the perfor-
mance of SMOTE-Tomek, SMOTE-ENN, and 
SMOTE-SVM models. 

Table 15. Performance analysis of various SMOTE techniques with the proposed model 
Techniques Datasets Precision Recall F1-score Accuracy 
SMOTE-Tomek-SVM CM1 99.0 99.0 99.0 99.0 

PC1 98.0 96.0 97.0 96.5 
KC1 89.0 83.0 90.0 89.0 

SMOTE-ENN-SVM CM1 99.0 100.0 99.0 99.0 
PC1 98.0 98.0 98.0 98.0 
KC1 92.0 89.0 90.0 89.0 

SMOTE-SVM CM1 97.0 98.0 97.0 97.0 
PC1 97.0 96.0 97.0 96.2 
KC1 91.0 92.0 89.0 90.9 

SMOTE-Tomek-SVM, SMOTE-ENN-SVM, 
and SMOTE-SVM are evaluated on three datasets: 
CM1, PC1, and KC1. The evaluation metrics re-
ported for each model on each dataset are precision, 
recall, F1-score, and accuracy. SMOTE-Tomek-
SVM: CM1 dataset: The precision, recall, F1-score, 
and accuracy are reported as 99.0, 99.0, 99.0, and 
99.0, respectively. PC1 dataset: The precision, recall, 
F1-score, and accuracy are reported as 98.0, 96.0, 
97.0, and 96.5, respectively. KC1 dataset: The preci-
sion, recall, F1-score, and accuracy are reported as 
89.0, 83.0, 90.0, and 89.0, respectively. SMOTE-
ENN-SVM: CM1 dataset: The precision, recall, F1-
score, and accuracy are reported as 99.0, 100.0, 99.0, 
and 99.0, respectively. PC1 dataset: The precision, 
recall, F1-score, and accuracy are reported as 98.0, 
98.0, 98.0, and 98.0, respectively. KC1 dataset: The 
precision, recall, F1-score, and accuracy are reported 
as 92.0, 89.0, 90.0, and 89.0, respectively. S-SVM: 
CM1 dataset: The precision, recall, F1-score, and ac-
curacy are reported as 97.0, 98.0, 97.0, and 97.0, re-
spectively. PC1 dataset: The precision, recall, F1-
score, and accuracy are reported as 97.0, 96.0, 97.0, 

and 96.2, respectively. KC1 dataset: The precision, 
recall, F1-score, and accuracy are reported as 91.0, 
92.0, 89.0, and 90.9, respectively. From the reported 
metrics, the author can see that SMOTE-Tomek-
SVM and SMOTE-ENN-SVM models have high 
precision, recall, F1-score, and accuracy values, in-
dicating good performance on the datasets. However, 
it’s important to note that the recall for SMOTE-
ENN-SVM is very high (100.0) on the CM1 dataset, 
which may indicate an issue with class imbalance or 
data quality. Based on the information in the table, 
the models SMOTE-Tomek-SVM and SMOTE-
ENN-SVM may have been overfitted, while S-SVM 
may not have been overfitted. The reason is that 
SMOTE-Tomek and SMOTE-ENN are variants of 
the SMOTE that combine oversampling (SMOTE) 
with undersampling (Tomek links or Edited Nearest 
Neighbors, respectively) to address the class imbal-
ance. Therefore, “SMOTE” in the model names sug-
gests that oversampling may have been applied in 
these models. On the other hand, S-SVM has no ad-
ditional undersampling technique mentioned in its 
name, indicating that only SMOTE might have been 
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used in this model without any undersampling. Over-
sampling is an approach to address the class imbal-
ance, and its effectiveness depends on various factors, 
such as the dataset, the algorithm used, and the spe-
cific implementation. 

6. Conclusion 
In conclusion, the author presents a solution to 

the issue of dataset balancing in SDP by formulating 
it as a classification problem and proposing a hybrid 
SMOTE+SVM model. The author evaluated their 
model on different NASA and AEEM repository da-
tasets: CM1, PC1, JM1, PC3, KC1, EQ and JDT and 
compared their performance using balanced and im-
balanced datasets. The result shows that the perfor-
mance of the SMOTE-SVM model is highly depend-
ent on the dataset and scenario. Generally, the model 
performs better on balanced datasets than on imbal-
anced ones. For instance, on the CM1 dataset, the 
proposed model achieved an accuracy of 98% in 
the balanced scenario compared to 84% in the imbal-
anced scenario. 

Similarly, on the PC1 dataset, the model 
achieved an accuracy of 92% in the balanced system 
and 74% in the imbalanced system. The author’s 
findings indicate that balancing the dataset using the 
SMOTE technique improves the authenticity and 
quality of defect prediction results. This technique 
helped us achieve better quality and authentic results 
of defect prediction, even though it may reduce the 
accuracy in some cases. In future work, the authors 
plan to apply their proposed model to other datasets 
further to verify its performance and effectiveness. 
Overall, the hybrid SMOTE+SVM model can be 
considered a promising solution to the issue of im-
balanced datasets in SDP.  
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