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ABSTRACT
In a context of constant evolution of technologies for scientific, economic and social purposes, Artificial

Intelligence (AI) and Internet of Things (IoT) have seen significant progress over the past few years. As much as
Human-Machine interactions are needed and tasks automation is undeniable, it is important that electronic devices
(computers, cars, sensors…) could also communicate with humans just as well as they communicate together. The
emergence of automated training and neural networks marked the beginning of a new conversational capability for the
machines, illustrated with chat-bots. Nonetheless, using this technology is not sufficient, as they often give
inappropriate or unrelated answers, usually when the subject changes. To improve this technology, the problem of
defining a communication language constructed from scratch is addressed, in the intention to give machines the
possibility to create a new and adapted exchange channel between them. Equipping each machine with a sound emitting
system which accompany each individual or collective goal accomplishment, the convergence toward a common
‘’language’’ is analyzed, exactly as it is supposed to have happened for humans in the past. By constraining the
language to satisfy the two main human language properties of being ground-based and of compositionality, rapidly
converging evolution of syntactic communication is obtained, opening the way of a meaningful language between
machines.
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meaningful language is one of the long-standing and most ambitious challenges
faced by AI[1–2]. Aside development of information systems designed for giving
machines always more autonomy[3–6], there also exists a large range of expression
channels by which machines are giving their “status” to human supervisors through
adapted communication protocols usually made by human operators for
interpretation and control[7–10]. In most cases at this level the machines are
preprogrammed and controlled to operate with modest autonomy a series of tasks 

predefined by human operator[11–15]. However, in a coming context where humans 

and machines are going to work collectively, and machines to become more
autonomous “agents”, necessary next step has to be prepared where agents will
hold some language capacity to better interact and to productively collaborate or
make decisions interpretable by humans[16–18]. With the improvement of
speech-understanding technology and voice-input applications, the need for Natural
Language Processing (NLP)[19] will increase. Nowadays NLP is very effective for
small text translation[20], scenarized chat-bots or filtering spam messages.
Question-Answering (QA) is becoming more and more popular through
applications such as Siri, OK Google, chat-bots and virtual assistants[21–22]. Even if
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they look promising, much of their success is for the
moment a result of intelligently designed statistical
models based on static, passive, and mainly supervised
regimes ultimately trained on large static datasets[23–24].
In this context, the use of NLP for creating a seamless
and interactive interface between humans and machines
will continue to be a priority for today and tomorrow
increasingly cognitive applications. Developing an
artificial sophisticated language system[25–27] is
mandatory for machines to become more intelligent and
to gain the ability to learn like humans[28]. In parallel, it
could also open important insights into questions related
to development of human language and cognition. It
immediately comes out that, if communication is to be
created from first principles, the only way to do it is from
necessity. In other words, approaches learning to imitate
human language from examples, even if useful, only
capture structural and/or statistical relationships. They
are completely missing language functional aspect and
do not provide any answer on why language exists[29–31].
More precisely, they do not relate language as it stands
with the reason of its existence, which is a successful
coordination mean between humans. Here to replicate as
much as possible for machines what was occurring for
humans, it is claimed that if such language is created
from scratch, it should necessarily develop in an
environment giving this emerging language the two main
properties of human one, ie to be grounded-based and
compositional[32–34], even if other models can be
conceived[35–39].

Present project aims at developing a new technique
of NLP by fostering the emergence of a compositional
and ground-based language amongst the machines
exactly like it already exists between humans. Human
language is grounded because it is based on experience
in the real world. If a dictionary defines words with other
words, a human will associate a word with
sensory-motor experience (sight, touch etc.). As the
agents will use words to describe concepts in their
environment, a ground-based language will emerge
rather easily. Compositionality in a language consists in
that the meaning of a complex expression is
determined by the meaning of its constituent expressions
and the rules used to combine them[40–41], in the idea of

adding up individual words to create a meaningful
sentence altogether. The emergence of compositionality
in a language only happens if the number of describable
concepts (or learning events) is larger than the
vocabulary size by following Zipf law which states that
the frequency i of occurrence of a word is inversely
proportional to its position i.[42]

2. Environment Description
In this work, a physically simulated two-dimensional

environment consisting of N agents and M landmarks in
continuous space and discrete time is considered. Both
agent and landmark entities inhabit physical positions p
in space and possess descriptive physical characteristics,
such as color and shape type, see Figure 1.

r(si(t),ai(t)), where si  S the set of the possible
configurations of all N agents, aj  A is the set of
possible agent actions for all N agents, and t  [0,T]. In a
cooperative setting, the problem is to find for each agent
i a policy i maximizing the expected shared return R for
all agents:
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Figure 1. Example of the environment for N=1

(green circle) and M=2 (red square).

In addition, agents can move in the environment and
direct their gaze to a location l. Denote X the physical
state of an entity. To facilitate the emergence of previous
two language properties, the environment considered
here is a cooperative and partially observable Markov
game[43], which is a multi-agent extension of a Markov
decision process. The cooperative setting allows
formulate the problem as a joint minimization across all
agents, as opposed to minimization-maximization
problems resulting from competitive settings. The reward
for each agent i (i=1,…,N) is given at time t by
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Rmax = Max R() ; R() = E[t=0
T i=0

N r(si(t),ai(t))]
(1)

Here on top of performing physical actions, each

Sext = {X(1,...,(N+M)),V(1,...,N),M(1,...,N),G(1,...,N)}
(2)

Each agent observes the physical states of all
entities in the environment, the verbal utterances of all
agents, and its own private memory and goal vector. The
observation oj  O (j=1,…,N) for agent i is:

o(i)(S)=[ iX(1,...,(N+M)),V(1,...,N),M(i),G(i)]
(3)

where i X(j) is the observation of entity j physical state in
agent i reference frame, and O is the set of observations
made by all agents. Finally system dynamical equations
are given in[45].

In present multi-agent environment, each agent for
simplicity will act by sampling actions from the same
stochastic policy  on the same sets of observations O

and of actions A (which are the features/parameters in
the model).

3. Optimum Policy Determination
The problem is to find the common policy 

maximizing their share return r(.,.). Here a cooperative
setting is used where the policy is learned by maximizing

the expected shared return for all agents. In present case
a model capable of fostering both a clear message
sending and the right action to take following a received
message is required. Traditional model-free
reinforcement learning approaches are not optimal in
present environment. Indeed, Q-learning method faces
scalability issues as it scales quadratically with Q value
(parameter defining the model) updated by calculating
optimal action for each state (using max function with
quadratic complexity). Moreover the model-free policy
gradient method uses sampling to estimate the gradient
of policy return and can exhibit high variance. This is not
suitable when dealing with sequential communication
actions. To enable the policy learning process avoid the
above mentioned problems, a batch of 100 random
environment instantiations is sampled at every
optimization iteration and back-propagates their
dynamics through time to calculate the total gradient
return. As the communication is resting here on discrete
symbols emission, there is an issue as backpropagation is
made through differentiation (gradient computation
during forward propagation) with respect to the
parameters and works with continuous variables. A way
to differentiate and to back-propagate the environment
state dynamics partially defined by categorical features is
required. The problem is solved by using an efficient
gradient estimator approximating the non-differentiable
sample from a categorical distribution by a differentiable
sample out of continuous Gumbel-Softmax
distribution[46]. This is achieved by using the
Gumbel-Softmax categorical re-parameterization, which
gives an end-to-end differentiable model.

Assuming a random variable with a categorical
distribution with class probabilities j (j=1,..k), the
Gumbel-Max trick[47] provides a simple and efficient
way to draw samples z from a categorical distribution
with class probabilities  by applying one-hot encoding
to the Argmax function. Instead of drawing samples from
a categorical distribution, the distribution is
approximated by a continuous one, so that one can
compute the gradient and back-propagate the loss to tune
accordingly the model parameters. One then gets the
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agent utters verbal communication symbols v at every
time step. These utterances are discrete elements of an
abstract symbol vocabulary V of size K. The symbols are
denuded of any significance nor meaning, and are treated
as abstract categorical variables emitted by each agent
and observed by all other agents[44]. The vector
representing one-hot encoding of symbols v is 

denoted by V. Each agent has private internal goals, not
observed by other agents, specified by vector G. These
goals are grounded to the physical environment and
consist of moving to a location. Agents are emitting
verbal utterances for accomplishment of their
cooperative goal. To aid in accomplishing its goals, each
agent i has also a private internal recurrent memory bank
Mi not observed by other agents. This memory bank has
no designed behavior and it is up to the agents to learn
how to utilize it appropriately. The full state of the
environment is now given by :
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k-dimensional vectors

zi = E(iG(i))i=1,…k E(i
with E(iG(i)) = exp{[log(iG(i)]/As the
softmax temperature  moves away from 0, the samples
are not one-hot and tend to uniform distribution for
→∞. For any  > 0, the Gumbel-Softmax
distribution is smooth and differentiable. Hence
categorical samples are replaced by samples from
Gumbel-Softmax distribution during the training of the
neural network, allowing gradient computation
and backpropagation use. The system is built on three
processing modules: Communication network, Physical
network and Final network. The policy must consolidate
multiple incoming communication symbol streams
emitted by other agents, as well as incoming
observations of physical entities. The outputs of
individual processing modules are pooled with a Softmax
operation into feature vectors fc and fx with 256
components.

Each network has three hidden layers of 256 hidden
units. The Communication network inputs are the
utterances given by agents, the Physical network ones are
observations of the states, and the Final network outputs
are the gaze, the acceleration, the new utterances and the
memory update.

4. Compositionality with Dirichlet
Process

As seen on Figure 2, the plot of learning events
number vs vocabulary size is closely approximated by
Zipf law. The approximation by “Zipfian” law is not
surprising as it describes the patterns of many natural
situations (word frequencies in language, city
populations, websites traffic, ..). As seen on the plot,
there are not many learning events (i.e. concepts
describable by words) so a large lexicon size is not
necessary.

On the other hand however, by setting the
vocabulary size to a too small number (e.g. 5), the
optimization is stuck in local minima because there are
too few words available and concepts tend to merge
together. For instance, in English language, only thirty
different words are needed to count from 0 to 999,999.
Compositionality and language evolution created
a balance between too few words making the counting
difficult due to confusion and too many words making it
tedious. Here agents are given a vocabulary size of 20
different words with a penalty if they use too many
different words calculated with Dirichlet process, which
is a probability distribution the range of which is itself a
set of probability distributions[48]. In present case, the
word the agent is going to choose in its vocabulary is
the base variable, and another distribution is applied on it
to describe how the random variable is distributed.

The probabilities Pnu for drawing a new utterance
from the base distribution and Pd for not drawing a new
word from an already picked-up variable are
respectively :

Pnu =  + n1) ; Pd = Nx/ + n1)

rc = i,t,k1[vi(t) = vk]log(p(vk)
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Figure 2. Maximum lexicon size vs learning events

(actual calculated value and zipfian law approximation)

The less a symbol is uttered, the lower is the
probability that it will be sampled in the future and the
higher is the penalty. This mechanism fosters the use of

(5)
where α is the Dirichlet hyper-parameter determining the
probability to pick a new word, Nx is the number of
times utterance x has been picked and N the total number
of utterances. The reward is given by :

(6)
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most “popular” words, hence it leads to limit the size of
used vocabulary implying the emergence of
compositionality.

5. Results and Discussion
In present experience, an environment is first built

up with one agent and two landmarks, see Figure 1.
From one batch to another, the landmarks and agent
positions are randomized. A landmark differs from
another one by its color characteristics. The goal of the
agent is given through an utterance listened by the agent
at the beginning of the time step. The evolution of the
distance between the agent and the goal indicates how
the agent minimizes the distance to the target (the goal is
one of the two landmarks) as iterations go on.

Figure 3 displays the time evolution of the distance
and its dispersion between the agent and the target.
Though converging, the dispersion continues to oscillate
even for large number of iterations and despite mean
distance much stronger convergence. This is here due to
the very nature of the optimization process resting upon
transformation “backward” of discrete observation
process into an “enriched” continuous one with usual
errors amplification at discreteness frequency. The
phenomenon is further amplified when considering two
agents and two landmarks allowing now
exchange between agents through utterance
communication. In this case, each agent is holding the
goal of the other at the beginning, and they have to
communicate to achieve their goals in cooperation. The
distance between agent and to the landmark target is
minimized through time, see Figure 4.

constraints drastically narrowing the landscape
explored by the agents. This fundamental problem of
information quality will be discussed elsewhere with
emergence of “language”.
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Figure 3. Distance to target vs iteration number

As for previous case, the distance drops as the
agents learn to complete the task, showing convergence
of the approach. However, the much larger number of
required iterations ( 3 times) stresses the limitation of
the enlarged parameter window by utterances collection.
Reason is that when they are started from scratch (ie
when the communication language is built up from
nothing), the simple and very global character of these
new signals makes their gradient poorly directive,
inducing higher oscillatory behavior related to more
difficult phase mismatch resorption between agents.
Consequence is that for overcoming well-identified
difficulty to understand fully other participant goal
through this channel (still observed at human level!) 
here mathematically manifested by flat gradients in the
iteration process , it is necessary to run more iterations
on a large enough initial set of utterances for agents to
enrich their data bank and create a much finer response
filter by redundancy. In present case, convergence curve
shows that through the hearing during enough iterations,
agents do identify, already with direct on-line training,
how to react in order to complete their goal. In other
words, such result indicates that there is a true emergence
of meaning that can be quantified from the utterances
used and heard by the agents. The result is the more
interesting as, in a preliminary test of the interest of
information enrichment resulting from use of utterances
emitted by the agents, the study is developed on purpose
here in a relatively “flat” way, where utterances are not
related in present simple example to emergency

Figure 4. Evolution of syntaxic communication vs

iteration number
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6. Conclusion
To give agents a possible ‘’intelligent’’ relationship

similar to human beings, application of optimization
techniques in the framework of cooperative and partially
observable Markov games has been proposed. For the
accomplishment of their goals, and in order to develop
naturally and spontaneously a communication
process between them, agents are, on top of observation
of their environment, given a set of utterances they can
emit at each step of their move toward their target.
For being efficient this supplementary process is
imposed to comply with the two conditions of producing
a grounded language and satisfying
compositionality, both important characteristic features
of human language (ie spoken by human agents). In the
simple case of one agent and two landmarks in a plane
space, the research of optimum policy is shown, even
when starting from scratch, to converge toward the
emergence of a meaningful language. With two
(communicating) agents, similar but slower convergence
is observed, as expectable from specifically chosen
weakly directive example here. These results are
showing that, basically, utterances do have a meaning for
each agent after its training, and exhibit an interesting
potentiality as compared to traditionally used
statistics based approaches.

Next step is sentences creation by agents with the
vocabulary they are given. A way to evaluate the
production of sentences is to modulate enough
environment complexity for the agents to explore new
actions in addition to the spatial movements studied in
present paper. This provides a useful study about how
much the vocabulary has to be adapted in regards of the
actions possibly performed in an environment. Possible
final step along this line is to end up with fully human
speaking agents. It is already understandable that this
step is difficult to implement because the bound on input
complexity resulting from the number of letters in
current human alphabet is too loose to limit the
formation of words and much more of sentences from
scratch to a short enough time for manageable
communication. Implementation of entire human
language grammatical correctness is not scalable in order

to make sure that the language developed by the agents is
itself correct. Even for a proportional increase of words
learned by agents, the number of sentences they could
correctly produce rises exponentially with unavoidable
consequences on computational power requirements,
calling for a specific and more restricted type of
language for the agents.
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