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ABSTRACT 

Identifying and categorizing a brain tumor is a crucial stage in enhancing knowledge of its underlying mechanisms. 

Brain tumor detection is one of the most complex challenges in modern medicine. There are a variety of diagnostic im-

aging techniques that may be used to locate malignancies in the brain. MRI technique has the unparallel image quality 

and hence serves the purpose. Deep learning methods put at the forefront have facilitated the new paradigm of automated 

medical image identification approaches. Therefore, reliable and automated categorization techniques are necessary for 

decreasing the mortality rate in humans caused by this significant chronic condition. To solve a binary problem involving 

MRI scans that either show or don’t show brain tumors, we offer an automatic classification method in this paper that 

uses a computationally efficient CNN. The goal is to determine whether the image shows brain tumors. We use the 

Br35H benchmark dataset for experimentation, freely available on the Internet. We augment the dataset before training to 

enhance accuracy and reduce time consumption. The experimental evaluation of statistical measures like accuracy, recall, 

precision, F1 score, and loss suggests that the proposed model outperforms other state-of-the-art methods. 
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1. Introduction 
Medical Image Analysis (MIA) has gained high momentum in the 

past decade. MIA requires efficient processing of biomedical images 
procured by the radiology unit using machines like ultrasounds, X-rays, 
Positron Emission Tomography (PET), and Magnetic Resonance Imag-
ing (MRI). The procured images require preprocessing to eliminate the 
unwanted features and extract the region of interest (ROI) that can aid 
detection. With the advent of e-health care services, fast, robust, and 
accurate detection, and diagnosis is the need of the hour. The brain is the 
quintessential part of our body as it facilitates memory, vision, various 
motor skills, and other vital functions crucial for a healthy body. It’s one 
of the most intricate organs in the human body, given the number of cells 
it contains and uses. Uncontrolled cell division leads to a rise in the 
prevalence of brain tumors, which can harm healthy cells and disrupt 
regular brain functioning[1]. About 83,570 persons in the United States 
are diagnosed with a brain tumor each year, and about 18,600 people lose 
their lives to this illness, as reported by the National Brain Tumor Foun-
dation[2]. Tumors of the brain, often called intracranial tumors, are masses 
of aberrant tissue whose cells proliferate uncontrollably. Although brain 
tumors account for about 2% of malignant cancers, the severe morbidity 
and compilations associated with them make early detection a critical 
topic in contemporary medicine[3]. In addition, the National Brain Tumor   
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Society also estimates that 700,000 Americans al-
ready have a primary brain tumor, and another 
87,000 will be diagnosed by 2020[4]. The word “be-
nign tumor” refers to a tumor that does not have the 
potential to spread cancer to other parts of the body. 

In contrast, the term “cancerous tumor” refers 
to a tumor that has the potential to spread cancer to 
other parts of the body. The World Health Organiza-
tion (WHO)[5] categorizes malignant tumors into 
Grades I through IV. Grades I and II are classified as 
semi-malignant, while Grades III and IV are classi-
fied as malignant and may lead to serious health 
problems. Pilocytic Astrocytoma, Low-Grade Astro-
cytoma, Anaplastic Astrocytoma, and Glioblastoma 
are the four types of Astrocytomas that make up 
Grades I through IV, respectively. 

MRI is often helpful in the early identification 
of brain malignancies[6]. When diagnosing brain tu-
mors, MRI pictures are the most accurate because 
they do not pose a risk of ionizing radiation and can 
detect blood flow in veins with sufficient accuracy. 
MRI utilizes a variety of techniques[7], including the 
T1-weighted (T1) and T1-weighted-enhanced (T1C), 
T2-weighted, and T2-weighted Fluid Attenuation In-
version Recovery (FLAIR) approach. Most of the 
time, MRI images representing brain tumors will 
have smaller or larger areas that are somewhat lighter 
in color inside the cerebrum region. When a precise 
diagnosis of brain tumors is required, specialists em-
ploy MRI pictures with contrast. Before the scan, a 
dye is administered intravenously to the patient to 
enhance the contrast of the images. The complex 
problem of accurate brain tumor identification based 
on MRI scans may be simplified using machine 
learning and deep learning statistical approaches and 
algorithms. 

In recent years[8], there has been a rise in the use 
of computer-aided diagnostics, often known as CAD, 
for diagnosing tissues and tumors. This expansion 
might be ascribed to the introduction of innovative 
medical imaging technologies, including MRI and 
CT scans and digital image processing advancements. 
Different methods, like fused vectors[9], support vec-
tor machine (SVM)[10,11], transfer learning[12], and 
deep networks[13], have been offered as potential ap-
proaches for computer-aided diagnosis (CAD) 

systems for brain tumors. 
Multiple layers of a CNN use partial differential 

functions to collect characteristics from a compli-
cated input and translate them into an activation form. 
Each layer is affixed to the one below it. Convolution, 
pooling, and fully connected layers are CNN’s three 
fundamental building blocks in contrast to the con-
volution layer’s advanced feature extraction, the 
pooling and fully connected layers’ iterative down-
sampling along the spatial domain and classification. 
When calculating gradients, very tiny values might 
cause an issue known as a vanishing gradient. After 
each convolution layer, a ReLU layer is introduced 
as an element-wise activation function to prevent the 
dreaded vanishing gradient problem. In addition to 
the network in the network layer[14], additional CNN 
layers include the input layer, dropout layer, output 
layer, and the web in the network layer. 

Tumor segmentation and tumor detection are 
two different tasks in medical image analysis. Tumor 
segmentation refers to identifying and delineating 
the tumor’s boundaries in an image[1], while tumor 
detection involves determining the presence or ab-
sence of a tumor in an image. In the context of our 
CNN-based model for detecting brain tumors from 
MRI images, tumor detection is used. This is evident 
from the use of binary classification in the output 
layer of the model, which outputs either a positive or 
negative prediction for the presence of a tumor. This 
approach is consistent with several studies, such as 
studies organized by Amin et al.[2] and Saba et al.[9], 
which have used Machine Learning approaches 
for brain tumor detection. These papers have used a 
small dataset for training and testing purposes as op-
posed to our approach. We have devised a method 
where we apply data augmentation and increase the 
training samples, and our models learn the classifi-
cation intricacies of this data. Then we test the model 
with the test data of 691 samples and achieve com-
parable accuracies. The findings of our experiment 
show that an ensemble of deep characteristics may 
significantly contribute to boosting performance. In 
a nutshell, the following are the contributions that we 
have made: 

 We created and implemented a fully auto-
mated method to classify brain tumors. 
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 More specifically, we suggested an en-
tirely new three-step process: To achieve 
state-of-the-art performance for classify-
ing brain tumors in brain MRI images, we 
first (1) extract deep features using CNN 
models for meaningful information extrac-
tion and better generalization, (2) apply 
various activation functions to demon-
strate the effectiveness of our approach, 
and (3) combine them. 

This investigation follows the following outline. 
Section 2 has the corresponding writing. In Section 
3, the strategy mentioned above is laid forth. This is 
shown in Section 4, along with the experimental con-
ditions and findings. Segment 5 explains the last sec-
tion. 

2. Related work 
Brain tumor detection and segmentation 

have become the research hotspot. Shree and Ku-
mar[15] utilized GLCM for feature extraction and a 
PNN classifier to divide brain MR images into 
healthy and diseased regions with an accuracy of 
95% to 98%. Arunachalam and Savarimuthu[16] pro-
posed a classification scheme to distinguish be-
tween benign and malignant brain tumors in MR 
scans. The approach deployed shift-invariant shear-
let transform to enhance the MR picture of the brain 
(SIST). The features were then retrieved using a 
combination of Gabor, GLCM, and the discrete 
wavelet transform (DWT). This set of retrieved char-
acteristics was then used as input into a feed-for-
ward backpropagation neural network, significantly 
improving accuracy. Rajan and Sundar[17] proposed a 
hybrid energy-efficient technique to automate tumor 
identification and segmentation. The seven-step ap-
proach achieved 98% accuracy, yet it was time-con-
suming. 

Deep learning algorithms have been used 
widely in brain tumor detection. A neutrosophic con-
volutional neural network (CNN) was investigated 
where only 160 images, 80 benign and 80 malig-
nant brain tumor MRI images, were used for training 
and testing the system[18]. The suggested method 
achieved 95.62% accuracy with five-fold cross-vali-
dation. Saba et al.[9] proffered brain tumor detection 

based on manual extraction of form and texture and 
transfer learning-based feature acquisition. Deepak 
and Ameer[19] also used transfer learning and CNN 
for brain tumor classification, relying on feature ex-
traction based on a pre-trained version of GoogleLe-
Net. The method attained an accuracy of 97%. 

Wang et al.[20] proposed a test time data aug-
mentation technique to reduce the training time and 
improve the tumor segmentation process. This CNN- 
based study was quite efficacious. Sajjad et al.[21] de-
veloped a method for tumor segmentation based on 
original and supplemented data. MRI-based tumor 
detection has been studied by Toğaçar et al.[22]. Their 
work involved the hypercolumn method for CNN ar-
chitecture and attention module to locate the region 
of interest (ROI). The method achieved high accu-
racy. Another work proposed by Hossain et al.[23] uti-
lized CNN for tumor segmentation using MRI scans. 
When juxtaposed with machine learning algorithms, 
the approach attained an accuracy of 97.87%. Amin 
et al.[24] proposed a method combining textural and 
structural information in four MRI sequences based 
on Discrete Wavelet Transformation (DWT) fusion 
technology. CNN was applied to the preprocessed 
data and achieved high accuracy. Another approach 
in the study of Alfonse and Salem[25], used six CNN 
models to identify the tumors. It required sensitive 
hyperparameter tuning and outperformed other state-
of-the-art methods. According to the study of Dandıl 
and Karaca[26], stacked LSTM and Bi-LSTM were 
used to distinguish between normal brain tis-
sues, brain tumors, and pseudo-brain tumors. To train 
stacked Bi-LSTM, several augmentation approaches 
were performed to a dataset, including MRI signal 
data. The suggested method achieved classification 
results of 93.44%, 85.56%, 88.33% and 99.23% on 
pseudo brain tumor with glioblastoma, diffuse astro-
cytoma, metastatic brain tumors and normal brain 
tissue. A multiscale Deep CNN[27] capable of analyz-
ing tumor MRIs and classifying them as either gli-
oma, meningioma, or pituitary tumors was also pro-
posed. On a dataset of 3,064 MRI images, the 
proposed CNN-based model had an accuracy of 
97.3%. The deep neural network ResNet-50 was 
trained using 3,064 magnetic resonance imaging 
(MRI) scans of the brain gathered from three 
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different brain MRI datasets[28]. A critical perfor-
mance matrix was used to carry out an analysis of the 
model’s operational efficiency. The suggested model 
obtained an average accuracy of 97.08% for aug-
mented data and 97.48% for non-augmented data. 
Kalaiselvi et al.[29] designed and trained eight CNN 
models using brain MRI data to classify brain tumors 
with an accuracy between 90% and 99%. 

A proposed 3D CNN model for optimal feature 
selection from MRI images relied on correla-
tion-based feature extraction and a feed-forward ar-
tificial neural network for classification[30]. The ac-
curacy that can be reached using the method that 
has been presented is 92.67%, 96.97%, and 98.32%, 
on BraTS 2018, 2017, and 2015, respectively, for 
three distinct datasets. Kiranmayee et al.[31] proffered 
a training and testing level strategy to detect brain 
tumors. With the development of the blueprint appli-
cation, the prototype suggested that emotionally sup-
porting networks in the medical services sector 

may be coupled to improve service quality. Demi-
haran et al.[32] suggested using segmentation tech-
niques for MRI brain tumor classification. Station 
wavelet transforms, learning vector quantization and 
spectral decomposition were used for cerebrospinal 
fluid (CSF), edema, white matter (WM), and grey 
matter (GM). The average degree of similarity was 
determined to be 0.87 in grey matter, 0.96 in the cis-
ternal superficial fascia, 0.77 in edema, 0.61 for tu-
mor and 0.91 in white matter. Siar and Teshnehlab[33] 
used CNN to identify a tumor. The classification ac-
curacy of the Softmax fully connected plate, which 
was used in picture categorization, was 98.67%. The 
radial basis function (RBF) classifier and the deci-
sion tree (DT) classifier achieved an accuracy of 
97.34% and 94.24%, respectively, when applied to 
CNN’s precision. Table 1 summarizes the several 
strategies for automated categorization of brain MRI 
scans based on conventional machine learning and 
deep learning approaches. 

Table 1. Comparative summary of previous approaches 
S. No Author Type of solu-

tion 
Classification 
method 

Dataset Accuracy 

1 Rajan and 
Sundar[17] 

Classical ma-
chine learning-
based solutions 

SVM 41 magnetic reso-
nance (MR) images 

98% 

2 Kharrat et al.[34] Hybrid method-
Genetic algorithm 
with SVM 

83 MR images 98.14% 

3 Shree and Ku-
mar[15] 

PNN 650 MR images 95% 

4 Arunachalam and 
Savarimuthu[16] 

Shift-invariant 
shearlet transform 
(SIST) 

230 MR images 99.8% 

5 Ullah et al.[35] Feed-forwardneu-
ral network 

71 MR images 95.8% 

6 Ural[36] PNN 25 MR images 90% 
7 Preethi and Aish-

warya[37] 
DNN 20 MR images 99.3% 

8 Francisco et al.[27] Advanced deep 
learning-based 
solutions 

Multi-pathway 
convolutional 
neural network 
(CNN) 

3,064 MR images 97.3% 

9 Wang et al.[38] 3D U-net-based 
deep learning 

285 MR images 55.1% 

10 Çinar et al.[39] CNN models 253 MR images 97.2% 
11 Saxena et al.[40] CNN networks 

with transfer 
learning 

253 MR images 95% 

12 Paul et al.[41] Fully connected 
and CNN 

3,064 MR images 91.43% 
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Table 1. (Continued) 
S. No Author Type of solu-

tion 
Classification 
method 

Dataset Accuracy 

13 
 

 

Hemanth et al.[42] 

 

 

 CNN 220 MR images DCNN attained 
94.5% accuracy (av-
erage) and MDCNN 
attained 96.4% accu-
racy (average) 

14 Wu et al.[1] Hybrid ap-
proach (ma-
chine learning- 
and deep learn-
ing-based solu-
tions) 

Deep CNN and 
SVM 

BraTS 2018 (3D 
brain MRIs, 135 
GBM, 108 LGG, 262 
TCGA-GBM and 199 
TCGA-LGG images) 
 

SVM 87.05% and 
CNN 88.69% and 
DCNN-F-SVM 
90.10% (DSC index)

15 Deepak and 
Ameer[19] 

Deep CNN and 
GoogLeNet 

3,064 MR images SVM aided deep 
CNN classifier 
0.97% and deep 
transfer learned 
(standalone) 92.3% 

16 Islam and 
Zhang[43] 

Deep CNN and 
SVM 

OASIS dataset (416 
subjects and 434 MR 
sessions) 

73.75%accuracy 

17 Yang et al.[44] DWT 134 short echo time 
single-voxel MRS 
spectra 

Clustering accuracy 
of 94.8% and a bal-
anced the error rate 
of 7.8% 

18 Demirahan et 
al.[32] 

Wavelets, neural 
networks and self-
organizing map 
(SOM) 

IBSR2015 (18 im-
ages of 256 X 256 X 
128 voxels) and 
BraTS 2012 (120 im-
ages) 

WM 91%, GM87%, 
edema 77%, tumor 
61% and CSF 96% 

19 Kumar et al.[45] Fuzzy logic, K 
means and neural 
networks 

BraTS 2010 FCM in WM, GM, 
CSF 29.60, 30.50 
and 29.60 

20 Badža and Bar-
jaktarović[46] 

CNN 3,064 T1-weighted 10-fold cross-valida-
tion accuracy was 
96.56% 

21 Suhara and 
Mary[47] 

FCPPNET (com-
bines FCN and 
PSPNET) 

BraTS 2015 (220 
HGG and 54 LGG in-
cluded in training and 
110 both HGG and 
LGG as testing cases) 

CNN aided 
FCPPNET performs 
better with an accu-
racy of 95.66% 

22 Rahman and Is-
lam[48] 

Parallel deep con-
volution neural 
network 
(PDCNN) 

253 MR images, 233 
MR images, 3,064 
MR images 

97.33%, 97.60%, 
and 98.12%  

*BRATS 2016 has the same training set as BRATS 2015. 

3. Material and methods 
Using CNN to help diagnose brain tumors is the 

primary focus of the present study. CNN gathers 
characteristics from labeled data and learns to cate-
gorize brain tumor pictures as positive or negative. 
Preprocessed images are used to improve the perfor-
mance of this supervised CNN model. Collecting the 

most up-to-date images of brain tumors, doing image 
preprocessing, training the model incrementally, and 
evaluating the model on six distinct MRI datasets not 
observed during training are the primary steps in this 
study. 

3.1 Datasets description 

We conducted a series of tests using data-sets 
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Figure 1. Sample MR images of the BT-large-2c dataset. 

 
Figure 2. The distribution of the classes. 

from brain MRIs that were available to the public. 
The brain MRI dataset from the Kaggle website is 
called Br35H: Brain Tumor Detection 2020 
(Br35H)[49]. This dataset is named MRI-large so that 
we could use it in our experiments. The large MRI 
dataset has 3,000 images; 1,500 include tumors, 
while the remaining 1,500 are of normal tissue. Fig-
ure 1 displays examples from the dataset that fall 
into the normal and malignant categories. 

There was no problem with the class imbalance 
in the study work done on this dataset. We have used 
2D samples of different individuals; each MRI image 
is of a different individual. Each image is a multi-
color square image. The distribution of the classes is 
seen in Figure 2, where the equal split in tumor and 
normal sets for both original and augmented data de-
note the training dataset (1,100 for original and 3,300 
for augmented) and the split of 324 tumor samples 
and 367 normal samples denote the test dataset. In 
the original data set, there were some 4 layers of 

images instead of 3 (RGB), so we removed those im-
ages first, then to train the model with an equal num-
ber of samples from each class, set a size of 1,100 for 
each class for train data, rest of the data from each 
class set to test data.  

The quality of results produced by deep learn-
ing algorithms heavily depends on the dataset and its 
amount of data. The novelty of this study lies in the 
fact that the model is trained using a minimal dataset 
so that it can be used well with new material, which 
is the primary objective of these kinds of learning 
systems. Consequently, this investigation’s training 
phase utilizes 2,200 or 6,600 images, depending on 
whether data augmentation was performed. At the 
same time, 691 images are used for testing purposes 
in experiments with and without data augmentation 
to ensure that the proposed method is effective. 

3.2 Data augmentation and preprocessing 

In this study, 1,775 images were put through the  
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Figure 3. Preprocessing steps. 

 
Figure 4. Augmented images. 

training and validation processes. Before being fed 
into CNN, every image is put through a series of pre-
processing steps, as shown in Figure 3. Initially, 
these images will be changed into single-channel im-
ages, called greyscale images. 

Following the color data augmentation applica-
tion, the geometric data augmentation operations of 
scaling, flipping, and rotation are carried out. Equa-
tions (1) and (2) are used to produce image reflec-
tions in horizontal and vertical dimensions. 

𝐵𝑇_ℎ ሺ𝑥, 𝑦ሻ ൌ 𝐵𝑇ሺെ𝑥, 𝑦ሻ, 
(1) 

𝐵𝑇_𝑣 ሺ𝑥, 𝑦ሻ ൌ 𝐵𝑇ሺ𝑥, െ𝑦ሻ, 
(2) 

where, BT is the original MRI of the brain, 𝐵𝑇௛ is 
the horizontal reflection, and 𝐵𝑇_௩  is the vertical 
reflection. Figure 4 demonstrates how such reflec-
tions might have an impact on a system. 

Once the reflected images are obtained, the 
original images are rotated by 45° and then by 90° to 
produce two more image kinds. Equations (3) and (4) 
are used to perform rotations. 

𝑅ఏ ൌ  ቂ 𝑐𝑜𝑠𝜃 െ𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

ቃ, 

(3) 
𝐵𝑇௥ ൌ 𝐵𝑇𝑅ఏ, 

(4) 
where, BT is the original MRI of the brain, 𝐵𝑇௥ is 
the rotated image, 𝑅ఏ is the rotation matrix, and 𝜃 
is set as 45° and 90°. 

3.3 Convolution neural network 

In the field of neural networks, CNNs are a sub-
category that focuses on solving image or video-re-
lated issues and typically accepts an order 3 tensor as 
its input. An example would be a colored image with 
M rows, N columns, and 3 channels (using the RGB 
color scheme). This image is an order 3 tensor, and 
its notation is X1 ∈ ℝ of 𝑀 × 𝑁 × 3 dimension. Alt-
hough there are times when we deal with tensors of 
lower or higher order, such as when our images 
are black and white, representing tensors of order 2, 
we also work with tensors of higher or lower order. 
A CNN is made up of a sequence of layers that are 
added one after the other. These layers include a con-
volutional layer, a pooling layer, a batch normaliza-
tion layer, fully connected layers, and a loss layer. 
These layers make up the two most essential compo-
nents of a CNN, which are the sections of the CNN 
responsible for feature extraction and selection[50]. 
Figure 5 illustrates the proposed architecture of the 
CNN that would be used to diagnose brain tumors. 

3.4 Forward run and backward propagation 

Consider a CNN with Xk be the input for the kth 
layer and wk be the set of parameters that may be 
trained for each layer. The input X1 is sent through 
several processing layers before arriving at the loss 
layer, where the output y𝑗 and the label of the jth im-
age �̂�𝑗 are combined with the loss function’s contri-
bution to getting an error z. This practice, known as 
advance run, occurs during the early stages of  
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Figure 5. Proposed CNN architecture. 

preparation. A second approach, known as backward 
propagation, is performed during training. The pro-
cess uses the mistake to adjust all of the CNN’s train-
able parameters using a learning algorithm such as 
stochastic gradient descent (Equation (5)). 

ሺ𝑤௞ሻ௜ାଵ ൌ  ሺ𝑤௞ሻ௜ െ 𝜂
𝜕𝑧

𝜕ሺ𝑤௞ሻ௜ᇲ  

(5) 
where 𝜂 stands for the algorithm’s learning speed and 
𝑖 for the ith iteration of training[51], the learning rate η 
is a type of hyperparameter, the incorrect choice of 
which might provide suboptimal outcomes. 

3.5 Convolutional layer 

A CNN’s most recognizable layer is in the first 
feature extraction stage. Convolution is a local pro-
cess that helps with efficient categorization by ex-
tracting different patterns from the input images. 
Multiple convolutional kernels comprise a convolu-
tional layer and are a trainable parameter that may be 
tweaked with each iteration. Let the input of the kth 
convolutional layer be 𝑋௞ ∈  ℝெೖ௑ேೖ௑஽ೖ

.  And let 
and 𝐹 ∈  ℝ௠௫௡௫ௗೖ௫ௌ be a tensor of rank four rep-
resenting the s kernels of the kth layer, with a spatial 
span of 𝑚 × 𝑛. It can be shown using Equation (6) 
that the output of the kth convolutional layer is a ten-
sor of order 3 with the notation 𝑌௞ ൫𝑜𝑟 𝑋௞ାଵ൯ ∈
 ℝெೖି௠ାଵ௫ேೖି௡ାଵ௫ௌ. 

𝑦௜ೖ,௝ೖ,௦ ൌ  ෍ ෍ ෍ 𝐹௜,௝,ௗೖ,௦ 𝑋 𝑥௜ೖ,௝ೖ,௟
௞

ௗೖ

௟ୀ଴

௡

௝ୀ଴

௠

௜ୀ଴

 

(6) 
The Equation (6) is solved several times for 

every 0 ≤ 𝑠 ≤ 𝑆 and for every spatial position that 
satisfies the conditions satisfying 0 ൑ 𝑖௞ ൑ 𝑀௞ െ
𝑚 ൅ 1 and 0 ൑ 𝑗௞ ൑ 𝑁௞ െ 𝑛 ൅ 1 . CNN often inte-
grates consecutive convolutional layers to 

identify broader spatial patterns in the input image[51]. 
When convolutional layers are used, they are fre-
quently accompanied by the operation of zero pad-
ding, ensuring that the images’ dimensions remain 
fixed throughout the process. 

3.6 Pooling layer 

Let 𝑋௞  ∈  ℝெೖ௑ ேೖ௑ ஽ೖ
  represents the input 

of the kth layer, which has become a pooling layer 
with a spatial span of 𝑚 × 𝑛. These layers don’t re-
quire training any parameters. In this case, we’ll say 
that 𝑚 is a factor of 𝑀, 𝑛 is a factor of 𝑁, and the 
stride is equal to the pooling spatial span. The result 
is a tensor of rank 3, written as 𝑌௞  ∈
 ℝெೖశభ௑ ேೖశభ௑ ஽ೖశభ

, where 𝑀௞ାଵ can be computed 
using Equation (7). 

𝑀௞ାଵ  ൌ  
𝑀௞

𝑚
,  𝑁௞ାଵ  ൌ  

𝑁௞

𝑛
, 𝐷௞ାଵ  ൌ  𝐷௞ 

(7) 
Whereas the polling layer performs its opera-

tions on  𝑋௞  channels in an autonomous fashion 
one by one. There are many other pooling proce-
dures, but maximum pooling and average pooling are 
the most common. Throughout our investigation, we 
used maximum pooling, resulting in outputs that 
were generated following Equation (8). 

𝑦௜ೖ,௝ೖ,ௗ ൌ  max
଴ஸ௜ஸ௠,଴ஸ௝ஸ௡

𝑥௜ೖ௫௠ା௜,௝ೖ௫௡ା௝,ௗᇲ
௞  

(8) 
where, 0 ൑ 𝑖௞ ൑ 𝑀௞ ,   0 ൑ 𝑗௞ ൑ 𝑁௞ , 0 ൑ 𝑑 ൑ 𝐷௞ . 

Pooling layers are used to reduce the dimen-
sionality of the output tensors while keeping the most 
important recognized patterns[52]. Intuitively, this is 
accomplished with pooling layers. 

3.7 Fully connected layer 

The effective selection of characteristics 
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retrieved by the first portion of a CNN is the respon-
sibility of this layer, which is in the second part of a 
CNN. A high-dimensional vector containing all the 
extracted characteristics obtained by a flattening op-
eration serves as the input to the first fully linked 
layer of the network. After the last layer is fully 
linked, there is always a classification function, such 
as sigmoid, softmax, and tanh that produces an actual 
value 𝑦𝑗 that will be compared with the predicted 
value �̂�𝑗 based on the loss function that was set. In 
the present context, we believe applying the sigmoid 
function described by Equation (9) is appropriate for 
this binary classification. 

𝑦ො௝ ൌ  
௘ೣೕ

ଵା௘ೣೕ ,           𝑥௝  ∈  ℝ                            

(9) 
The intuitive interpretation of 𝑦𝑗 ∈ (0,1) indi-

cates the chance that the input image depicts the 
presence of a tumor. The idea of dropout, a strategy 
used to increase the generalization of the learning 
procedure while simultaneously lowering the likeli-
hood of overfitting, is another essential one. It does 
so by resetting to zero the parameters related to a spe-
cific percentage of the network’s nodes[53]. Finally, 
ReLU and batch normalization processes serve as 
significant transition mediums that connect the pre-
viously discussed layers. Equation (10) defines the 
ReLU function. 

𝑦௜,௝,௞ ൌ max ሺ0, 𝑥௜,௝,ௗ
௞ ሻ 

(10) 
While batch normalization speeds up and stabi-

lizes neural networks by normalizing the layer’s in-
put by rescaling and recentering after each iteration, 
0 ൑ 𝑖 ൑ 𝑀௞ , 0 ൑ 𝑗 ൑ 𝑁௞  and  0 ൑ 𝑑 ൑ 𝐷௞ , striv-
ing to transfer only the purposeful elements for the 
classification[54]. 

3.8 Loss functions 

Backpropagation occurs when a loss function is 
chosen that accepts y𝑗 and 𝑦ො௝ and outputs an error z. 

In this study, we have used the cross-entropy loss 
function. This function is defined in Equation (11). 

𝑆௖௥௢௦௦൫𝑦௝, 𝑦ො௝൯ ൌ  െ
1
𝑛

෍ 𝑦௝௞𝑙𝑜𝑔𝑦ො௝௞

௡

௞ୀଵ

 

(11) 
 

1 https://pypi.org/project/keract/ 

While the information included in the events is 
valued following 𝑦ො௝, this loss function evaluates the 
predicted inaccuracy of events seen with distribution 
y𝑗. The 𝑦ො௝ and y𝑗 are vectors as previously described 

and comprise 𝑛 different instances of categorized im-
ages and are a part of the training and testing process. 

3.9 Relevance mapping 

We use the Keract1 library for relevance map-
ping and then generate the heatmaps to highlight rel-
evant regions. Heatmaps are a way to visualize the 
relevance of each pixel in the input image to the net-
work’s output. In CNN, the last convolution layer 
captures the input image’s most important and rele-
vant features. These features are then passed to a 
fully connected network layer for the final classifica-
tion. Keract library focuses on the visualization of 
convolutional neural network (CNN) activations, 
and it provides tools for obtaining the activation val-
ues of different layers in a CNN and generating 
heatmaps to highlight the most relevant regions of 
the input image. Keract is mainly used for analyzing 
the behavior of CNNs and understanding the features 
they are learning to recognize in input images. 

4. Experimental results 

4.1 Experimental setting 

The experiment was carried out on X86-64 Ub-
untu 18.04.4 LTS system. The central processing unit 
(CPU) is an Intel(R) Core (TM) i7-8550U, and it op-
erates at 1.80 GHz. The memory capacity is 16 giga-
bytes. This arrangement is what we use to exam-
ine brain tumors that are recommended. The 
programming was done in Python. The CNN archi-
tecture was trained to learn the features from the in-
put. After that, additional features derived from the 
CNN architecture were applied to categorize the tu-
mor images. 

4.2 Hyperparameters tuning 

The primary objective of hyperparameter tun-
ing is to develop the most effective model for cate-
gorizing brain MRI scans. The term “hyperparame-
ters” refers to the group of parameters that, when 
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optimized, produce the best possible outcomes for 
the model’s training. The number of epochs, the 
dropout number, the activation function, the batch 
size, the learning rate, and other parameters are in-
cluded in these settings. Following several iterations 
of the experiment, we settled on the appropriate val-
ues for the learning rate, batch size, and regulariza-
tion factor. The dataset was divided into a three-way 
split: training set, validation set, and testing set. The 
validation set was 10% of the training set. The pa-
rameter estimation was based on the validation set. 

4.3 Classification measures 

Following the training phase, we use several 
validation metrics to evaluate the performance of our 
model on test data. Accuracy, sensitivity, specificity, 
and F1 score are four well-known metrics that can be 
described as follows[55]: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ൌ
𝑇𝑃 ൅ 𝑇𝑁

𝑇𝑃 ൅ 𝑇𝑁 ൅ 𝐹𝑁 ൅ 𝐹𝑃
 

   (12) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ൌ
𝑇𝑃

𝑇𝑃 ൅ 𝐹𝑁
 

   (13) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 ൌ
𝑇𝐹

𝑇𝐹 ൅ 𝐹𝑃
 

      (14) 

𝐹1 𝑆𝑐𝑜𝑟𝑒 ൌ
2𝑇𝑃

2𝑇𝑃 ൅ 𝐹𝑃 ൅  𝐹𝑁
 

(15) 
The sensitivity of a CNN measures how likely 

the network will identify a tumor in an MRI scan im-
age. F1 score is the harmonic mean of accuracy and 
sensitivity, while specificity is the chance that the 
CNN correctly identifies the absence of a tumor. 

4.4 Experimental outcomes 

MRI scans of the patient’s brain were used in 
this research study to diagnose individuals suffering 
from brain tumors. The empirical findings for 
the brain tumor classification tasks using the Br35H 
data set are used here. To correctly classify patients 
as normal or tumorous, the authors of this paper em-
ploy a CNN-based deep learning model. To classify 
the two different kinds of brain tumors based on MR 
images, the system is trained numerous times against 
the CNN networks using a range of well-known ac-
tivation functions such as ReLU, Leaky ReLU, Tanh, 
and Linear. The purpose of carrying out this study 
with many parameters is to locate the model and op-
timizer that works in conjunction with the input data 
effectively. Quantitative data, together with confu-
sion matrices, are presented for each of the network 
architectures that were selected. 

During our investigation, a total of two models 
were conceived, and the functionality of each model 
was appraised concerning the metrics that were cov-
ered in Section 4.3. We show and analyze the find-
ings of detecting brain tumors using the Br35H da-
taset that was taken into consideration can distin- 
guish between two different forms of brain tumors 
using MRI images. First, the CNN model with no 
additional data augmentation was evaluated by each 
optimizer to see how well it performed. The detailed 
classification results that were achieved by utilizing 
the suggested models are compared in terms of vari-
ous indicators, and a summary of those comparisons 
can be seen in Table 2. As can be shown in Table 3, 

Table 2. Comparing results with other works on the same dataset 

S. No Authors Model architecture Accuracy 

1 Soltaninejad et al.[56] Random Forest Classifier 86% 

2 Sarkar et al.[57] CNN 91.30% 

3 Avşar et al.[58] R-CNN 91.66% 

4 Arunkumar et al.[59] ANN 92.14% 

5 Martini et al.[60] CNN 93.9% 

6 Choudhury et al.[61] CNN 96.08% 

7 Sultan et al.[62] CNN 96.13% 

8 Amin et al.[2] SVM 97.1% 

9 Ganesan et al.[63] Deep CNN (D-CNN) 98.07% 

10 Naseer et al.[64] CNN 98.8% 

11 Proposed model CNN 98.99% 



 

11 

Table 3. Proposed model results with and without data augmentation 
Model Accuracy Loss F1 score Recall Precision 
No augmentation 0.9754 0.1141 0.9769 0.9809 0.9729 
Augmentation 0.9899 0.0570 0.9904 0.9891 0.9890 

the data augmentation yields the highest quality clas-
sification performance. A classification accuracy of 
98.99% was be achieved using brain MRI images. 
This model also performs well regarding other vari-
ables like recall and loss. Precision is another area in 
which it excels. 

A comparison of the proposed CNN model’s ac-
curacy while utilizing models with varying lengths 
of epochs is presented in Figure 6. The tests are car-
ried out with and without the addition of augmented 
data. As seen in Figure 6(a), the performance of the 
data-augmented model is much superior to that of the 
alternative. When running over enough iterations, 
this model can attain an accuracy of up to 98.99%. 
The accuracy results have been computed up to 50 
epochs using early stopping with patience 10. It is 
clear from the evidence that the proposed CNN 
model with augmentation performs better than other, 
more basic CNN models that do not use augmenta-
tion. Figure 6 demonstrates that starting at epoch 2, 
accuracy improves until reaching epoch 17, then it 

stabilizes at around 99% for validation data. 
Loss curves are used to illustrate the analysis of 

the models that have been proposed. Figure 7 depicts 
the training performance in terms of training loss and 
validation loss, both achieved by CNN models at var-
ious epochs. The models successfully converge and 
attain their most significant level of accuracy (Fig-
ure 6) with minimum loss throughout training and 
validation (Figure 7). On the other hand, the number 
of epochs that are used improves the model’s accu-
racy. In addition, the learning curves demonstrate 
that the models do not overfit to the training dataset. 
It indicates that the model is doing an excellent job 
of learning from the information that it has been 
given at each epoch. This is essentially the result of 
using dropout regularization techniques in the pro-
posed models and image augmentation to compen-
sate for the scarcity of accessible brain MRI data. 
The loss of 0.11% may be seen in Figure 7(a), which 
depicts the scenario in which augmentation is not im-
plemented. As shown in Figure 7(b), the loss caused 

(a) With augmentation 

(b) Without augmentation 
Figure 6. Epochs versus accuracy graph.
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(a) Without augmentation 

(b) With augmentation 
Figure 7. Epochs versus loss graph. 

Table 4. Results of ten-fold cross-validation on augmented data split into a train, validation, and test set 
Cross vali-
dation 

Train set Validation set Test set 
Accuracy Loss Accuracy Loss Accuracy Loss 

1 0.9997 0.0015 0.9955 0.0195 0.9899 0.0767 
2 0.9961 0.0157 0.9955 0.0144 0.9870 0.1116 
3 0.9973 0.0110 0.9985 0.0142 0.9812 0.1294 
4 0.9961 0.0195 0.9864 0.1889 0.9841 0.1179 
5 0.9965 0.0125 0.9924 0.0470 0.9855 0.0835 
6 0.9988 0.0076 0.9970 0.0150 0.9841 0.0969 
7 0.9973 0.0090 0.9924 0.0252 0.9812 0.0921 
8 0.9990 0.0038 0.9939 0.0235 0.9939 0.0940 
9 0.9992 0.0025 0.9970 0.0169 0.9913 0.0478 
10 0.9987 0.0048 1.0000 0.0030 0.9899 0.0570 

*Train size: 5,940, Validation size: 660, Test size: 691. 

Table 5. Results of ten-fold cross-validation on non-augmented data split into a train, validation, and test set 
Cross vali-
dation 

Train data Validation data Test data 
Accuracy Loss Accuracy Loss Accuracy Loss 

1 0.9970 0.0137 0.9682 0.3191 0.9667 0.1546 
2 0.9934 0.0377 0.9682 0.1910 0.9609 0.1350 
3 0.9985 0.0072 0.9727 0.2400 0.9740 0.1261 
4 0.9965 0.0132 0.9864 0.0621 0.9812 0.0889 
5 0.9944 0.0324 0.9636 0.1406 0.9653 0.1486 
6 1.0000 0.0032 0.9636 0.2706 0.9725 0.1390 
7 0.9990 0.0112 0.9818 0.0937 0.9754 0.1019 
8 0.9975 0.0219 0.9682 0.1113 0.9696 0.1117 
9 0.8934 0.4770 0.9682 0.1810 0.9276 0.2127 
10 0.9965 0.0165 0.9727 0.1318 0.9754 0.1141 

*Train size: 1,980, Validation size: 220, Test size: 691. 
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by data augmentation is just about 0.057%. 
The results were obtained by implementing 

early stopping and ten-fold cross-validation. The 
compared results are from the 10th stage of cross-val-
idation. As we noticed that the accuracy and loss sta-
bilized after 20 epochs, we applied an early stopping 
to eliminate the plateau in the graph. The comparison 
of both results supports the supremacy of our model. 
Table 4 represents the results obtained at each stage 
in a ten-fold cross-validation over augmented data, 
while Table 5 represents the results for non-aug-
mented data. 

The confusion matrix displays the number of 
images that were successfully recognized by the 
model as well as those that were misidentified. See 
the Confusion matrices shown in Figure 8 for an in-
depth study and a brief comprehension of the number 
of correctly categorized instances and incorrectly 
classified cases for each individual with and without 
the enhanced model. The results produced from the 
test set can be considered satisfactory when the con-
fusion matrix is considered. The presented models 
can be utilized in determining, in real-time, the ex-
istence of tutors within the human brain. 

 

(a) (b)
Figure 8. Confusion matrices obtained for the proposed model for (a) augmented; (b) non-augmented data.

Table 6. Results of binary cross entropy over different activation functions on augmented data 
Activation function Accuracy Loss F1 score Recall Precision 
ReLU 0.9855 0.1048 0.9904 0.9891 0.9918 
Leaky ReLU 0.9870 0.2375 0.9877 0.9891 0.9864 
Tanh 0.9682 0.0907 0.9704 0.9836 0.9575 
Linear 0.9870 0.5811 0.9877 0.9863 0.9890 

Table 7. Comparison results of F1 score, recall, and precision for augmented and non-augmented data 
Cross vali-
dation 

Augmented data Original data 
F1 score Recall Precision F1 score Recall Precision 

1 0.9904 0.9891 0.9918 0.9693 0.9918 0.9479 
2 0.9877 0.9863 0.9890 0.9627 0.9509 0.9748 
3 0.9823 0.9836 0.9809 0.9756 0.9809 0.9703 
4 0.9850 0.9891 0.9810 0.9822 0.9809 0.9836 
5 0.9863 0.9809 0.9917 0.9668 0.9536 0.9803 
6 0.9849 0.9836 0.9863 0.9744 0.9891 0.9603 
7 0.9822 0.9809 0.9836 0.9766 0.9700 0.9834 
8 0.9863 0.9836 0.9890 0.9713 0.9700 0.9726 
9 0.9918 0.9918 0.9918 0.9291 0.8937 0.9675 
10 0.9904 0.9891 0.9918 0.9769 0.9809 0.9729 
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Our proposed CNN models were evaluated on 
the Br35H dataset to ensure their durability. Table 6 
compares the classification results obtained using 
different activation functions on the suggested mod-
els based on the augmentation method. With a 
98.55% accuracy, 98.63% F1 score, 98.09% recall, 
and 99.17% precision, it’s clear that the ReLU and 
Leaky ReLU function-based models did the best on 
this dataset. It was also discovered that the ReLU 
function results in a loss of just 0.1048 for the tumor 
class. The performance of other activation functions 
like Tanh and Linear is significantly less. Table 7 

depicts the tenfold cross-validation results on F1 
score, recall and precision for augmented and non-
augmented data using the ReLU activation function. 

4.5 Heatmap depiction 

Figures 9 and 10 depict the heatmaps outcome 
of our model. Figure 9 depicts the heatmap results 
for a tumor-positive sample depicted in part (a). Part 
(b) depicts the flattened heatmap. And part (c) de-
picts the last convolution filters heatmap. Similarly, 
Figure 10 depicts the heatmap results for a nor-
mal brain sample depicted in part (a). Part (b) depicts  

(a) (b)

 
(c)

Figure 9. Heatmap analysis of a tumorous brain. (a) Original image with a brain tumor; (b) Flattened image; (c) 
Last convolution filters heatmap. 
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(a) (b) 

 
(c)

Figure 10. Heatmap analysis of a non-tumorous brain. (a) Original image with no brain tumor; (b) Flattened image; (c) 
Last convolution filters heatmap.

the flattened heatmap. And part (c) depicts the last 
convolution filters heatmap. The results depict the 
visualizations of better resolution caused by the sim-
ple scaling and flipping techniques that produce 
comparable outputs. 

4.6 Discussion 

The most recent advancements in medical 

imaging equipment have made the lives of healthcare 
professionals and patients more manageable. Re-
search in medical informatics offers the most ac-
ceptable potential avenues for making productive 
use of these rapidly expanding data quantities. Early 
identification options are necessary for the success-
ful treatment of brain tumors. In this research, we 
propose an improved model for deep learning by in-
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depth analysis of the performance of CNN architec-
ture for classifying brain tumors based on MRI scans. 
Extensive testing was carried out on the Br35H da-
taset to identify the most effective model for the au-
tomated diagnosis of brain tumors. This was accom-
plished by considering various characteristics, such 
as the various hyperparameters and activation func-
tions available. Based on the experiment’s findings, 
it is possible to conclude that the suggested CNN 
model with data augmentation is highly successful in 
categorizing brain MRI images and that the classifi-
cation accuracy is relatively better. A comprehensive 
comparative examination of the model that was sug-
gested is also carried out in this research. The results 
indicate that the proposed model achieved the high-
est performance on the Br35H dataset, exhibiting a 
precision of 99.45%, recall of 99.18%, F1 score of 
99.31%, and accuracy of 99.28%. 

5. Conclusion 
The purpose of this research was to automati-

cally diagnose brain tumors from MRI scans using a 
deep-learning CNN model. Extensive tests were con-
ducted on the Br35H dataset, which contains the 
most significant number of MRI images currently ac-
cessible, and improved CNN models with alternative 
activation functions and hyperparameters with data 
augmentation were implemented. Data augmentation 
techniques are used on the images in the dataset, in-
cluding rotation, flipping, and rescaling. With the 
Adam optimizer, the suggested models demonstrate 
rapid learning, and the dropout technique eliminates 
the issue of overfitting. Accuracy, recall, precision, 
and F1 score was used to evaluate the various sug-
gested models. Intense testing revealed that the sug-
gested model outperformed its competitors in the lit-
erature. The suggested model achieved recall scores 
of 99.18%, precision scores of 99.45%, F1 score of 
99.31%, and accuracy values of 99.28% on bench-
mark datasets such as Br35H. The suggested model 
has higher accuracy than the current models by 
99.28%. This indicates the feasibility of utilizing 
CNN for the rapid diagnosis of brain tumors from 
MRI images and the efficacy of our suggested strat-
egy. The system’s performance can be enhanced with 
more effort by utilizing more extensive data sets and 

other deep learning methods. 
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