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ABSTRACT
Sequential pattern mining is one of the data mining tasks used to find the subsequences in a sequence dataset that 

appear together in order based on time. Sequence data can be collected from devices, such as sensors, GPS, or satel-
lites, and ordered based on timestamps, which are the times when they are generated/collected. Mining patterns in such 
data can be used to support many applications, including transportation recommendation systems, transportation safety, 
weather forecasting, and disease symptom analysis. Numerous techniques have been proposed to address the problem 
of how to mine subsequences in a sequence dataset; however, current traditional algorithms ignore the temporal infor-
mation between the itemset in a sequential pattern. This information is essential in many situations. Though knowing 
that measurement Y occurs after measurement X is valuable, it is more valuable to know the estimated time before the 
appearance of measurement Y, for example, to schedule maintenance at the right time to prevent railway damage. Con-
sidering temporal relationship information for sequential patterns raises new issues to be solved, such as designing a 
new data structure to save this information and traversing this structure efficiently to discover patterns without re-scan-
ning the database. In this paper, we propose an algorithm called Minits-AllOcc (MINIng Timed Sequential Pattern for 
All-time Occurrences) to find sequential patterns and the transition time between itemsets based on all occurrences of 
a pattern in the database. We also propose a parallel multi-core CPU version of this algorithm, called MMinits-AllOcc 
(Multi-core for MINIng Timed Sequential Pattern for All-time Occurrences), to deal with Big Data. Extensive experi-
ments on real and synthetic datasets show the advantages of this approach over the brute-force method. Also, the mul-
ti-core CPU version of the algorithm is shown to outperform the single-core version on Big Data by 2.5X.
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1. Introduction 
Sequential pattern mining (SPM)[1] analyzes a sequence 

database, which contains sequences of events that are ordered 
based on the times when the events occurred or collected, called 
timestamps, to discover sequential patterns. These sequential pat-
terns are those time-ordered events that frequently occur in the se-
quence database. SPM has been used in many real-life application 
areas such as transportation arrival time analysis, weather predic-
tion[2,3], illness symptom pattern prediction[4], network intrusion 
detection[5], educational data mining[6], and customer shopping 
behaviors[1]. Knowing frequent sequential patterns, we can answer 
a question like “In which order does the measurements(s) for 
train aerodynamic phenomena frequently occur?” For example, 
high temperature and high wind speed could cause a train crash 
by warping tracks or overturning of the lightly loaded train[7,8]. 
Similarly, through transportation arrival time analysis, with se-
quential patterns discovered from a sequence database recording 
the movement of taxis, we may expect that the travel range of 
taxis that move from Broadway Street to Times Square in NYC 
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is 20 to 40 minutes. Also, in Oklahoma during the 
hurricane season, we can estimate the transition 
time range when a tornado hits Oklahoma City, 
Moore, and Norman in order. However, the existing 
works in SPM[9–11], tried to improve the efficiency 
of techniques to discover the frequent sequential 
patterns but discard the time dimension completely. 
The timestamps are used to order events within a 
sequential pattern, but the transition time between 
these events is not shown in the discovered sequen-
tial patterns. In many applications, it is important to 
know the time interval [min, max] events in a fre-
quent sequential pattern discovered, which we call a 
timed sequential pattern. For example, with sequen-
tial patterns that contain temporal information about 
the transition time between signs, we can answer 
a question like “When will the next measurements 
of train aerodynamics occur?” Similarly, we may 
want to have a frequent timed sequential pattern 
that shows that after a tornado hits Oklahoma City, 
within 10 to 15 minutes later, the tornado will hit 
Moore, and then within 3 to 5 minutes later, the tor-
nado will hit Norman. Knowing the temporal infor-
mation (the time intervals of event occurrences) in 
frequent sequential patterns will help in preparing a 
safety plan to reduce damages and loss.

Figure 1. Sensors’ historic weather information and discretize 
data.

As shown in Figure 1, we have the historic 
weather information (temperature and wind speed) 
of four sensors, each of which denoted as (S) with 
an ID as shown in the first column. The time is re-
corded with each measurement taken by each sensor 
as shown in the second column. Since sequential 
pattern mining algorithms do not deal with continu-
ous data, we need to apply a partitioning technique 
to segment the data into classes that have similar 
features or fall within a same group. Therefore, we 
add an additional column next to each column that 
contains the equivalent class ID. For instance, the 
wind speed (W) has five levels[12] and each level 
refers to the damage that causes: 1) minimal (74 ≤ 

W < 95), 2) moderate (96 ≤ W ≤ 110), 3) extensive 
(111 ≤ W ≤ 129), 4) extreme (130 ≤ W ≤ 156), and 
5) catastrophic (W ≥ 157). Thus, the first row in the 
last column has the wind speed class 3 because the 
value 112 belongs to the class 3 (minimal).

A timed event sequence that we want to dis-
cover is a sequence of frequently occurring meas-
urements among sensors (or events) and typical 
transition times between these measurements (in 
terms of hours for the example case). The following 
is the format of a pattern that would be discovered 
in this study:

TSP = < {T1, W3} [30, 36] {W5} >
This TSP has two itemsets: itemset 1 consist-

ing of two items T1 and W3, and itemset 2 consist-
ing of item W5. Itemset 2 occurs within 30 to 36 
hours after itemset 1. In our notations, all items en-
closed within braces {} occur at the same time and 
constitute an itemset, and the square brackets [min, 
max] indicate the time duration to move from one 
itemset to the next. In this algorithm, the time du-
ration represents the temporal relation [min, max]. 
Thus, the given example TSP shows that frequently 
when measurement has a temperature falling in the 
class 1 (T1) and a wind’s speed falling in the class 3 
(W3), then within 30 to 36 hours, the measurement 
will have a wind’s speed in the class 5 (W5). If we 
apply traditional sequential pattern mining, this se-
quential pattern will only be < {T1, W3}, {W5} >, 
which does not include the transition time [30, 36]. 

Incorporating the temporal information in a 
sequential pattern raises additional challenges for 
mining compared to regular sequential pattern min-
ing. First, while both sequential pattern mining and 
timed sequential pattern mining need to find out 
whether a pattern occurs in some tuples of a data-
base, timed sequential pattern mining also needs to 
find out how many times the pattern occurs in each 
tuple to compute the temporal relationship between 
the itemsets in the pattern. Suppose we have a tuple 
that has all the measurements within 6 months and 
the following measurements occurring many times: 
low temperature followed by high wind speed af-
ter some time. Since the timed sequential pattern 
mining problem wants to know when the high wind 
speed occurs, it is not sufficient to find only the first 
position of this measurement and report the tem-
poral relation. For example, from Figure 2, we can 
observe that the second sensor, S2, has the follow-
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ing measurements based on the timestamp order: 
the temperature from class 1 and the wind speed 
from class 1 {T1, W1}, followed by the temperature 
from class 1 and the wind speed from class 3 {T1, 
W3}, followed by the temperature from class 1 and 
the wind speed from class 1 {T1, W1}. The tuple 
for this sensor is: S2 = < {T1, W1}, {T1, W3}, {T1, 
W1} >. To find the temporal relation between the 
two measurements {T1} and {W1} (for the pattern 
denoted as < {T1} [ ] {W1} >), we need to do the 
following as shown in Figure 3:

1) Find the timestamp difference t1 between 
the first occurrence of T1 and the first oc-
currence of W1 (solid arrows).

2) Find the timestamp difference t2 between 
the second occurrence of T1 and the first 
occurrence of W1 (dotted arrows).

3) Find the timestamp difference t3 between 
the first occurrence of T1 and the second 
occurrence of W1 (dashed arrows).

4) Find the minimum timestamp difference 
and the maximum timestamp difference 
among t1, t2, and t3.

5) Produce the temporal relation as [min, 
max]. 

So, to find all possible occurrences of a pat-
tern, the naïve method is to scan each tuple until the 
end in the database. However, a sequential pattern 
mining algorithm will stop checking the rest of a 
tuple in the database as soon as the pattern is found. 
In contrast, timed sequential pattern mining requires 
checking all the tuples in the database. First, it is 
necessary to consider all possible occurrences of 
the pattern and all the different timestamps of each 
occurrence and find the temporal relation. After the 
temporal relation is found for one sensor, we need 

to check the temporal relation for the same meas-
urements among all sensors. The final interval [min, 
max] represents the minimum and maximum time 
difference among all sensors in the database. 

This leads to the second challenge of timed se-
quential pattern mining, which updates the temporal 
relation between itemsets as soon as a pattern is 
found. When a timed sequential pattern is defined, 
it means that the ratio of tuples that contain this pat-
tern is greater than or equal to a user-defined thresh-
old. Then, when we want to extend that pattern to 
include more measurements; it does not mean that 
the pattern must appear at the same tuples because 
some tuples may not carry it anymore. According-
ly, the time relation is not valid anymore, and we 
need to update that relationship based on the new 
timestamps of the new tuples. Let us suppose that 
we have the timed sequence pattern < {T1, W3} 
[t1, t2] {T1} >. From Figure 2, we can observe that 
S1 and S4 have these measurements. So, t1 and t2 
are calculated based on the timestamps associated 
with these measurements in these tuples. When the 
pattern is extended to be < {T1, W3} [t1, t2] {T1, 
W2} >, we can observe that the record of S4 does 
not carry this pattern and only S1 had these meas-
urements. Therefore, t1 and t2 must be updated 
based on the timestamps associated with measure-
ments. The brute force technique needs to scan the 
database again to update the temporal relation of 
the pattern. Thus, for every pattern, we need to scan 
the entire database many times to make sure that we 
have the correct temporal relations. 

The contributions of this paper are the follow-
ing:

1) The idea of incorporating transition time 
between itemsets in a sequential pattern in-
dicates all possible time occurrences of the 
pattern within the whole timed sequence 
database. The time can be any descriptive 
statistic based on the user’s preference, 
such as range and average.

2) The parallel implementation of the Mi-
nits-AllOcc algorithm can help when deal-
ing with Big Data.

3) The extensive experiments compare the 
single-core algorithm against the mul-
ti-core algorithm on real and synthetic da-
tasets.

The remainder of the paper is organized as fol-
Figure 3. All possible occurrences of the measurement {T1} 
{W1} in S2.

Figure 2. Sequence records.
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lows. Section 2 reviews the definiation of the prob-
lem. Section 3 reviews the related work. Section 4 
introduces and defines the timed sequential pattern 
mining problem. Section 5 explains how the algo-
rithm works. The results of performance evaluations 
on different datasets are given in Section 6. Finally, 
Section 7 concludes the paper and discusses future 
work.

2. Problem definition 
In this section, we review the definitions of the 

sequential pattern mining problem and introduce 
new definitions for the timed sequential pattern 
mining problem. Recalling the traditional sequential 
pattern mining problem[1], we define an itemset I as 
a set of items, such that I ⊆ X, where X = {x1, x2, 
..., xl} is a set of items in the database. A sequence 
(tuple) s is an ordered list (based on timestamps) of 
itemsets. A sequence A = < {a1}, {a2}, …, {an} > is 
contained in another sequence B = < {b1}, {b2}, …, 
{bm} > and B is a super-sequence of A if there ex-
ists a set of integers, 1 ≤ j1 < j2 < … < jn ≤ m, such 
that . 

A sequence database S is a set of sequences 
(tuples) < sid, si >, where sid is a sequence identi-
fier and si is a sequence. A tuple < sid, si > is said 
to contain a sequence 𝛼 if 𝛼 is a sub-sequence of si. 
Since our problem also considers the temporal data, 
we incorporate timestamps explicitly in the data-
base and introduce new definitions. 

Definition 1. A timed event is a pair e = (I, t), 
where I is an item set that occurs at the timestamp t. 
We use e.I and e.t to indicate, respectively, the item-
set I and the timestamp t associated with the event 
e. The list of events that is sorted in the timestamp 
order is called a timed sequence TS = < {e1}, {e2}, 
..., {en} >, such that ei.x ⊆ I (1 ≤ i ≤ n). A timed se-
quence database TSDB is a set of sequences < TS_
id, TS >, where TS_id is a timed-sequence identifier 
and TS is a timed sequence.

Example 1 (running example). The timed 
sequence database in Figure 4 is used as an illustra-
tive example in this paper. For simplicity, we will 
use letters to refer to items that represent different 
properties of objects in the database (e.g., temper-
ature and speed of wind), and integer numbers to 
refer to timestamps that represent the times when 
those properties are collected. In this example, 
there are four timed sequences with IDs from TS1 

to TS4. Each timed sequence consists of a set of 
events ordered in the events’ timestamps. For exam-
ple, TS1 consists of two events: the first event {a, b, 
5}, which occurred at timestamp 5, followed by the 
second event {d, g, 12}, which occurred at times-
tamp 12.

Definition 2. Given a sequence A = < {I1}, {I2}, 
…, {In} > and a timed sequence TS = < {e1}, {e2}, 
…, {em} >, the All-time Occurrences of A in TS in 
the timed sequence database TSDB is defined as an 
ordered list of indices 1 ≤ j1 < j2 < …< jn ≤ m, such 
that: . The delta Δ is de-
fined as .

Example 2. Let sequence A = < {a} {b} > 
and timed sequence TS4 = < {a, 10}, {b, f, 19}, {d, 
20}, {b, 30} >, as shown in Figure 4. The indices 
of the events for the first occurrence of sequence A 
in TS4 are {e1, e2}, as shown by the solid arrow in 
Figure 5. The delta Δ is the difference between the 
timestamps of these two consecutive events, which 
is e1.t1 = 10 and e2.t2 = 19. Thus, the  Δ = 19 – 10 = 9. 
Then, the second occurrence of sequence A in TS4, 
as shown by the dotted arrow in Figure 2, has the 
indices of the evenets {e1, e4}. The delta  is the dif-
ference between the timestamps of these two con-
secutive events, which is e1.t1 = 10 and e4.t2 = 30. 
Thus, the Δ = 30 – 10 = 20. Similarly, we can find 
the rest of the All-time Occurrence. The support of 
a sequence A in a sequence database, or a timed se-
quence database, is the percentage of the number of 
sequences in the database that contains A, such that 
sup(A) = (#sequences that contain A/#sequences in 
DB) × 100. If the support of sequence A is greater 
than or equal to a user-defined threshold called min-
imum support (min_sup), then it is called a sequen-
tial pattern[1]. 

Figure 4. An example of timed sequence database.

Definition 3. A sequence A is called a timed 
sequential pattern TSP if and only if it is a se-
quential pattern and accompanied by temporal re-
lationships 𝜏i between itemsets where it represents 
any descriptive statistic, such as an average of tran-
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sition time or range, calculated based on the values 
of the delta . TSP is denoted as: TSP = < {I0} [𝜏1] {I1} 
[𝜏2] {I2}, …, [𝜏n] {In} >. For brevity, in the rest of 
this paper, when we mention a pattern, we refer to a 
timed sequential pattern.

Example 3. Let us assume the min-sup = 
50%; since the support of sequence A = < {a} {b} > 
is 50%, the sequence is a sequential pattern. In this 
paper, we assume that a user chooses the temporal 
relation to be presented as a range of time [min, 
max]. Thus, the timed sequential pattern version is 
< {a} [9, 20] {b} >. The timed sequential patterns 
thus are sequential patterns that satisfy the min_sup 
condition and include the transition times between 
item sets.

3. Related works
One of the fundamental data mining tech-

niques is pattern mining, which identifies rules 
to discover interesting correlations in the dataset. 
There are several approaches of pattern mining, in-
cluding frequent itemset mining, high utility itemset 
mining, and sequential pattern mining. The survey 
paper of Kumar and Mohbey[13] introduced an over-
view of these unique approaches and discussed 
dealing with large-scale data from different aspects.

There are many techniques for mining the 
temporal patterns for frequent itemset[14–16], high 
utility[17–19], and sequential patterns[20–23]. Our work 
focuses on sequential pattern mining incorporating 
temporal information.

Sequential pattern mining was first introduced 
by Agrawal and Srikant[1], where three algorithms, 
AprioriSome, DynamicSome, and AprioriAll were 
proposed to discover sequential patterns. AprioriAll 
is the basis of many other efficient algorithms that 
have been proposed to improve its performance. 
Those algorithms[24] inspired to propose a technique 
to generate fewer candidates called GSP. Since all 
algorithms were based on the Apriori algorithm, 

they were classified as Apriori-based algorithms. 
Other algorithms, such as SPADE[11], adopted a ver-
tical ID-list database format that reduces the number 
of database scans. In contrast, pattern-growth-based 
algorithms, such as FreeSpan[9] and PrefixSpan[10], 
use database projection, making them more efficient 
than other Apriori-based algorithms, mainly when 
they deal with an extensive database. These algo-
rithms generate a smaller database for their next 
pass because the sequence database is projected 
into a set of smaller databases, and then sequential 
patterns in each of them are explored. Thus, they 
are more efficient. More literature reviews about the 
state-of-the-art sequential pattern mining algorithms 
can be found in the study of Fournier-Viger et al.[25].

Recently, with the existence of a large volume 
of data in many applications, several sequential 
pattern mining algorithms have been proposed to 
efficiently handle large databases consisting of vast 
amounts of sequences using different platforms. 
For example, Huynh et al.[26] used the multi-core 
processor architecture to implement pDBV-SPM 
to improve processing speed for mining sequential 
patterns. Ha-GSP[27] adopted the principles of GSP 
and implements them on the Hadoop platform for 
solving the limited computing capacity and inade-
quate performance with massive data of the tradi-
tional GSP. MR-PrefixSpan[28] used the MapReduce 
platform to implement the parallel version of Pre-
fixSpan to mine sequential patterns on a large da-
tabase. Also, Spark was utilized to implement two 
algorithms: GSP-S (GSP algorithm based on Spark) 
and PrefixSpan-S (PrefixSpan algorithm based on 
Spark)[29]. The proposed algorithms addressed the 
issues of high IO overhead and imbalanced load 
among the computing nodes. More literature re-
views about the state-of-the-art parallel sequence 
mining algorithms are in the survey of Gan et al.[30].

The input for this data mining task is sequence 
data, in which each point in the dataset represents 
an observation at a particular time. A time-series da-
taset is an example of sequence data, which is a col-
lection of integer values collected over a period of 
time. Trajectory is also a sequence of spatial points 
ordered by timestamps, which capture how an ob-
ject behaves through various temporal activities[31]. 
Another example of this type of data is biological 
sequences. They are nucleotide or amino acid se-
quences analyzed and studied for use in bioinfor-

Figure 5. All-time Occurrence of A in TS4.
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matics and contemporary biology. Each different 
type of data has its research issues; however, in this 
paper, we consider the general common research 
issues. 

Because finding frequent itemsets in the as-
sociation rule mining tasks discards the ordering 
of items, some techniques such as that in the study 
of Patnaik et al.[32] take advantage of sorting items 
based on the timestamp. They discovered different 
patterns that represent the different orderings of 
the items. For example, the general episode is a 
sequence with objects A, B, and C, where A must 
occur first, but B and C can occur in any order. 
However, the serial episode is a sequence with ob-
jects A, B, and C, where A must occur first, then B, 
and then C. However, the time between itemsets is 
still discarded, and they use the time as a gap con-
straint between itemsets in an episode. So, an expiry 
constraint TX is another input besides the sequence 
database and min_sup threshold. TX is an additional 
control with the support threshold, which specifies 
that the appearance of symbols in an episode occurs 
no further than TX time units apart from each other. 
Some techniques were proposed to specify some 
timing constraints, such as the time gaps between 
adjacent itemsets in sequential patterns. For exam-
ple, Chen et al.[33] modified the Apriori[1] and Pre-
fixSpan[10] algorithms to discover the time-interval 
sequential patterns that satisfy the interval duration 
boundaries. The I-PrefixSpan algorithm in the study 
of Chen et al.[33] has another input called a set of 
time-intervals TI, where each time-interval has a 
range. Hu et al.[34] extended that work and proposed 
two algorithms: MI-Apriori and MI-Prefix. The 
time intervals incorporated in the patterns reveal the 
time between all pairs of items in a pattern; these 
patterns are called multi-time-interval sequential 
patterns. A list of intervals (ti3, ti2, ti1) before item d 
in a pattern like < a, (ti1), b, (ti2, ti1), c, (ti3, ti2, ti1), d 
> means the intervals between items a, b, and c and 
item d are ti3, ti2 and ti1, respectively. In educational 
data mining, a ti-pattern model[6] is built based on 
the I-PrefixSpan algorithm to consider the time be-
tween students’ activities. So, again, the inputs of 
this model are a temporal sequence database and 
a set of time-intervals (Is, Imn, Ih, Id, Iw, Imt), which 
refer to seconds, minutes, hours, days, weeks, and 
months. For example, one-time intervals of Ih mean 
that the model will find the activities of students 

with a gap value between one hour and one day. 
After the model is applied to a group of students 
who enrolled in mathematics and computer science 
program in the Learning Management System, one 
of the time-interval patterns (ti-pattern) was found: 
< Lab {1, 3} Ih Lab {2, 3} Ih Lab {2, 3, 4} >, where Lab {1, 3} 
means either Lab1 or Lab3. The experts can observe 
that some students work sequentially on several 
exercise sheets from this pattern. Since the students 
spend this gab, it means that the students dig deep 
into their work. Also, AlZahrani and Mazarbhui-
ya[35] extracted the sequential patterns of diseases 
from a medical dataset within user-specified time 
intervals. CAI-PrefixSpan[12] is proposed to apply 
the confident condition from association rules be-
sides the support condition to filter the timed se-
quential patterns. The advantage of this is that the 
decision-makers can be confident about the possi-
bility of an event happening within a certain time 
interval.

The drawback of these methods is that their 
results will miss some frequent patterns that do not 
fulfil the time range constraint. To decide if a pat-
tern is common, two conditions must be satisfied: 
the support of the pattern must be greater than or 
equal to the min_sup, and the time ranges between 
the itemsets in the pattern must lie within the de-
fined time intervals. Therefore, if a pattern fulfils 
the first condition, which means it is common but 
does not fulfil the second condition, the algorithm 
will not report it.

Giannotti et al.[20] incorporated the temporal 
dimension in the sequential pattern by defining tem-
porally annotated sequences (TAS), and Giannotti 
et al.[36] proposed the Trajectory Pattern algorithm 
(T-pattern) to extract a set of TAS to produce tra-
jectory patterns with a fixed amount of time to 
travel between places. The algorithm only works 
for one-dimensional data. Also, the times between 
events in a trajectory pattern are strict, which does 
not consider the variety of the traveling time spent 
between locations by using different transportation 
modes, for example. Yang et al.[21] relaxes the travel 
time so that it is a realistic range for traveling time. 
The algorithm still cannot deal with multidimen-
sional data because it deals with only locations in 
trajectory data. Also, all the previous techniques do 
not consider all possible occurrences of a pattern in 
an individual sequence in a database, which means 
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the temporal relations are calculated based only on 
the first occurrence of a pattern. The issue of calcu-
lating the time intervals of the first occurrence of a 
pattern and ignoring other occurrences is addressed 
in the study of Karsoum et al.[23]. However, this ap-
proach is beneficial for only a few applications. For 
example, if a developer wants to evaluate the ease 
of use of a navigation system, the time of moving 
from A to B is tested when the users visit those lo-
cations for the first time. In contrast, in other appli-
cations, such as the transportation safety application 
described in Section 1 above, we must consider all 
possible occurrences to provide accurate time inter-
vals. 

There also exist works that consider other 
issues related to time-interval sequential patterns. 
FARPAMp (Fast Robust Pattern Mining with in-
formation about prior uncertainty)[22] can deal with 
timestamp uncertainties. This issue may occur if 
two events A and B happen during a time interval 
that can be overlap. This leads to the possibility of 
event A appearing before event B or vice versa. So, 
the approach is focused on using time points instead 
of intervals and fitting probabilistic models for the 
errors in the timestamps around these time points. 
It is an interesting research issue; however, this is 
outside the scope of our research. We are address-
ing the issues of finding all possible occurrences of 
timed sequential patterns and producing the most 
updated temporal relations between itemsets in the 
discovered patterns.

Besides sequential pattern mining, several oth-
er pattern mining problems have been proposed that 
can deal with temporal data. For example, Episode 
mining aims to discover frequent episodes in a sin-
gle sequence, rather than a set of sequences, within 
a time window set by the user[37,38]. Also, periodic 
patterns are finding patterns that appear frequently 
and periodically in a single sequence based on pe-
riod lengths. The period lengths of a pattern are the 
time elapsed between any two consecutive occur-
rences of the pattern[39,40]. In this paper, we concen-
trated on the sequential pattern and how we include 
the time-interval explicitly between the itemsets.

Our work fundamentally differs from the pre-
vious techniques in the following aspects. First, we 
focus on sequential pattern mining for any sequence 
data. Second, the inputs of our approach are the 
timed sequence database and minimum threshold; 

the output is a complete set of timed sequential 
patterns with a time interval between each item set. 
Third, the time interval is not a user-defined param-
eter but is derived from the database’s timestamps.

To the best of our knowledge, there is no ex-
isting algorithm that can find the complete set of 
timed sequential patterns, each of which includes 
the itemsets that occur in time order and the transi-
tion times between them.

4. The proposed algorithm: Min-
utes-AllOcc 

We propose an algorithm called Minits-AllOcc 
to discover the complete set of timed sequential pat-
terns, which are already frequent candidates, from 
a timed sequence database. We have the following 
subsections that describe the algorithm: Section 4.1 
introduces the core data structure of the algorithm; 
Section 4.2 gives a brief overview before the details 
of the algorithm are explained step by step in Sec-
tion 4.3; Section 4.4 analyzes the time complexity 
of the algorithm, and Section 4.5 proposes enhance-
ments to improve the efficiency of the algorithm.

4.1 Occurrence tree (O-tree) 
A data structure called the occurrence tree 

(O-tree) is proposed to represent all possible occur-
rences of a pattern in a particular timed sequence 
in TSDB. This tree is the essence of the algorithm 
because it helps generate timed sequence patterns 
without scanning the timed sequence database many 
times. In the tree, the timed sequence ID (TSID) 
is stored as the root. The rest of the nodes stores 
an event ID eID and its timestamp eID.t. A node 
can have multiple parent nodes and multiple child 
nodes. The information associated with the link 
between a parent node and a child node represents 
the difference Δ between the timestamps of the two 
nodes: parent and its child. The structure of the tree 
is shown in Figure 6. For example, when the TS3 
in Figure 4 is scanned, three occurrence trees for 
items, a, b, and d are created from the timed se-
quences < {a, 2}, < {a, b, 19}, {d, 25} >. Since the 
candidate sequence < {a} > appears twice in TS3, 
its O-tree in Figure 7 has two nodes connected to 
the root. The first one represents the first occurrence 
at the first event e1 with its timestamp, and the sec-
ond represents the second occurrence at the second 
event e2 with its timestamp. However, the sequence 
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< {a} {a} > appears once in TS3 that has two nodes 
too, but one is connected to the root and the other 
is connected to the other node via a link Δ. The link 
holds the difference between the parent and child 
timestamps 19 – 2 = 17. 

Since each sequence has an O-tree for each 
timed sequence in TSDB that contains it, the se-
quence will have a collection of O-trees that identi-
fy its occurrence in the whole TSDB. Thus, we give 
the following definition.

Definition 4. Given a sequence A and timed 
sequence database TSDB, A-Forest is a collection 
of all O-trees that identify all possible occurrences 
of sequence A in TSDB. Figure 8 demonstrates the 
forest of four sequences, < {a} >, < {b} >, < {a} [9, 
20] {b} >, and < {a, b}>. Each forest is surrounded 
by a dotted rectangle, which has a group of O-trees 
that indicates all time occurrences of a sequence in 
TSDB.

4.2 Overview 
Given a TSDB and a min_sup threshold, the 

main goal of Minits-AllOcc is to find the complete 
set of the timed sequential patterns in the TSDB 
such that each pattern’s support is greater than or 

equal to the min_sup threshold. To achieve this 
goal, Minits-AllOcc utilizes the forests to store all 
the required information from the TSDB and uses 
them to mine the patterns without having to scan 
the TSDB many times. The flowchart in Figure 9 
provides an idea of the algorithm’s general steps. 
More details about these steps are explained bellow. 

1) Scan TSDB to build an Ij-forest for each 
distinct item Ij.

2) Find frequent 1-items by counting the num-
ber of O-trees in each forest, compare it against 
the min_sup threshold, and remove the infrequent 
1-items.

3) Merge all O-trees with the same TSID (root 
node) from different forests to build a new forest for 
a candidate sequence. It should be noted that there 
are two relations between itemsets considered while 
merging the steps: event-relation and sequence-re-
lation, which are defined as follows: 

Definition 5. Given two itemsets X and Y, it is 
said that X and Y have an event-relation e-relation 
between them, denoted as < {X, Y} > if X and Y 
occur in the same event. For example, assume that 
we have the following timed sequential pattern = < 
{High temperature, High wind speed} [2, 3] {low 
temperature} >. It means that the measurement has 
both high temperature and high wind speed simul-
taneously, and after 2 to 3 hours, the measurement 
has a low temperature.

Definition 6. Given two itemsets X and Y, it 
is said that X and Y have a sequence-relation s-re-
lation between them, denoted as < {X} {Y} > if X 
and Y occur in two different events and the event of 
X occurs before the event Y. For example, suppose 
that we have the following timed sequential pattern 

Figure 6. Occurrence tree data structure.

Figure 7. An O-tree for the sequences < {a} > and < {a} {a} > 
in TS3.

Figure 8. Merging O-trees of < {a} > and < {b} > to generate 
< {a, b} >-forest and <{a} [9, 20] {b} >-forest.
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= < {High temperature} [4, 6] {High wind speed} 
[2, 3] {low temperature} >, it means that the meas-
urement has only a high temperature. Then after 
4 to 6 hours, the measurement has the high wind 
speed. Later, after 2 to 3 hours, the measurement 
has a low temperature.

4) Count the number of O-trees in each forest, 
compute the support, and compare it against the 
min_sup threshold to find the sequential patterns 
among candidate sequences. By performing step 4, 
Minits-AllOcc avoids scanning the whole TSDB for 
each candidate to calculate its support. 

5) Compute the temporal relation of the suffix 
(the new appending part of the pattern) if the can-
didate sequence is frequent. Then, update the tem-
poral relation of the prefix (the previous part of the 
pattern) and generate a timed sequential pattern.

6) Repeat steps 3, 4, and 5 until the algorithm 

cannot identify any new timed sequential pattern. 
The pseudo-code of Minits-All Occ is presented in 
Figure 10.

4.3 The details of the Minits-AllOcc 
algorithm

This section describes the five steps presented 
in the previous Section 4.2 in detail using the run-
ning example shown in Figure 4. The algorithm 
scans the TSDB tuple by tuple and builds the asso-
ciated forest for each item by adding the occurrence 
trees O-tree (lines 1–19). As shown in Figure 7, 
for example, after the algorithm finishes scanning 
the TSDB, the < {a} >-forest has three O-trees be-
cause the sequence < {a} > appears in three timed 
sequences: TS1, TS3, and TS4. Each O-tree cap-
tures all occurrences with their timestamps of an 
item and in a particular TS. Thus, in TS1, we have 
one node that shows the item a appears in the first 
event in TS1, and its timestamp is 5. To know the 
support of distinct items, the algorithm counts the 
number of O-trees in each forest and compares it 
against the min_sup threshold. If the support of a 
forest, which also represents of distinct item’s sup-
port, is less than the threshold, the forest is removed 
(lines 20–27). The two sequences < {e} > and < {f} 
> are not frequent because their forests have only 
one tree, which means they appear only in one TS; 
therefore, their support is 25%. Consequently, two 
sets are formatted: TSP and 1-TSP. The first set of 
TSP contains the complete, timed sequential pat-
terns. It will be updated periodically as a new timed 
sequential pattern is discovered. The second set is 
1-TSP, which contains only the timed sequential 
patterns of length 1, which will be used as a seed 
set to extend the patterns in further steps. Both sets 
TSP and 1-TSP have these values {< {a}, {b}, {d}, 
{g} >} (lines 24–25). The next step is generating 
candidates by merging the O-trees of all 1-timed se-
quential patterns by calling the function find-TSPs 
(line 30). The mechanism of merging trees is as fol-
lows: if the relationship is an s-relation, the append-
ed node must have an event ID ei that is greater than 
the event ID in the parent node (i.e., comparing the 
event IDs in the two nodes) (line 57). Then, the link 
holds the difference between the timestamps of the 
parent and their child (line 59). In contrast, if the re-
lationship is an e-relation, the appended node must 
have the same event ID ei as its parent (line 53). For 

Figure 9. Flowchart of Minits-AllOcc algorithm.
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Algorithm 1: Minits All-Occ
Input: Timed sequence database (S), minimum support threshold (min_sup)
Output: Timed Sequential Patterns set (TSP-set) that contains all Timed Sequential Patterns TSP
//Build a forest for distinct items (1-candidate sequence) and calculate the support

1 for each Timed sequence Tsi in S 
2 for each event ej in Tsi

3 skip first item I0 in ej  // it always represents the timestamp
4 for each Item Ik in ej

5 if ((Ik) does not appear before)  
6 create <{Ik}> forest  
7 build Ik Occurrence-tree inside the <{Ik}> forest  
8 NumOfOccurrenceTree+=1
9 else
10 if (Tsi exist in the forest)
11 Update the Occurrence-tree by adding the new node
12 else
13 build Ik Occurrence-tree inside the forest
14 NumOfOccurrenceTree+=1  
15 end if
16 end if
17 end for
18 end for
19 end for

//Remove infrequent 1-candidate sequences 
20 for each Ik-forest   
21 if (((NumOfOccurrenceTree/ NumOfTs) *100) < min_sup)
22 remove Ik-forest
23 else
24 add <{Ik}> into TSP-set
25 add <{Ik}> into 1-TSP  
26 end if
27 end for 

//Extend 1-Timed Sequential Patterns TSP 
28 for each pattern pm in 1-TSP 
29 for each pattern pn in 1-TSP
30 Find-TSP (pm, pn, 1-TSP) 
31 end for
32 end for

//Perform Find_TSP () function recursively to discover all k-TSP, where k >1
33 function Find-TSP (prefix, suffix, suffixList)
34 prefix = Merge_Trees (prefix. forest, suffix. forest)
35 if (prefix! = null)
36 for each suffix in suffixList
37 Find-TSP (prefix, suffix, suffixList)
38 end for
39 else
40 return
41 end if
42 end function 

//Merge trees to generate candidates, find TSP, and calculate temporal relation 
43 function Merge-Trees (prefix. forest, suffix. forest)
44 number_of_merging-trees = 0
45 new_candidate_sequence = < prefix ∪ Suffix >
46 create forest for new_candidate_Sequence
47 for each OccurrenceTree pti in the prefix. forest
48 for each OccurrenceTree stj in the suffix. forest  
49 if (pti. TSID == stj .TSID) 
50 for each leaf node Np in pti  
51 for each leaf node Ns in stj   
52 Add pti to new_candidate_sequence forest
53 if (stj . eventID == pti.eventID)
54 Append Ns to pti  
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55 ∆ = 0
56 number_of_merging-trees += 1
57 else if (stj . eventID > pti. eventID)
58 Append Ns to pti  
59 ∆ = stj. timeStamp - pti. timeStamp  
60 number_of_merging-trees += 1  
61 else
62 Remove Np from pti   

63 end if
64 end for
65 end for
66 end if
67 end for
68 end for
69 if (((number_of_merging_trees/ NumOfTS) *100) > = min_sup) 
70 for each itemset In in new_candidate_sequence except the last itemset
71 Go to the level n+1 in the new_candidate_sequence.forest 
72 Find min of ∆
73 Find max of ∆
74 Add [min, max] after In

75 end for
76 Add new_candidate_sequence int TSP
77 Prefix = new_candidate_sequence
78 return prefix
79 else
80 return null
81 end if
82 end function 

instance, the forests of the two candidates < {a} [ ] 
{b} >, which represents an s-relation, and < {a, b} >, 
which represents an e-relation, are shown in Figure 
8. The first < {a} [ ] {b} >-forest has two O-trees 
that are generated by combining the < {a} >-forest 
and the < {b} > =-forest. Even though both the for-
ests have an O-tree that has a root TS1, the O-tree 
of < {b} > does not contain a node that has an event 
ID greater than e1; thus, it is removed from the < {a} 
[ ] {b} >-forest. In contrast, the node e2 from the < 
{b} >-forest is attached to the node e1 from the < 
{a} >-forest and the Δ is calculated between those 
nodes, which is 19 − 2 = 17. However, the node that 
has e2 from the < {a} >-forest does not connect to 
any node. Since the algorithm is looking for all pos-
sible occurrences of sequence < {a} [ ] {b} >, the 
node e1 in TS4 is connected to the two nodes, which 
have the event IDs e2 and e4, from the < {b} > O-tree, 
and each link between the parent node e1 and child 
node e2 and child node e4 carries the difference be-
tween the timestamps of the two connected nodes. 
Because in this example, we consider a temporal 
relation as a range [min, max], the algorithm choos-
es the minimum and maximum values among all 
the O-trees in the < {a} [ ] {b} >-forest, which is [9, 

20]. The second < {a, b} >-forest has two O-trees 
that are generated by combining the < {a} >-for-
est and the < {b} >-forest. The difference between 
the s-relation case and the e-relation case when we 
merge the trees is the condition of appending nodes. 
Since this is an e-relation, all added nodes must 
have the same event ID ei as their parents. Also, 
the Δ is always 0 because the nodes have the same 
timestamps. Both patterns < {a} [9, 20] {b} > and 
< {a, b} > are considered to be timed sequential 
patterns and they are added to TSP set because their 
supports are 50% (lines 69–76). We calculated the 
support using the below formula:

These two timed sequential patterns are add-
ed into TSP = { < {a} >, < {b} >, < {d} >, < {g} 
>, < {a} [9, 20] {b} >, < {a, b} >}. The algorithm 
repeats the same steps, by calling function find-
TSPs recursively in line 37, to extend the pattern 
by merging O-trees, generating candidates, finding 
TSPs, and computing temporal relations until no 
more TSPs can be found.

Figure 10. Pseudo-code of the Minits-AllOcc algorithm.
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As shown in Figure 11, pattern < {a} [9, 17] 
{b} [1, 6] {d} > result from merging between < {a} 
[9, 20] {b} >-forest and < {d} >-forest. The forest 
consists of only the O-trees that representing the 
candidate, then the support is calculated. Since the 
support is 50%, the time between the prefix < {a} [ 
] {b} > and suffix < {d} > is calculated as defined 
before (the range [min, max]). The TSP set is up-
dated to be {< {a} >, < {b} >, < {d} >, < {g} >, < 
{a} [9, 20] {b} >, < {a, b} >, <{a} [9, 17] {b} [1, 6] 
{d} >}. As it is noted, the temporal relation between 
item sets {a} and {b} in the two patterns < {a} [9, 
20] {b} > and < {a} [9, 17] {b} [ ]{d} > changed.

Minits-AllOcc continues repeating the steps 
until the complete set of TSPs is discovered. The 
reader can verify that the TSPs in this example is = 
{< {a} >, < {b} >, < {d} >, < {g} >, < {a} [9, 20] {b} 
>, < {a} [6, 23] {d} >, < {b} [1, 7] {d} >, < {a, b} [6, 
7] {d} >, < {a} [9, 17] {b} [1, 6] {d } >}.

Figure 11. Merging < {a} [9, 20] {b} >-forest and < {d} > to 
generate < {a} [9, 17] {b} [1, 6] {d} >-forest.

4.4 Analysis of Minits-AllOcc 
In this subsection, we discuss the worst-case 

time complexity of the Minits-AllOcc algorithm. 
We have:

• S(m), where |S| = the number of timed se-
quences TS in TSDB.

• E(r), where |E| = the maximum number of 
events in a timed sequence.

• I(c), where |I| = the maximum number of 
items in an event. 

• G(s), where |G| = the number of singleton 
items in TSDB.

• N, where |N| = the number of all possible 
candidates.

We start with the first part of the algorithm that 
needs to check each Timed Sequence S in TSDB, 
each event E inside that S, and each item inside 
that E to build the forest (lines 1–19), which cost 
O(S*E*I). If it is the first time to read an item, that 
means its forest does not exist. So, we need to build 
it from scratch and start counting the number of 
O-trees inside that forest. Otherwise, we just need 
to update the forest by adding the new O-tree into 
an existing forest and update the number of O-tress 
inside that forest, which cost O(log N). Therefore, 
the total amount of work performed by the end of 
(line 19) is O(S*E*I*log N).

To keep only frequent candidate sequences and 
remove infrequent ones, the algorithm calculates 
the support for each forest (lines 20–27) and adds 
the frequent candidate sequences into the TSP-set. 
So, the total amount of work performed by the end 
of (line 27) is O(G+log I) because the number of 
forests is equal to the number of singleton (distinct) 
items in TSDB and removing O-trees for any infre-
quent sequence is log I .

After that, the algorithm extends the patterns 
to generate more candidates by calling the function 
Find_TSP( ) (line 30). The function tries to combine 
each item in the 1-TSP set to generate 2-length can-
didate sequences, for example at the first call. The 
prefix is the previous (k − 1)-timed sequential pat-
terns, and the suffix is an item from the 1-TSP set. 
The function will append the suffix to the prefix and 
check the support of the new candidate sequence to 
decide if it can be considered as a timed sequential 
pattern or not. First, we need to find the time com-
plexity of internal functions; then, we will com-
pute the time complexity of the whole Find_TSP( 
) function. The Find_TSP( ) function calls another 
function called Merge_Trees( ) (line 43), sends the 
forest of the prefix (previous timed sequential pat-
tern), and the 1-TSP to build the forest for each new 
candidate sequence considering the different types 
of relationships, either it is an s-relation or e-rela-
tion. In line 47, the function picks an occurrence 
tree pt from the forest of the prefix and compares 
it with all occurrence trees st for each 1-length 
timed sequential pattern (line 48), which cost S*G. 
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If two occurrence trees with the same root TSID 
have been found, the function checks if the event 
ID of each leaf node from both trees is the same 
ID or the event ID in the suffix node is greater than 
the ID in the prefix node (lines 53 and 57), which 
needs to check all events in both tress E2. Also, this 
function updates the content of the forest by adding 
appropriate O-trees and calculating the differences 
∆ between nodes if the relation type is s-relation. 
After that, in line 69, each candidate’s support is 
calculated by counting the number of trees in its 
forest. If the candidate is frequent, then after each 
itemset, the temporal relation is inserted, which cost 
E. The total amount of work done by Merge_Trees( 
) is O(log N*S*G*E3). 

Recursively, for each frequent 1-item in the 
suffix list, in which the time complexity is O(G), 
the function Find_TSP( ) is called (line 37) until 
no more candidates can be generated. In the worst 
case, the function is re-called until the length of a 
candidate is equal to the length of the longest timed 
sequence in TSDB, so it is O(E). Thus, the total 
amount of work done by Find_TSP( ), ended by 
line 42, including the work done by nested function 
Merge_Trees( ), is O(log N*S*G2*E3). Because we 
are considering all possible combinations between 
any (k − 1) sequential patterns, where k ≥ 2, and 
1-sequential patterns, the algorithm returns to line 
30 and tries another combination between two items 
in the 1-TSP set. Thus, besides the time complexity 
of calling Find_TSP( ), the algorithm combines all 
items, so O(G). The total amount of work done by 
the end of line 32 is O(log N*S*G3*E3).

The work done by this algorithm for each sub-
section is O(S*E*I*log N) + O(G+log I) + O(log 
N*S*G3*E3). We conclude that the overall worst-
case time complexity of this algorithm is O(log 
N*S*G3*E3).

4.5 The proposed enhancement 
In this section, we describe some effective 

mechanisms to improve the efficiency of Minits-Al-
lOcc.

4.5.1 Pruning the forests 
This technique defines a sequence’s forest af-

ter merging the O-trees. So, when those O-trees are 
used in the next step for generating candidates, they 
carry only the necessary information and, therefore, 

save space by removing some nodes and save time 
by avoiding traversing needless branches in trees. 
Any branch in an O-tree that does not have a new 
appended node will be removed after the merging 
step is executed. Figure 12 represents the idea by 
marking the deleted branch of O-trees with a cross 
symbol. For example, the O-tree that has a TS3 root 
that results from merging TS3 O-tree from < {a} 
> and < {b} >-forests. Since there is no appended 
node to the right branch of < {a} >-forest, this node 
is removed from < {a} [9, 20] {b} >-forest. Those 
branches do not exist anymore in the O-trees.

Figure 12. Pruning the original < {a} [9,20] {b} >-forest and < 
{a, b} >-forest in Figure 11.

4.5.2 Using frequency matrix
With this technique, we avoid generating un-

necessary candidates, thereby reducing the number 
of forests. For example, the algorithm uses the 
1-sequence-forests to generate 2-sequence candi-
dates, then keeps frequent candidates and removes 
infrequent ones. Since all required information is 
already available in the forest, we build a frequency 
matrix for each sequence to indicate the frequent 
candidates. For example, the frequency matrix of < 
{a} > pattern is shown in Figure 13. The two differ-
ent relations, events, and sequences (the rows) and 
all 1-timed sequential patterns that can be combined 
with {a} (the columns) are considered. The cells 
under < {b} > column represent the frequency of 
the two relations between < {a} > and < {b} >. This 
frequency is calculated from the forests of those 
patterns, as shown in Figure 7. For an s-relation, 
there are two O-trees (TS3 and TS4) in which the 
< {a} > and < {b} > occur at different timestamps 
within the same timed sequence. For e-relation, 
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there are two O-trees (TS1 and TS3) in which the 
< {a} > and < {b} > occur at the same timestamps 
within the same timed sequence. From the matrix, 
we can infer that < {g} > is not frequent either with 
an s-relation or e-relation; thus, we do not need to 
build the forest of sequence < {a} [ ] {g} > or < {a, 
g} >. 

Figure 13. Frequency matrix for < {a} >.

4.5.3 Using multi-core CPUs
Another enhancement is using multi-core 

CPUs for implementing Minits-AllOcc, which we 
call MMinits-AllOcc. The independent jobs that 
can be done at the same time are finding all possible 
candidates, merging O-trees for those candidates, 
and deciding if they are frequent or not. A queue 
holds all jobs. As soon as one thread becomes idle, 
the next job in the queue is assigned to it and this 
reduces the execution time of the algorithm. For 
instance, in the beginning, the algorithm scans the 
TSDB to build the forest for each item and finds 
that < {a} >, and < {b} > are frequent. In the serial 
version, the algorithm starts with the pattern < {a} 
> and keeps extending it until no more patterns can 
be found that have prefix < {a} >. Then, it starts 
with the pattern < {b} > and does the same thing. 
With the multi-core version, the algorithm inserts 
patterns < {a} > and < {b} > into the queue, as 
shown in Figure 14, and works on generating their 
candidates at the same time. Then, the candidates, < 
{a} [ ] {a} >, < {a} [ ] {b} >, etc., will be inserted 
into the queue to let any idle threads work on cal-
culating their supports and report any of them as a 
time-sequential pattern. If one of these threads is 
done, then the pattern is extended by finding other 
candidates, < {a} [ ] {a} [ ] {a} >, < {a} [ ] {b} [ 
] {b}, etc., and then inserting them into the queue. 
Those candidates wait to be assigned to an idle 
thread again. This process is kept going until no 
more jobs remain in the queue. 

Figure 14. Multi-core implementation. 

5. Performance analysis 
In this section, we describe the environment 

of experiments and report the evaluation results 
of testing the algorithms that are implemented in 
single-core CPUs (Minits-AllOcc) and multi-core 
CPUs (MMinits-AllOcc). Different parameters are 
considered when these experiments are conducted 
on real and synthetic datasets. After running many 
experiments, we have found that MMinits-AllOcc 
on a multi-core performed Minits-AllOcc on a sin-
gle-core.

5.1 Experimental setup
All experiments were performed on a comput-

er with a 2.10 GHz Intel Xeon(R) processor with 
64 gigabytes of RAM, running Ubuntu 18.04.1 LTS 
CPU with 12 cores. The Minits-AllOcc and MMi-
nits-AllOcc algorithms are implemented in Java 1.8. 

5.2 Datasets and experimental param-
eters 

We use two real-life, T-Drive[41,42] and Okla-
homa Mesonet[2,3], and synthetic datasets. The first 
real dataset T-Drive is a collection of trajectories 
gathered by Microsoft Research Asia after tracking 
the movements of 10,357 taxis in Beijing, China for 
one day. The dataset contains the following attrib-
utes: user ID, timestamp, latitude, and longitude, 
as shown in Figure 15. For example, Taxi 1 has a 
sequence that contains many events to represent its 
movements. An event (2008-10-23 02:53:04, 39.93, 
116.31) refers to timestamp, latitude, and longitude, 
respectively. Since the sequential pattern mining 
algorithm cannot deal with continuous data, we 
discretized the data first by using a density-based 
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clustering algorithm called Density-Based Spatial 
Clustering of Applications with Noise (DBSCAN)
[43], and the results of the discretized sequences are 
shown in Figure 16. Taxi 1 has a sequence that con-
tains events in terms of clusters ID. For instance, 
event (2008-10-23 02:53:04, C1) refers to times-
tamp, and cluster Id, respectively. DBSCAN gen-
erates several clusters that contain the close points 
and replaces the latitude and longitude of a point 
with a cluster ID (Ci). For more details, we refer the 
readers to the work by Karsoum et al.[42]. The second 
real data set from Oklahoma Mesonet is a world-
class network of environmental interventions by a 
group of scientists from the University of Oklaho-
ma (UO) and Oklahoma State University (OSU) 
for weather monitoring stations. This network was 
established on January 1, 1994 and consists of 120 
stations covering each of Oklahoma’s 77 counties. 
The measurements are packaged into “observations” 
every 5 minutes, then the observations are transmit-
ted to a central facility every 5 minutes, 24 hours 
per day year-round.

Figure 15. Sequential database for the T-Drive dataset before 
discretization by DBSCAN.

Figure 16. Sequential database for the T-Drive dataset after 
discretization by DBSCAN.

The dataset contains the following attributes: 
county ID, timestamp, air temperature, rainfall, 
wind, and moisture-humidity, as shown in Figure 
17. We discretized the data first by using well-
known scales in Meteorology.

Figure 17. Sequential database for the Oklahoma Mesonet 
dataset before discretization.

For air temperature, the index heat[43] is used to 
have the nine categories based on the temperature 
degree intervals in Fahrenheit: T1 (extremely hot) 

[>54], T2 (very hot) [53, 46], T3 (hot) [46, 39], T4 
(very warm) [38, 32], T5 (warm) [31, 26], T6 (cold) 
[25, 0], T7 (very cold) [0, −10], T8 (bitter cold) [−11, 
−29], and 9 (extreme cold) [>−30]. The recurrence 
interval[44] is used to categorize the rainfall based on 
the probability that the given event will be matched 
or exceeded in any given year. For example, there is 
a 1 in 50% chance that 6.60 inches of rain will fall 
in X County in a 24-hour period during any given 
year. The classes are: R1 (1 year) [1.16–1.36], R2 
(2 years) [1.37–1.69], R3 (5 years) [1.70–1.98], R4 
(10 years) [1.99–2.36], R5 (25 years) [2.37–2.64], 
R6 (50 years) [2.65–2.90], and R7 (100 years) 
[2.90–3.15]. For wind, the Beaufort scale[47] de-
fines 12 classes based on the speed of wind as: W0 
(calm) [<0.3], W1 (light air [0.3–1.5], W2 (light 
breeze) [1.6–3.3], W3 (gentle breeze) [3.4–5.5], 
W4 (moderate breeze) [5.5–7.9], W5 (fresh breeze) 
[8.0–10.7], W6 (strong breeze) [10.8–13.8], W7 
(near gale) [13.9–17.1], W8 (gale) [17.2–20.7], W9 
(strong gale) [20.8–24.4], W10 (storm) [28.4], W11 
(violent storm) [28.5–32.6], and W12 (hurricane) 
[≥32.7]. The last attribute, humidity (moisture), 
has 3 categories based on the “dew point” tem-
perature[48]: H1 (uncomfortably dry) [0–20], H2 
(comfortable) [20–60], and H3 (uncomfortably wet) 
[60–100]. The results of the discretized sequences 
are shown in Figure 18.

Figure 18. Sequential database for the Oklahoma Mesonet 
dataset after discretization.

The synthetic dataset was generated by using 
a tool provided by the SPMF Library[49]. Also, we 
set several parameters to conduct the experiments 
on the dataset. There are two types of parameters: 
static and dynamic parameters. The values of the 
static parameters are not changed in experiments. 
In contrast, the values of the dynamic parameters 
are changed from one experiment to another. In this 
experiment, we have four dynamic parameters. The 
first one is the minimum support threshold (min_
sup). It is a user-defined threshold that applies to 
finding all timed sequential patterns in a timed se-
quence database TSDB. The second parameter is 
the number of timed sequences TS in TSDB (#seq), 
which refers to the number of tuples in the database.
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The third parameter is the length of TS in 
TSDB, which can also be represented as the number 
of events per TS (#events). The last parameter is the 
number of items in each event (#items). It should 
be noted that the timestamp is a fixed attribute in 
all events. When it is said that the number of items 
per event is 3, for instance, it signifies three items 
plus the timestamp. We study the effects of all four 
parameters shown in Table 1 on the synthetic data-
set. However, for the T-Drive dataset, the only valid 
dynamic parameter that is shown in Table 1 is the 
min-sup. Thus, all other three parameters are static. 
Now, we explain the range of the parameters and 
the default values of this analysis, as summarized 
in Table 1. When the experiment was conducted, 
we chose various values of one parameter within 
its range and assigned the default value to the other 
parameters. The min-sup parameter has a range of 
20% to 80% with the default value of 50%, which is 
the median of the interval. The range of the number 
of timed sequences parameters is from 1 to 100,000, 
and its median value of 50,000, is the default value. 
For the number of events per sequence, the default 
value is 25 because the range is from 5 to 50. The 
number of items in the last parameter range has 
been set at 1 to 10 items per event; thus, the default 
value is 5, which is the median.

Table 1. Parameter list for the synthetic dataset

Parameter name Range of values Default value
Min_sup 20%–80% 50%
#sequences 1–100,000 50,000
#events per 
sequence

1–50 25

#items per event 1–10 5

5.3 Competing algorithms 
As mentioned in Section 3, no existing algo-

rithm can discover the exact format of the timed 
sequential patterns and consider All-time Occur-
rences. Hence, we cannot compare Minits-AllOcc 
against any technique, and we will compare it 
against MMinits-AllOcc. 

5.4 Evaluation metrics
The evaluation metrics include two measure-

ments: (1) execution time (ET) of algorithms (Mi-
nits-AllOcc and MMintis-AllOcc) and (2) number 
of patterns (#patterns) that are generated by these 
algorithms.

5.5 Experimental results
In this section, we present the performance of 

the two algorithms, Minits-AllOcc and MMinits-Al-
lOcc, in terms of execution time (ET) and the num-
ber of discovered patterns (#patterns) for the real 
and synthetic datasets. 

5.5.1 Accuracy 
To validate that Minits-AllOcc always gives 

the same sequential patterns in terms of the num-
bers and contents, excluding the temporal relation, 
PrefixSpan was used[8]. PrefixSpan was chosen 
because it is one of the well-known algorithms for 
discovering sequential patterns. It has been proven 
to produce complete and correct sequential patterns. 
First, all temporal relations were removed from 
the patterns that were generated by Minits-AllOcc. 
Next, these patterns were compared to the patterns 
that were generated by PrefixSpan to make sure that 
each sequential pattern generated by PrefixSpan has 
a matching one generated by Minits-AllOcc and 
MMinits-AllOcc. For example, a sequential pattern 
X = < {a} {b} {a, b} > was generated by Prefix-
Span, and a timed sequential pattern Y = < {a} [2, 5] 
{b} [3, 7] {a, b} > was generated by Minits-AllOcc 
and MMinits-AllOcc. We took away the temporal 
relations from Y and compared them with pattern 
X. In case the order of at least one item set was dif-
ferent, the pattern X was not matching the pattern 
Y. For instance, Z = < {b} [2, 5] {a} [3, 7] {b, a} 
> was not matching pattern X because the item < 
{b} > occurred before < {a} >. However, within the 
last itemset {a, b} the order did not matter because 
all the items appeared at the same timestamp. At 
the end of this experiment, we found that the two 
algorithms—Minits-AllOcc and MMinits-AllOcc—
discovered the exact patterns that were produced by 
PrefixSpan. All algorithms produced the complete 
and correct set of sequential patterns. 

5.5.2 Execution time 
The execution time was recorded from the 

moment that a dataset had been read to the moment 
that an algorithm produced the timed sequential 
patterns. Table 2 shows the average performance of 
the two algorithms: Minits-AllOcc and MMinits-Al-
lOcc. The execution time (ET) of MMinits-AllOcc 
decreases by 50% to 60% for T-Drive, Oklahoma 
Mesonet, and synthetic datasets, respectively, com-
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pared to the execution time of Minits-AllOcc. 

Table 2. Average execution time (ET) and #patterns 

Datasets Minits-AllOcc MMintis-AllOcc
ET #patt ET #patt

T-Drive 12.05 (hour) 126 5.97 (hour) 126
Oklahoma 
Mesonet

20.319 (min) 3,756 8.604 (min) 3,756

Synthetic data 27.319 (min) 3,780 10.825 (min) 3,780

5.5.3 Impact of minimum support 
In this set of experiments, we compared execu-

tion time (ET) and the number of patterns (#patterns) 
for different values of minimum support threshold 
(min_sup) for datasets T-Drive, Oklahoma Me-
sonet, and synthetic. From Figure 19(a), Figure 
20(a) and Figure 21(a), we can see that when the 
minimum support increased, the execution time of 
all algorithms decreased. This is because the al-
gorithms generate fewer timed-sequential patterns 
when the min-sup is high, because of fewer candi-
date sequences that satisfy the min-sup condition. 
With a large amount of data and discovered timed 
sequential patterns, MMinits-AllOcc outperformed 
Minits-AllOcc, as shown in Figure 19(a), Figure 
20(a), and Figure 21(a). Therefore, multi-core 

CPUs ought to be used when the size of the timed 
sequence database is large.

Figure 19. Parameter study for T-Drive dataset.

Figure 20. Parameter study for Oklahoma dataset.

The multi-core CPU version was also efficient 
when we had low min-sup. As shown in Figures 
20(a), and 21(a), the ETs of both Minits-AllOcc 
and MMinits-AllOcc were very close when the 

Figure 21. Parameter study (Min_sup and #Sequences) for synthetic dataset.
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min-sup was greater than 60%. This is because 
the number of candidate sequences, and thus the 
number of timed sequential patterns, was getting 
smaller, so most of the threads were idle. Therefore, 
MMinits-AllOcc did not need to use all the avail-
able threads and behaved almost like a single-core 
version Minits-AllOcc. Another observation was 
made based on the number of timed sequential pat-
terns that were generated by these algorithms. All 
algorithms discovered the same number of patterns; 
thus, their curves were overlapping in Figures 
19(b), 20(b), 21(b), 21(d), 22(b), and 22(d). When 
the min-sup increased, the number of timed sequen-
tial patterns decreased because the patterns that 
satisfied the min-sup condition became fewer. By 
increasing the threshold min_sup, the percentage 
of timed sequences in the timed sequence database 
that was supposed to contain a candidate sequence 
decreased, as shown in Figure 19(b), Figure 20(b), 
and Figure 21(b).

5.5.4 Impact of the number of se-
quences in the database

In this set of experiments, we compared the 
execution time (ET) and the number of discovered 
timed sequential patterns (#patterns) according to 

the number of the timed sequences (#seq). From 
Figure 21(c), we can see that when the number of 
timed sequences increased, the execution times of 
all algorithms increased. This is because the algo-
rithms needed more time to check the extra timed 
sequences that were added to the timed sequence 
database to decide if they contained a timed sequen-
tial pattern or not. We observed that the number of 
timed sequential patterns, which were generated 
by these algorithms, increased when the number 
of timed sequences increased, as shown in Figure 
21(d). The number of timed sequential patterns that 
were discovered by the algorithms also increased 
because the possibility of finding more patterns in 
the new timed sequences that satisfy the min-sup 
(50% as the default value) condition also increased. 
With an increased number of timed sequences in the 
database, the algorithms needed to check if some 
new patterns could occur and did not exist in the 
old timed sequences. Next, the algorithm checked 
their support against the threshold (min-sup). It 
is possible that the support of some old patterns 
in the database before new sequences was added 
did not satisfy the min-sup condition because they 
were not supported by enough timed sequences; but 
with a new timed sequence database, these patterns 

Figure 22. Parameter study (#events and #items) for synthetic dataset.
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became timed-sequential patterns. Thus, the num-
ber of newly discovered timed sequential patterns 
would increase. For example, if a database had 1,000 
sequences in the synthetic dataset, the number of 
timed sequential patterns was 3,720, while the number 
of timed sequential patterns was 3,780 when the timed 
sequence database had 10,000 timed sequences.

5.5.5 Impact of the number of events 
per sequence

Figure 22 show the impact of the number 
of events (#events) per timed sequence on the ex-
ecution time (ET) and the number of discovered 
sequential patterns (#patterns). There was a strong 
relationship between the length of a timed sequence 
and the number of discovered patterns. Increasing 
the length of timed sequences (#events) drove the 
discovery of more patterns because the algorithm 
could extend a pattern up to the length of the timed 
sequence. If we have a timed sequence that contains 
n events, we can discover a set of timed sequen-
tial patterns such that their length varies from 1 to 
n. Subsequently, the required time of discovering 
those patterns will increase as shown in Figure 
22(a). 

5.5.6 Impact of the number of items 
per event

In the last experiment, we increased the num-
ber of unique items in each event. That means many 
new items appear in the timed sequence database 
TSDB which leads to detecting new timed sequen-
tial patterns. When the number of items increases, 
the number of possible combinations between those 
items to generate candidates also increases. Thus, 
the number of patterns increased, as shown in Fig-
ure 22(d). Growing the length of events led to the 
growth of the number of candidates, which means 
the algorithms needed more time, as shown in Fig-
ure 22(c), to check those events, generate candi-
dates, and determine if they were timed sequential 
patterns and reported the temporal relations.

6. Conclusion and future work 
In this paper, we presented an algorithm 

called Minits-AllOcc, to discover timed sequential 
patterns TSP, which are sequential patterns that 
include the transition times between all timesets. A 
temporal relation in the timed sequential patterns 

is calculated after considering all possible pattern 
occurrences across the timed sequence database 
TSDB. We implemented two versions of Minits-Al-
lOcc: 1) Minits-AllOcc using single-core CPUs, 
and 2) MMinits-AllOcc on multi-core CPUs. We 
conducted experiments to compare the accuracy and 
execution time of the algorithms. The experiments 
showed that the algorithms produced accurate 
patterns. Also, MMinits-AllOcc outperformed Mi-
nits-AllOcc when the dataset was enormous in size, 
in the length of timed sequences, or in the number 
of items per event. For future work, we plan to im-
prove Minits-AllOcc to account for both long timed 
sequences and Dynamic Timed Sequence Database 
(DTSDB). The algorithm will be able to mine TSP 
without re-executing everything from scratch.
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