
1

Original Research Article

Mining timed sequential patterns: The Minits-AllOcc technique
Somayah Karsoum1*, Clark Barrus1, Le Gruenwald1, Eleazar Leal2

1 University of Oklahoma, Norman, OK 73019, USA. E-mail: somayah.karsoum@ou.edu
2 University of Minnesota Duluth, Duluth, MN 55812, USA.

ABSTRACT
Sequential pattern mining is one of the data mining tasks used to find the subsequences in a sequence dataset that

appear together in order based on time. Sequence data can be collected from devices, such as sensors, GPS, or satel-
lites, and ordered based on timestamps, which are the times when they are generated/collected. Mining patterns in such
data can be used to support many applications, including transportation recommendation systems, transportation safety,
weather forecasting, and disease symptom analysis. Numerous techniques have been proposed to address the problem
of how to mine subsequences in a sequence dataset; however, current traditional algorithms ignore the temporal infor-
mation between the itemset in a sequential pattern. This information is essential in many situations. Though knowing
that measurement Y occurs after measurement X is valuable, it is more valuable to know the estimated time before the
appearance of measurement Y, for example, to schedule maintenance at the right time to prevent railway damage. Con-
sidering temporal relationship information for sequential patterns raises new issues to be solved, such as designing a
new data structure to save this information and traversing this structure efficiently to discover patterns without re-scan-
ning the database. In this paper, we propose an algorithm called Minits-AllOcc (MINIng Timed Sequential Pattern for
All-time Occurrences) to find sequential patterns and the transition time between itemsets based on all occurrences of
a pattern in the database. We also propose a parallel multi-core CPU version of this algorithm, called MMinits-AllOcc
(Multi-core for MINIng Timed Sequential Pattern for All-time Occurrences), to deal with Big Data. Extensive experi-
ments on real and synthetic datasets show the advantages of this approach over the brute-force method. Also, the mul-
ti-core CPU version of the algorithm is shown to outperform the single-core version on Big Data by 2.5X.
Keywords: Data Mining; Sequential Pattern Mining; Timed Sequential Patterns; Singe-core and Multi-core Processor

Journal of Autonomous Intelligence (2023) Volume 6 Issue 1
doi:10.32629/jai.v6i1.593

ARTICLE INFO

Received: 12 April, 2023
Accepted: 1 June, 2023
Available online:19 June, 2023

COPYRIGHT

Copyright © 2023 by author(s).
Journal of Autonomous Intelligence is published
by Frontier Scientific Publishing. This work is
licensed under the Creative Commons Attribu-
tion-NonCommercial 4.0 International License
(CC BY-NC 4.0).
https://creativecommons.org/licenses/by-nc/4.0/

1. Introduction
Sequential pattern mining (SPM)[1] analyzes a sequence

database, which contains sequences of events that are ordered
based on the times when the events occurred or collected, called
timestamps, to discover sequential patterns. These sequential pat-
terns are those time-ordered events that frequently occur in the se-
quence database. SPM has been used in many real-life application
areas such as transportation arrival time analysis, weather predic-
tion[2,3], illness symptom pattern prediction[4], network intrusion
detection[5], educational data mining[6], and customer shopping
behaviors[1]. Knowing frequent sequential patterns, we can answer
a question like “In which order does the measurements(s) for
train aerodynamic phenomena frequently occur?” For example,
high temperature and high wind speed could cause a train crash
by warping tracks or overturning of the lightly loaded train[7,8].
Similarly, through transportation arrival time analysis, with se-
quential patterns discovered from a sequence database recording
the movement of taxis, we may expect that the travel range of
taxis that move from Broadway Street to Times Square in NYC

2

is 20 to 40 minutes. Also, in Oklahoma during the
hurricane season, we can estimate the transition
time range when a tornado hits Oklahoma City,
Moore, and Norman in order. However, the existing
works in SPM[9–11], tried to improve the efficiency
of techniques to discover the frequent sequential
patterns but discard the time dimension completely.
The timestamps are used to order events within a
sequential pattern, but the transition time between
these events is not shown in the discovered sequen-
tial patterns. In many applications, it is important to
know the time interval [min, max] events in a fre-
quent sequential pattern discovered, which we call a
timed sequential pattern. For example, with sequen-
tial patterns that contain temporal information about
the transition time between signs, we can answer
a question like “When will the next measurements
of train aerodynamics occur?” Similarly, we may
want to have a frequent timed sequential pattern
that shows that after a tornado hits Oklahoma City,
within 10 to 15 minutes later, the tornado will hit
Moore, and then within 3 to 5 minutes later, the tor-
nado will hit Norman. Knowing the temporal infor-
mation (the time intervals of event occurrences) in
frequent sequential patterns will help in preparing a
safety plan to reduce damages and loss.

Figure 1. Sensors’ historic weather information and discretize
data.

As shown in Figure 1, we have the historic
weather information (temperature and wind speed)
of four sensors, each of which denoted as (S) with
an ID as shown in the first column. The time is re-
corded with each measurement taken by each sensor
as shown in the second column. Since sequential
pattern mining algorithms do not deal with continu-
ous data, we need to apply a partitioning technique
to segment the data into classes that have similar
features or fall within a same group. Therefore, we
add an additional column next to each column that
contains the equivalent class ID. For instance, the
wind speed (W) has five levels[12] and each level
refers to the damage that causes: 1) minimal (74 ≤

W < 95), 2) moderate (96 ≤ W ≤ 110), 3) extensive
(111 ≤ W ≤ 129), 4) extreme (130 ≤ W ≤ 156), and
5) catastrophic (W ≥ 157). Thus, the first row in the
last column has the wind speed class 3 because the
value 112 belongs to the class 3 (minimal).

A timed event sequence that we want to dis-
cover is a sequence of frequently occurring meas-
urements among sensors (or events) and typical
transition times between these measurements (in
terms of hours for the example case). The following
is the format of a pattern that would be discovered
in this study:

TSP = < {T1, W3} [30, 36] {W5} >
This TSP has two itemsets: itemset 1 consist-

ing of two items T1 and W3, and itemset 2 consist-
ing of item W5. Itemset 2 occurs within 30 to 36
hours after itemset 1. In our notations, all items en-
closed within braces {} occur at the same time and
constitute an itemset, and the square brackets [min,
max] indicate the time duration to move from one
itemset to the next. In this algorithm, the time du-
ration represents the temporal relation [min, max].
Thus, the given example TSP shows that frequently
when measurement has a temperature falling in the
class 1 (T1) and a wind’s speed falling in the class 3
(W3), then within 30 to 36 hours, the measurement
will have a wind’s speed in the class 5 (W5). If we
apply traditional sequential pattern mining, this se-
quential pattern will only be < {T1, W3}, {W5} >,
which does not include the transition time [30, 36].

Incorporating the temporal information in a
sequential pattern raises additional challenges for
mining compared to regular sequential pattern min-
ing. First, while both sequential pattern mining and
timed sequential pattern mining need to find out
whether a pattern occurs in some tuples of a data-
base, timed sequential pattern mining also needs to
find out how many times the pattern occurs in each
tuple to compute the temporal relationship between
the itemsets in the pattern. Suppose we have a tuple
that has all the measurements within 6 months and
the following measurements occurring many times:
low temperature followed by high wind speed af-
ter some time. Since the timed sequential pattern
mining problem wants to know when the high wind
speed occurs, it is not sufficient to find only the first
position of this measurement and report the tem-
poral relation. For example, from Figure 2, we can
observe that the second sensor, S2, has the follow-

3

ing measurements based on the timestamp order:
the temperature from class 1 and the wind speed
from class 1 {T1, W1}, followed by the temperature
from class 1 and the wind speed from class 3 {T1,
W3}, followed by the temperature from class 1 and
the wind speed from class 1 {T1, W1}. The tuple
for this sensor is: S2 = < {T1, W1}, {T1, W3}, {T1,
W1} >. To find the temporal relation between the
two measurements {T1} and {W1} (for the pattern
denoted as < {T1} [] {W1} >), we need to do the
following as shown in Figure 3:

1) Find the timestamp difference t1 between
the first occurrence of T1 and the first oc-
currence of W1 (solid arrows).

2) Find the timestamp difference t2 between
the second occurrence of T1 and the first
occurrence of W1 (dotted arrows).

3) Find the timestamp difference t3 between
the first occurrence of T1 and the second
occurrence of W1 (dashed arrows).

4) Find the minimum timestamp difference
and the maximum timestamp difference
among t1, t2, and t3.

5) Produce the temporal relation as [min,
max].

So, to find all possible occurrences of a pat-
tern, the naïve method is to scan each tuple until the
end in the database. However, a sequential pattern
mining algorithm will stop checking the rest of a
tuple in the database as soon as the pattern is found.
In contrast, timed sequential pattern mining requires
checking all the tuples in the database. First, it is
necessary to consider all possible occurrences of
the pattern and all the different timestamps of each
occurrence and find the temporal relation. After the
temporal relation is found for one sensor, we need

to check the temporal relation for the same meas-
urements among all sensors. The final interval [min,
max] represents the minimum and maximum time
difference among all sensors in the database.

This leads to the second challenge of timed se-
quential pattern mining, which updates the temporal
relation between itemsets as soon as a pattern is
found. When a timed sequential pattern is defined,
it means that the ratio of tuples that contain this pat-
tern is greater than or equal to a user-defined thresh-
old. Then, when we want to extend that pattern to
include more measurements; it does not mean that
the pattern must appear at the same tuples because
some tuples may not carry it anymore. According-
ly, the time relation is not valid anymore, and we
need to update that relationship based on the new
timestamps of the new tuples. Let us suppose that
we have the timed sequence pattern < {T1, W3}
[t1, t2] {T1} >. From Figure 2, we can observe that
S1 and S4 have these measurements. So, t1 and t2
are calculated based on the timestamps associated
with these measurements in these tuples. When the
pattern is extended to be < {T1, W3} [t1, t2] {T1,
W2} >, we can observe that the record of S4 does
not carry this pattern and only S1 had these meas-
urements. Therefore, t1 and t2 must be updated
based on the timestamps associated with measure-
ments. The brute force technique needs to scan the
database again to update the temporal relation of
the pattern. Thus, for every pattern, we need to scan
the entire database many times to make sure that we
have the correct temporal relations.

The contributions of this paper are the follow-
ing:

1) The idea of incorporating transition time
between itemsets in a sequential pattern in-
dicates all possible time occurrences of the
pattern within the whole timed sequence
database. The time can be any descriptive
statistic based on the user’s preference,
such as range and average.

2) The parallel implementation of the Mi-
nits-AllOcc algorithm can help when deal-
ing with Big Data.

3) The extensive experiments compare the
single-core algorithm against the mul-
ti-core algorithm on real and synthetic da-
tasets.

The remainder of the paper is organized as fol-
Figure 3. All possible occurrences of the measurement {T1}
{W1} in S2.

Figure 2. Sequence records.

4

lows. Section 2 reviews the definiation of the prob-
lem. Section 3 reviews the related work. Section 4
introduces and defines the timed sequential pattern
mining problem. Section 5 explains how the algo-
rithm works. The results of performance evaluations
on different datasets are given in Section 6. Finally,
Section 7 concludes the paper and discusses future
work.

2. Problem definition
In this section, we review the definitions of the

sequential pattern mining problem and introduce
new definitions for the timed sequential pattern
mining problem. Recalling the traditional sequential
pattern mining problem[1], we define an itemset I as
a set of items, such that I ⊆ X, where X = {x1, x2,
..., xl} is a set of items in the database. A sequence
(tuple) s is an ordered list (based on timestamps) of
itemsets. A sequence A = < {a1}, {a2}, …, {an} > is
contained in another sequence B = < {b1}, {b2}, …,
{bm} > and B is a super-sequence of A if there ex-
ists a set of integers, 1 ≤ j1 < j2 < … < jn ≤ m, such
that .

A sequence database S is a set of sequences
(tuples) < sid, si >, where sid is a sequence identi-
fier and si is a sequence. A tuple < sid, si > is said
to contain a sequence 𝛼 if 𝛼 is a sub-sequence of si.
Since our problem also considers the temporal data,
we incorporate timestamps explicitly in the data-
base and introduce new definitions.

Definition 1. A timed event is a pair e = (I, t),
where I is an item set that occurs at the timestamp t.
We use e.I and e.t to indicate, respectively, the item-
set I and the timestamp t associated with the event
e. The list of events that is sorted in the timestamp
order is called a timed sequence TS = < {e1}, {e2},
..., {en} >, such that ei.x ⊆ I (1 ≤ i ≤ n). A timed se-
quence database TSDB is a set of sequences < TS_
id, TS >, where TS_id is a timed-sequence identifier
and TS is a timed sequence.

Example 1 (running example). The timed
sequence database in Figure 4 is used as an illustra-
tive example in this paper. For simplicity, we will
use letters to refer to items that represent different
properties of objects in the database (e.g., temper-
ature and speed of wind), and integer numbers to
refer to timestamps that represent the times when
those properties are collected. In this example,
there are four timed sequences with IDs from TS1

to TS4. Each timed sequence consists of a set of
events ordered in the events’ timestamps. For exam-
ple, TS1 consists of two events: the first event {a, b,
5}, which occurred at timestamp 5, followed by the
second event {d, g, 12}, which occurred at times-
tamp 12.

Definition 2. Given a sequence A = < {I1}, {I2},
…, {In} > and a timed sequence TS = < {e1}, {e2},
…, {em} >, the All-time Occurrences of A in TS in
the timed sequence database TSDB is defined as an
ordered list of indices 1 ≤ j1 < j2 < …< jn ≤ m, such
that: . The delta Δ is de-
fined as .

Example 2. Let sequence A = < {a} {b} >
and timed sequence TS4 = < {a, 10}, {b, f, 19}, {d,
20}, {b, 30} >, as shown in Figure 4. The indices
of the events for the first occurrence of sequence A
in TS4 are {e1, e2}, as shown by the solid arrow in
Figure 5. The delta Δ is the difference between the
timestamps of these two consecutive events, which
is e1.t1 = 10 and e2.t2 = 19. Thus, the Δ = 19 – 10 = 9.
Then, the second occurrence of sequence A in TS4,
as shown by the dotted arrow in Figure 2, has the
indices of the evenets {e1, e4}. The delta is the dif-
ference between the timestamps of these two con-
secutive events, which is e1.t1 = 10 and e4.t2 = 30.
Thus, the Δ = 30 – 10 = 20. Similarly, we can find
the rest of the All-time Occurrence. The support of
a sequence A in a sequence database, or a timed se-
quence database, is the percentage of the number of
sequences in the database that contains A, such that
sup(A) = (#sequences that contain A/#sequences in
DB) × 100. If the support of sequence A is greater
than or equal to a user-defined threshold called min-
imum support (min_sup), then it is called a sequen-
tial pattern[1].

Figure 4. An example of timed sequence database.

Definition 3. A sequence A is called a timed
sequential pattern TSP if and only if it is a se-
quential pattern and accompanied by temporal re-
lationships 𝜏i between itemsets where it represents
any descriptive statistic, such as an average of tran-

5

sition time or range, calculated based on the values
of the delta . TSP is denoted as: TSP = < {I0} [𝜏1] {I1}
[𝜏2] {I2}, …, [𝜏n] {In} >. For brevity, in the rest of
this paper, when we mention a pattern, we refer to a
timed sequential pattern.

Example 3. Let us assume the min-sup =
50%; since the support of sequence A = < {a} {b} >
is 50%, the sequence is a sequential pattern. In this
paper, we assume that a user chooses the temporal
relation to be presented as a range of time [min,
max]. Thus, the timed sequential pattern version is
< {a} [9, 20] {b} >. The timed sequential patterns
thus are sequential patterns that satisfy the min_sup
condition and include the transition times between
item sets.

3. Related works
One of the fundamental data mining tech-

niques is pattern mining, which identifies rules
to discover interesting correlations in the dataset.
There are several approaches of pattern mining, in-
cluding frequent itemset mining, high utility itemset
mining, and sequential pattern mining. The survey
paper of Kumar and Mohbey[13] introduced an over-
view of these unique approaches and discussed
dealing with large-scale data from different aspects.

There are many techniques for mining the
temporal patterns for frequent itemset[14–16], high
utility[17–19], and sequential patterns[20–23]. Our work
focuses on sequential pattern mining incorporating
temporal information.

Sequential pattern mining was first introduced
by Agrawal and Srikant[1], where three algorithms,
AprioriSome, DynamicSome, and AprioriAll were
proposed to discover sequential patterns. AprioriAll
is the basis of many other efficient algorithms that
have been proposed to improve its performance.
Those algorithms[24] inspired to propose a technique
to generate fewer candidates called GSP. Since all
algorithms were based on the Apriori algorithm,

they were classified as Apriori-based algorithms.
Other algorithms, such as SPADE[11], adopted a ver-
tical ID-list database format that reduces the number
of database scans. In contrast, pattern-growth-based
algorithms, such as FreeSpan[9] and PrefixSpan[10],
use database projection, making them more efficient
than other Apriori-based algorithms, mainly when
they deal with an extensive database. These algo-
rithms generate a smaller database for their next
pass because the sequence database is projected
into a set of smaller databases, and then sequential
patterns in each of them are explored. Thus, they
are more efficient. More literature reviews about the
state-of-the-art sequential pattern mining algorithms
can be found in the study of Fournier-Viger et al.[25].

Recently, with the existence of a large volume
of data in many applications, several sequential
pattern mining algorithms have been proposed to
efficiently handle large databases consisting of vast
amounts of sequences using different platforms.
For example, Huynh et al.[26] used the multi-core
processor architecture to implement pDBV-SPM
to improve processing speed for mining sequential
patterns. Ha-GSP[27] adopted the principles of GSP
and implements them on the Hadoop platform for
solving the limited computing capacity and inade-
quate performance with massive data of the tradi-
tional GSP. MR-PrefixSpan[28] used the MapReduce
platform to implement the parallel version of Pre-
fixSpan to mine sequential patterns on a large da-
tabase. Also, Spark was utilized to implement two
algorithms: GSP-S (GSP algorithm based on Spark)
and PrefixSpan-S (PrefixSpan algorithm based on
Spark)[29]. The proposed algorithms addressed the
issues of high IO overhead and imbalanced load
among the computing nodes. More literature re-
views about the state-of-the-art parallel sequence
mining algorithms are in the survey of Gan et al.[30].

The input for this data mining task is sequence
data, in which each point in the dataset represents
an observation at a particular time. A time-series da-
taset is an example of sequence data, which is a col-
lection of integer values collected over a period of
time. Trajectory is also a sequence of spatial points
ordered by timestamps, which capture how an ob-
ject behaves through various temporal activities[31].
Another example of this type of data is biological
sequences. They are nucleotide or amino acid se-
quences analyzed and studied for use in bioinfor-

Figure 5. All-time Occurrence of A in TS4.

6

matics and contemporary biology. Each different
type of data has its research issues; however, in this
paper, we consider the general common research
issues.

Because finding frequent itemsets in the as-
sociation rule mining tasks discards the ordering
of items, some techniques such as that in the study
of Patnaik et al.[32] take advantage of sorting items
based on the timestamp. They discovered different
patterns that represent the different orderings of
the items. For example, the general episode is a
sequence with objects A, B, and C, where A must
occur first, but B and C can occur in any order.
However, the serial episode is a sequence with ob-
jects A, B, and C, where A must occur first, then B,
and then C. However, the time between itemsets is
still discarded, and they use the time as a gap con-
straint between itemsets in an episode. So, an expiry
constraint TX is another input besides the sequence
database and min_sup threshold. TX is an additional
control with the support threshold, which specifies
that the appearance of symbols in an episode occurs
no further than TX time units apart from each other.
Some techniques were proposed to specify some
timing constraints, such as the time gaps between
adjacent itemsets in sequential patterns. For exam-
ple, Chen et al.[33] modified the Apriori[1] and Pre-
fixSpan[10] algorithms to discover the time-interval
sequential patterns that satisfy the interval duration
boundaries. The I-PrefixSpan algorithm in the study
of Chen et al.[33] has another input called a set of
time-intervals TI, where each time-interval has a
range. Hu et al.[34] extended that work and proposed
two algorithms: MI-Apriori and MI-Prefix. The
time intervals incorporated in the patterns reveal the
time between all pairs of items in a pattern; these
patterns are called multi-time-interval sequential
patterns. A list of intervals (ti3, ti2, ti1) before item d
in a pattern like < a, (ti1), b, (ti2, ti1), c, (ti3, ti2, ti1), d
> means the intervals between items a, b, and c and
item d are ti3, ti2 and ti1, respectively. In educational
data mining, a ti-pattern model[6] is built based on
the I-PrefixSpan algorithm to consider the time be-
tween students’ activities. So, again, the inputs of
this model are a temporal sequence database and
a set of time-intervals (Is, Imn, Ih, Id, Iw, Imt), which
refer to seconds, minutes, hours, days, weeks, and
months. For example, one-time intervals of Ih mean
that the model will find the activities of students

with a gap value between one hour and one day.
After the model is applied to a group of students
who enrolled in mathematics and computer science
program in the Learning Management System, one
of the time-interval patterns (ti-pattern) was found:
< Lab {1, 3} Ih Lab {2, 3} Ih Lab {2, 3, 4} >, where Lab {1, 3}
means either Lab1 or Lab3. The experts can observe
that some students work sequentially on several
exercise sheets from this pattern. Since the students
spend this gab, it means that the students dig deep
into their work. Also, AlZahrani and Mazarbhui-
ya[35] extracted the sequential patterns of diseases
from a medical dataset within user-specified time
intervals. CAI-PrefixSpan[12] is proposed to apply
the confident condition from association rules be-
sides the support condition to filter the timed se-
quential patterns. The advantage of this is that the
decision-makers can be confident about the possi-
bility of an event happening within a certain time
interval.

The drawback of these methods is that their
results will miss some frequent patterns that do not
fulfil the time range constraint. To decide if a pat-
tern is common, two conditions must be satisfied:
the support of the pattern must be greater than or
equal to the min_sup, and the time ranges between
the itemsets in the pattern must lie within the de-
fined time intervals. Therefore, if a pattern fulfils
the first condition, which means it is common but
does not fulfil the second condition, the algorithm
will not report it.

Giannotti et al.[20] incorporated the temporal
dimension in the sequential pattern by defining tem-
porally annotated sequences (TAS), and Giannotti
et al.[36] proposed the Trajectory Pattern algorithm
(T-pattern) to extract a set of TAS to produce tra-
jectory patterns with a fixed amount of time to
travel between places. The algorithm only works
for one-dimensional data. Also, the times between
events in a trajectory pattern are strict, which does
not consider the variety of the traveling time spent
between locations by using different transportation
modes, for example. Yang et al.[21] relaxes the travel
time so that it is a realistic range for traveling time.
The algorithm still cannot deal with multidimen-
sional data because it deals with only locations in
trajectory data. Also, all the previous techniques do
not consider all possible occurrences of a pattern in
an individual sequence in a database, which means

7

the temporal relations are calculated based only on
the first occurrence of a pattern. The issue of calcu-
lating the time intervals of the first occurrence of a
pattern and ignoring other occurrences is addressed
in the study of Karsoum et al.[23]. However, this ap-
proach is beneficial for only a few applications. For
example, if a developer wants to evaluate the ease
of use of a navigation system, the time of moving
from A to B is tested when the users visit those lo-
cations for the first time. In contrast, in other appli-
cations, such as the transportation safety application
described in Section 1 above, we must consider all
possible occurrences to provide accurate time inter-
vals.

There also exist works that consider other
issues related to time-interval sequential patterns.
FARPAMp (Fast Robust Pattern Mining with in-
formation about prior uncertainty)[22] can deal with
timestamp uncertainties. This issue may occur if
two events A and B happen during a time interval
that can be overlap. This leads to the possibility of
event A appearing before event B or vice versa. So,
the approach is focused on using time points instead
of intervals and fitting probabilistic models for the
errors in the timestamps around these time points.
It is an interesting research issue; however, this is
outside the scope of our research. We are address-
ing the issues of finding all possible occurrences of
timed sequential patterns and producing the most
updated temporal relations between itemsets in the
discovered patterns.

Besides sequential pattern mining, several oth-
er pattern mining problems have been proposed that
can deal with temporal data. For example, Episode
mining aims to discover frequent episodes in a sin-
gle sequence, rather than a set of sequences, within
a time window set by the user[37,38]. Also, periodic
patterns are finding patterns that appear frequently
and periodically in a single sequence based on pe-
riod lengths. The period lengths of a pattern are the
time elapsed between any two consecutive occur-
rences of the pattern[39,40]. In this paper, we concen-
trated on the sequential pattern and how we include
the time-interval explicitly between the itemsets.

Our work fundamentally differs from the pre-
vious techniques in the following aspects. First, we
focus on sequential pattern mining for any sequence
data. Second, the inputs of our approach are the
timed sequence database and minimum threshold;

the output is a complete set of timed sequential
patterns with a time interval between each item set.
Third, the time interval is not a user-defined param-
eter but is derived from the database’s timestamps.

To the best of our knowledge, there is no ex-
isting algorithm that can find the complete set of
timed sequential patterns, each of which includes
the itemsets that occur in time order and the transi-
tion times between them.

4. The proposed algorithm: Min-
utes-AllOcc

We propose an algorithm called Minits-AllOcc
to discover the complete set of timed sequential pat-
terns, which are already frequent candidates, from
a timed sequence database. We have the following
subsections that describe the algorithm: Section 4.1
introduces the core data structure of the algorithm;
Section 4.2 gives a brief overview before the details
of the algorithm are explained step by step in Sec-
tion 4.3; Section 4.4 analyzes the time complexity
of the algorithm, and Section 4.5 proposes enhance-
ments to improve the efficiency of the algorithm.

4.1 Occurrence tree (O-tree)
A data structure called the occurrence tree

(O-tree) is proposed to represent all possible occur-
rences of a pattern in a particular timed sequence
in TSDB. This tree is the essence of the algorithm
because it helps generate timed sequence patterns
without scanning the timed sequence database many
times. In the tree, the timed sequence ID (TSID)
is stored as the root. The rest of the nodes stores
an event ID eID and its timestamp eID.t. A node
can have multiple parent nodes and multiple child
nodes. The information associated with the link
between a parent node and a child node represents
the difference Δ between the timestamps of the two
nodes: parent and its child. The structure of the tree
is shown in Figure 6. For example, when the TS3
in Figure 4 is scanned, three occurrence trees for
items, a, b, and d are created from the timed se-
quences < {a, 2}, < {a, b, 19}, {d, 25} >. Since the
candidate sequence < {a} > appears twice in TS3,
its O-tree in Figure 7 has two nodes connected to
the root. The first one represents the first occurrence
at the first event e1 with its timestamp, and the sec-
ond represents the second occurrence at the second
event e2 with its timestamp. However, the sequence

8

< {a} {a} > appears once in TS3 that has two nodes
too, but one is connected to the root and the other
is connected to the other node via a link Δ. The link
holds the difference between the parent and child
timestamps 19 – 2 = 17.

Since each sequence has an O-tree for each
timed sequence in TSDB that contains it, the se-
quence will have a collection of O-trees that identi-
fy its occurrence in the whole TSDB. Thus, we give
the following definition.

Definition 4. Given a sequence A and timed
sequence database TSDB, A-Forest is a collection
of all O-trees that identify all possible occurrences
of sequence A in TSDB. Figure 8 demonstrates the
forest of four sequences, < {a} >, < {b} >, < {a} [9,
20] {b} >, and < {a, b}>. Each forest is surrounded
by a dotted rectangle, which has a group of O-trees
that indicates all time occurrences of a sequence in
TSDB.

4.2 Overview
Given a TSDB and a min_sup threshold, the

main goal of Minits-AllOcc is to find the complete
set of the timed sequential patterns in the TSDB
such that each pattern’s support is greater than or

equal to the min_sup threshold. To achieve this
goal, Minits-AllOcc utilizes the forests to store all
the required information from the TSDB and uses
them to mine the patterns without having to scan
the TSDB many times. The flowchart in Figure 9
provides an idea of the algorithm’s general steps.
More details about these steps are explained bellow.

1) Scan TSDB to build an Ij-forest for each
distinct item Ij.

2) Find frequent 1-items by counting the num-
ber of O-trees in each forest, compare it against
the min_sup threshold, and remove the infrequent
1-items.

3) Merge all O-trees with the same TSID (root
node) from different forests to build a new forest for
a candidate sequence. It should be noted that there
are two relations between itemsets considered while
merging the steps: event-relation and sequence-re-
lation, which are defined as follows:

Definition 5. Given two itemsets X and Y, it is
said that X and Y have an event-relation e-relation
between them, denoted as < {X, Y} > if X and Y
occur in the same event. For example, assume that
we have the following timed sequential pattern = <
{High temperature, High wind speed} [2, 3] {low
temperature} >. It means that the measurement has
both high temperature and high wind speed simul-
taneously, and after 2 to 3 hours, the measurement
has a low temperature.

Definition 6. Given two itemsets X and Y, it
is said that X and Y have a sequence-relation s-re-
lation between them, denoted as < {X} {Y} > if X
and Y occur in two different events and the event of
X occurs before the event Y. For example, suppose
that we have the following timed sequential pattern

Figure 6. Occurrence tree data structure.

Figure 7. An O-tree for the sequences < {a} > and < {a} {a} >
in TS3.

Figure 8. Merging O-trees of < {a} > and < {b} > to generate
< {a, b} >-forest and <{a} [9, 20] {b} >-forest.

9

= < {High temperature} [4, 6] {High wind speed}
[2, 3] {low temperature} >, it means that the meas-
urement has only a high temperature. Then after
4 to 6 hours, the measurement has the high wind
speed. Later, after 2 to 3 hours, the measurement
has a low temperature.

4) Count the number of O-trees in each forest,
compute the support, and compare it against the
min_sup threshold to find the sequential patterns
among candidate sequences. By performing step 4,
Minits-AllOcc avoids scanning the whole TSDB for
each candidate to calculate its support.

5) Compute the temporal relation of the suffix
(the new appending part of the pattern) if the can-
didate sequence is frequent. Then, update the tem-
poral relation of the prefix (the previous part of the
pattern) and generate a timed sequential pattern.

6) Repeat steps 3, 4, and 5 until the algorithm

cannot identify any new timed sequential pattern.
The pseudo-code of Minits-All Occ is presented in
Figure 10.

4.3 The details of the Minits-AllOcc
algorithm

This section describes the five steps presented
in the previous Section 4.2 in detail using the run-
ning example shown in Figure 4. The algorithm
scans the TSDB tuple by tuple and builds the asso-
ciated forest for each item by adding the occurrence
trees O-tree (lines 1–19). As shown in Figure 7,
for example, after the algorithm finishes scanning
the TSDB, the < {a} >-forest has three O-trees be-
cause the sequence < {a} > appears in three timed
sequences: TS1, TS3, and TS4. Each O-tree cap-
tures all occurrences with their timestamps of an
item and in a particular TS. Thus, in TS1, we have
one node that shows the item a appears in the first
event in TS1, and its timestamp is 5. To know the
support of distinct items, the algorithm counts the
number of O-trees in each forest and compares it
against the min_sup threshold. If the support of a
forest, which also represents of distinct item’s sup-
port, is less than the threshold, the forest is removed
(lines 20–27). The two sequences < {e} > and < {f}
> are not frequent because their forests have only
one tree, which means they appear only in one TS;
therefore, their support is 25%. Consequently, two
sets are formatted: TSP and 1-TSP. The first set of
TSP contains the complete, timed sequential pat-
terns. It will be updated periodically as a new timed
sequential pattern is discovered. The second set is
1-TSP, which contains only the timed sequential
patterns of length 1, which will be used as a seed
set to extend the patterns in further steps. Both sets
TSP and 1-TSP have these values {< {a}, {b}, {d},
{g} >} (lines 24–25). The next step is generating
candidates by merging the O-trees of all 1-timed se-
quential patterns by calling the function find-TSPs
(line 30). The mechanism of merging trees is as fol-
lows: if the relationship is an s-relation, the append-
ed node must have an event ID ei that is greater than
the event ID in the parent node (i.e., comparing the
event IDs in the two nodes) (line 57). Then, the link
holds the difference between the timestamps of the
parent and their child (line 59). In contrast, if the re-
lationship is an e-relation, the appended node must
have the same event ID ei as its parent (line 53). For

Figure 9. Flowchart of Minits-AllOcc algorithm.

10

Algorithm 1: Minits All-Occ
Input: Timed sequence database (S), minimum support threshold (min_sup)
Output: Timed Sequential Patterns set (TSP-set) that contains all Timed Sequential Patterns TSP
//Build a forest for distinct items (1-candidate sequence) and calculate the support

1 for each Timed sequence Tsi in S
2 for each event ej in Tsi

3 skip first item I0 in ej // it always represents the timestamp
4 for each Item Ik in ej

5 if ((Ik) does not appear before)
6 create <{Ik}> forest
7 build Ik Occurrence-tree inside the <{Ik}> forest
8 NumOfOccurrenceTree+=1
9 else
10 if (Tsi exist in the forest)
11 Update the Occurrence-tree by adding the new node
12 else
13 build Ik Occurrence-tree inside the forest
14 NumOfOccurrenceTree+=1
15 end if
16 end if
17 end for
18 end for
19 end for

//Remove infrequent 1-candidate sequences
20 for each Ik-forest
21 if (((NumOfOccurrenceTree/ NumOfTs) *100) < min_sup)
22 remove Ik-forest
23 else
24 add <{Ik}> into TSP-set
25 add <{Ik}> into 1-TSP
26 end if
27 end for

//Extend 1-Timed Sequential Patterns TSP
28 for each pattern pm in 1-TSP
29 for each pattern pn in 1-TSP
30 Find-TSP (pm, pn, 1-TSP)
31 end for
32 end for

//Perform Find_TSP () function recursively to discover all k-TSP, where k >1
33 function Find-TSP (prefix, suffix, suffixList)
34 prefix = Merge_Trees (prefix. forest, suffix. forest)
35 if (prefix! = null)
36 for each suffix in suffixList
37 Find-TSP (prefix, suffix, suffixList)
38 end for
39 else
40 return
41 end if
42 end function

//Merge trees to generate candidates, find TSP, and calculate temporal relation
43 function Merge-Trees (prefix. forest, suffix. forest)
44 number_of_merging-trees = 0
45 new_candidate_sequence = < prefix ∪ Suffix >
46 create forest for new_candidate_Sequence
47 for each OccurrenceTree pti in the prefix. forest
48 for each OccurrenceTree stj in the suffix. forest
49 if (pti. TSID == stj .TSID)
50 for each leaf node Np in pti
51 for each leaf node Ns in stj
52 Add pti to new_candidate_sequence forest
53 if (stj . eventID == pti.eventID)
54 Append Ns to pti

11

55 ∆ = 0
56 number_of_merging-trees += 1
57 else if (stj . eventID > pti. eventID)
58 Append Ns to pti
59 ∆ = stj. timeStamp - pti. timeStamp
60 number_of_merging-trees += 1
61 else
62 Remove Np from pti

63 end if
64 end for
65 end for
66 end if
67 end for
68 end for
69 if (((number_of_merging_trees/ NumOfTS) *100) > = min_sup)
70 for each itemset In in new_candidate_sequence except the last itemset
71 Go to the level n+1 in the new_candidate_sequence.forest
72 Find min of ∆
73 Find max of ∆
74 Add [min, max] after In

75 end for
76 Add new_candidate_sequence int TSP
77 Prefix = new_candidate_sequence
78 return prefix
79 else
80 return null
81 end if
82 end function

instance, the forests of the two candidates < {a} []
{b} >, which represents an s-relation, and < {a, b} >,
which represents an e-relation, are shown in Figure
8. The first < {a} [] {b} >-forest has two O-trees
that are generated by combining the < {a} >-forest
and the < {b} > =-forest. Even though both the for-
ests have an O-tree that has a root TS1, the O-tree
of < {b} > does not contain a node that has an event
ID greater than e1; thus, it is removed from the < {a}
[] {b} >-forest. In contrast, the node e2 from the <
{b} >-forest is attached to the node e1 from the <
{a} >-forest and the Δ is calculated between those
nodes, which is 19 − 2 = 17. However, the node that
has e2 from the < {a} >-forest does not connect to
any node. Since the algorithm is looking for all pos-
sible occurrences of sequence < {a} [] {b} >, the
node e1 in TS4 is connected to the two nodes, which
have the event IDs e2 and e4, from the < {b} > O-tree,
and each link between the parent node e1 and child
node e2 and child node e4 carries the difference be-
tween the timestamps of the two connected nodes.
Because in this example, we consider a temporal
relation as a range [min, max], the algorithm choos-
es the minimum and maximum values among all
the O-trees in the < {a} [] {b} >-forest, which is [9,

20]. The second < {a, b} >-forest has two O-trees
that are generated by combining the < {a} >-for-
est and the < {b} >-forest. The difference between
the s-relation case and the e-relation case when we
merge the trees is the condition of appending nodes.
Since this is an e-relation, all added nodes must
have the same event ID ei as their parents. Also,
the Δ is always 0 because the nodes have the same
timestamps. Both patterns < {a} [9, 20] {b} > and
< {a, b} > are considered to be timed sequential
patterns and they are added to TSP set because their
supports are 50% (lines 69–76). We calculated the
support using the below formula:

These two timed sequential patterns are add-
ed into TSP = { < {a} >, < {b} >, < {d} >, < {g}
>, < {a} [9, 20] {b} >, < {a, b} >}. The algorithm
repeats the same steps, by calling function find-
TSPs recursively in line 37, to extend the pattern
by merging O-trees, generating candidates, finding
TSPs, and computing temporal relations until no
more TSPs can be found.

Figure 10. Pseudo-code of the Minits-AllOcc algorithm.

12

As shown in Figure 11, pattern < {a} [9, 17]
{b} [1, 6] {d} > result from merging between < {a}
[9, 20] {b} >-forest and < {d} >-forest. The forest
consists of only the O-trees that representing the
candidate, then the support is calculated. Since the
support is 50%, the time between the prefix < {a} [
] {b} > and suffix < {d} > is calculated as defined
before (the range [min, max]). The TSP set is up-
dated to be {< {a} >, < {b} >, < {d} >, < {g} >, <
{a} [9, 20] {b} >, < {a, b} >, <{a} [9, 17] {b} [1, 6]
{d} >}. As it is noted, the temporal relation between
item sets {a} and {b} in the two patterns < {a} [9,
20] {b} > and < {a} [9, 17] {b} []{d} > changed.

Minits-AllOcc continues repeating the steps
until the complete set of TSPs is discovered. The
reader can verify that the TSPs in this example is =
{< {a} >, < {b} >, < {d} >, < {g} >, < {a} [9, 20] {b}
>, < {a} [6, 23] {d} >, < {b} [1, 7] {d} >, < {a, b} [6,
7] {d} >, < {a} [9, 17] {b} [1, 6] {d } >}.

Figure 11. Merging < {a} [9, 20] {b} >-forest and < {d} > to
generate < {a} [9, 17] {b} [1, 6] {d} >-forest.

4.4 Analysis of Minits-AllOcc
In this subsection, we discuss the worst-case

time complexity of the Minits-AllOcc algorithm.
We have:

• S(m), where |S| = the number of timed se-
quences TS in TSDB.

• E(r), where |E| = the maximum number of
events in a timed sequence.

• I(c), where |I| = the maximum number of
items in an event.

• G(s), where |G| = the number of singleton
items in TSDB.

• N, where |N| = the number of all possible
candidates.

We start with the first part of the algorithm that
needs to check each Timed Sequence S in TSDB,
each event E inside that S, and each item inside
that E to build the forest (lines 1–19), which cost
O(S*E*I). If it is the first time to read an item, that
means its forest does not exist. So, we need to build
it from scratch and start counting the number of
O-trees inside that forest. Otherwise, we just need
to update the forest by adding the new O-tree into
an existing forest and update the number of O-tress
inside that forest, which cost O(log N). Therefore,
the total amount of work performed by the end of
(line 19) is O(S*E*I*log N).

To keep only frequent candidate sequences and
remove infrequent ones, the algorithm calculates
the support for each forest (lines 20–27) and adds
the frequent candidate sequences into the TSP-set.
So, the total amount of work performed by the end
of (line 27) is O(G+log I) because the number of
forests is equal to the number of singleton (distinct)
items in TSDB and removing O-trees for any infre-
quent sequence is log I .

After that, the algorithm extends the patterns
to generate more candidates by calling the function
Find_TSP() (line 30). The function tries to combine
each item in the 1-TSP set to generate 2-length can-
didate sequences, for example at the first call. The
prefix is the previous (k − 1)-timed sequential pat-
terns, and the suffix is an item from the 1-TSP set.
The function will append the suffix to the prefix and
check the support of the new candidate sequence to
decide if it can be considered as a timed sequential
pattern or not. First, we need to find the time com-
plexity of internal functions; then, we will com-
pute the time complexity of the whole Find_TSP(
) function. The Find_TSP() function calls another
function called Merge_Trees() (line 43), sends the
forest of the prefix (previous timed sequential pat-
tern), and the 1-TSP to build the forest for each new
candidate sequence considering the different types
of relationships, either it is an s-relation or e-rela-
tion. In line 47, the function picks an occurrence
tree pt from the forest of the prefix and compares
it with all occurrence trees st for each 1-length
timed sequential pattern (line 48), which cost S*G.

13

If two occurrence trees with the same root TSID
have been found, the function checks if the event
ID of each leaf node from both trees is the same
ID or the event ID in the suffix node is greater than
the ID in the prefix node (lines 53 and 57), which
needs to check all events in both tress E2. Also, this
function updates the content of the forest by adding
appropriate O-trees and calculating the differences
∆ between nodes if the relation type is s-relation.
After that, in line 69, each candidate’s support is
calculated by counting the number of trees in its
forest. If the candidate is frequent, then after each
itemset, the temporal relation is inserted, which cost
E. The total amount of work done by Merge_Trees(
) is O(log N*S*G*E3).

Recursively, for each frequent 1-item in the
suffix list, in which the time complexity is O(G),
the function Find_TSP() is called (line 37) until
no more candidates can be generated. In the worst
case, the function is re-called until the length of a
candidate is equal to the length of the longest timed
sequence in TSDB, so it is O(E). Thus, the total
amount of work done by Find_TSP(), ended by
line 42, including the work done by nested function
Merge_Trees(), is O(log N*S*G2*E3). Because we
are considering all possible combinations between
any (k − 1) sequential patterns, where k ≥ 2, and
1-sequential patterns, the algorithm returns to line
30 and tries another combination between two items
in the 1-TSP set. Thus, besides the time complexity
of calling Find_TSP(), the algorithm combines all
items, so O(G). The total amount of work done by
the end of line 32 is O(log N*S*G3*E3).

The work done by this algorithm for each sub-
section is O(S*E*I*log N) + O(G+log I) + O(log
N*S*G3*E3). We conclude that the overall worst-
case time complexity of this algorithm is O(log
N*S*G3*E3).

4.5 The proposed enhancement
In this section, we describe some effective

mechanisms to improve the efficiency of Minits-Al-
lOcc.

4.5.1 Pruning the forests
This technique defines a sequence’s forest af-

ter merging the O-trees. So, when those O-trees are
used in the next step for generating candidates, they
carry only the necessary information and, therefore,

save space by removing some nodes and save time
by avoiding traversing needless branches in trees.
Any branch in an O-tree that does not have a new
appended node will be removed after the merging
step is executed. Figure 12 represents the idea by
marking the deleted branch of O-trees with a cross
symbol. For example, the O-tree that has a TS3 root
that results from merging TS3 O-tree from < {a}
> and < {b} >-forests. Since there is no appended
node to the right branch of < {a} >-forest, this node
is removed from < {a} [9, 20] {b} >-forest. Those
branches do not exist anymore in the O-trees.

Figure 12. Pruning the original < {a} [9,20] {b} >-forest and <
{a, b} >-forest in Figure 11.

4.5.2 Using frequency matrix
With this technique, we avoid generating un-

necessary candidates, thereby reducing the number
of forests. For example, the algorithm uses the
1-sequence-forests to generate 2-sequence candi-
dates, then keeps frequent candidates and removes
infrequent ones. Since all required information is
already available in the forest, we build a frequency
matrix for each sequence to indicate the frequent
candidates. For example, the frequency matrix of <
{a} > pattern is shown in Figure 13. The two differ-
ent relations, events, and sequences (the rows) and
all 1-timed sequential patterns that can be combined
with {a} (the columns) are considered. The cells
under < {b} > column represent the frequency of
the two relations between < {a} > and < {b} >. This
frequency is calculated from the forests of those
patterns, as shown in Figure 7. For an s-relation,
there are two O-trees (TS3 and TS4) in which the
< {a} > and < {b} > occur at different timestamps
within the same timed sequence. For e-relation,

14

there are two O-trees (TS1 and TS3) in which the
< {a} > and < {b} > occur at the same timestamps
within the same timed sequence. From the matrix,
we can infer that < {g} > is not frequent either with
an s-relation or e-relation; thus, we do not need to
build the forest of sequence < {a} [] {g} > or < {a,
g} >.

Figure 13. Frequency matrix for < {a} >.

4.5.3 Using multi-core CPUs
Another enhancement is using multi-core

CPUs for implementing Minits-AllOcc, which we
call MMinits-AllOcc. The independent jobs that
can be done at the same time are finding all possible
candidates, merging O-trees for those candidates,
and deciding if they are frequent or not. A queue
holds all jobs. As soon as one thread becomes idle,
the next job in the queue is assigned to it and this
reduces the execution time of the algorithm. For
instance, in the beginning, the algorithm scans the
TSDB to build the forest for each item and finds
that < {a} >, and < {b} > are frequent. In the serial
version, the algorithm starts with the pattern < {a}
> and keeps extending it until no more patterns can
be found that have prefix < {a} >. Then, it starts
with the pattern < {b} > and does the same thing.
With the multi-core version, the algorithm inserts
patterns < {a} > and < {b} > into the queue, as
shown in Figure 14, and works on generating their
candidates at the same time. Then, the candidates, <
{a} [] {a} >, < {a} [] {b} >, etc., will be inserted
into the queue to let any idle threads work on cal-
culating their supports and report any of them as a
time-sequential pattern. If one of these threads is
done, then the pattern is extended by finding other
candidates, < {a} [] {a} [] {a} >, < {a} [] {b} [
] {b}, etc., and then inserting them into the queue.
Those candidates wait to be assigned to an idle
thread again. This process is kept going until no
more jobs remain in the queue.

Figure 14. Multi-core implementation.

5. Performance analysis
In this section, we describe the environment

of experiments and report the evaluation results
of testing the algorithms that are implemented in
single-core CPUs (Minits-AllOcc) and multi-core
CPUs (MMinits-AllOcc). Different parameters are
considered when these experiments are conducted
on real and synthetic datasets. After running many
experiments, we have found that MMinits-AllOcc
on a multi-core performed Minits-AllOcc on a sin-
gle-core.

5.1 Experimental setup
All experiments were performed on a comput-

er with a 2.10 GHz Intel Xeon(R) processor with
64 gigabytes of RAM, running Ubuntu 18.04.1 LTS
CPU with 12 cores. The Minits-AllOcc and MMi-
nits-AllOcc algorithms are implemented in Java 1.8.

5.2 Datasets and experimental param-
eters

We use two real-life, T-Drive[41,42] and Okla-
homa Mesonet[2,3], and synthetic datasets. The first
real dataset T-Drive is a collection of trajectories
gathered by Microsoft Research Asia after tracking
the movements of 10,357 taxis in Beijing, China for
one day. The dataset contains the following attrib-
utes: user ID, timestamp, latitude, and longitude,
as shown in Figure 15. For example, Taxi 1 has a
sequence that contains many events to represent its
movements. An event (2008-10-23 02:53:04, 39.93,
116.31) refers to timestamp, latitude, and longitude,
respectively. Since the sequential pattern mining
algorithm cannot deal with continuous data, we
discretized the data first by using a density-based

15

clustering algorithm called Density-Based Spatial
Clustering of Applications with Noise (DBSCAN)
[43], and the results of the discretized sequences are
shown in Figure 16. Taxi 1 has a sequence that con-
tains events in terms of clusters ID. For instance,
event (2008-10-23 02:53:04, C1) refers to times-
tamp, and cluster Id, respectively. DBSCAN gen-
erates several clusters that contain the close points
and replaces the latitude and longitude of a point
with a cluster ID (Ci). For more details, we refer the
readers to the work by Karsoum et al.[42]. The second
real data set from Oklahoma Mesonet is a world-
class network of environmental interventions by a
group of scientists from the University of Oklaho-
ma (UO) and Oklahoma State University (OSU)
for weather monitoring stations. This network was
established on January 1, 1994 and consists of 120
stations covering each of Oklahoma’s 77 counties.
The measurements are packaged into “observations”
every 5 minutes, then the observations are transmit-
ted to a central facility every 5 minutes, 24 hours
per day year-round.

Figure 15. Sequential database for the T-Drive dataset before
discretization by DBSCAN.

Figure 16. Sequential database for the T-Drive dataset after
discretization by DBSCAN.

The dataset contains the following attributes:
county ID, timestamp, air temperature, rainfall,
wind, and moisture-humidity, as shown in Figure
17. We discretized the data first by using well-
known scales in Meteorology.

Figure 17. Sequential database for the Oklahoma Mesonet
dataset before discretization.

For air temperature, the index heat[43] is used to
have the nine categories based on the temperature
degree intervals in Fahrenheit: T1 (extremely hot)

[>54], T2 (very hot) [53, 46], T3 (hot) [46, 39], T4
(very warm) [38, 32], T5 (warm) [31, 26], T6 (cold)
[25, 0], T7 (very cold) [0, −10], T8 (bitter cold) [−11,
−29], and 9 (extreme cold) [>−30]. The recurrence
interval[44] is used to categorize the rainfall based on
the probability that the given event will be matched
or exceeded in any given year. For example, there is
a 1 in 50% chance that 6.60 inches of rain will fall
in X County in a 24-hour period during any given
year. The classes are: R1 (1 year) [1.16–1.36], R2
(2 years) [1.37–1.69], R3 (5 years) [1.70–1.98], R4
(10 years) [1.99–2.36], R5 (25 years) [2.37–2.64],
R6 (50 years) [2.65–2.90], and R7 (100 years)
[2.90–3.15]. For wind, the Beaufort scale[47] de-
fines 12 classes based on the speed of wind as: W0
(calm) [<0.3], W1 (light air [0.3–1.5], W2 (light
breeze) [1.6–3.3], W3 (gentle breeze) [3.4–5.5],
W4 (moderate breeze) [5.5–7.9], W5 (fresh breeze)
[8.0–10.7], W6 (strong breeze) [10.8–13.8], W7
(near gale) [13.9–17.1], W8 (gale) [17.2–20.7], W9
(strong gale) [20.8–24.4], W10 (storm) [28.4], W11
(violent storm) [28.5–32.6], and W12 (hurricane)
[≥32.7]. The last attribute, humidity (moisture),
has 3 categories based on the “dew point” tem-
perature[48]: H1 (uncomfortably dry) [0–20], H2
(comfortable) [20–60], and H3 (uncomfortably wet)
[60–100]. The results of the discretized sequences
are shown in Figure 18.

Figure 18. Sequential database for the Oklahoma Mesonet
dataset after discretization.

The synthetic dataset was generated by using
a tool provided by the SPMF Library[49]. Also, we
set several parameters to conduct the experiments
on the dataset. There are two types of parameters:
static and dynamic parameters. The values of the
static parameters are not changed in experiments.
In contrast, the values of the dynamic parameters
are changed from one experiment to another. In this
experiment, we have four dynamic parameters. The
first one is the minimum support threshold (min_
sup). It is a user-defined threshold that applies to
finding all timed sequential patterns in a timed se-
quence database TSDB. The second parameter is
the number of timed sequences TS in TSDB (#seq),
which refers to the number of tuples in the database.

16

The third parameter is the length of TS in
TSDB, which can also be represented as the number
of events per TS (#events). The last parameter is the
number of items in each event (#items). It should
be noted that the timestamp is a fixed attribute in
all events. When it is said that the number of items
per event is 3, for instance, it signifies three items
plus the timestamp. We study the effects of all four
parameters shown in Table 1 on the synthetic data-
set. However, for the T-Drive dataset, the only valid
dynamic parameter that is shown in Table 1 is the
min-sup. Thus, all other three parameters are static.
Now, we explain the range of the parameters and
the default values of this analysis, as summarized
in Table 1. When the experiment was conducted,
we chose various values of one parameter within
its range and assigned the default value to the other
parameters. The min-sup parameter has a range of
20% to 80% with the default value of 50%, which is
the median of the interval. The range of the number
of timed sequences parameters is from 1 to 100,000,
and its median value of 50,000, is the default value.
For the number of events per sequence, the default
value is 25 because the range is from 5 to 50. The
number of items in the last parameter range has
been set at 1 to 10 items per event; thus, the default
value is 5, which is the median.

Table 1. Parameter list for the synthetic dataset

Parameter name Range of values Default value
Min_sup 20%–80% 50%
#sequences 1–100,000 50,000
#events per
sequence

1–50 25

#items per event 1–10 5

5.3 Competing algorithms
As mentioned in Section 3, no existing algo-

rithm can discover the exact format of the timed
sequential patterns and consider All-time Occur-
rences. Hence, we cannot compare Minits-AllOcc
against any technique, and we will compare it
against MMinits-AllOcc.

5.4 Evaluation metrics
The evaluation metrics include two measure-

ments: (1) execution time (ET) of algorithms (Mi-
nits-AllOcc and MMintis-AllOcc) and (2) number
of patterns (#patterns) that are generated by these
algorithms.

5.5 Experimental results
In this section, we present the performance of

the two algorithms, Minits-AllOcc and MMinits-Al-
lOcc, in terms of execution time (ET) and the num-
ber of discovered patterns (#patterns) for the real
and synthetic datasets.

5.5.1 Accuracy
To validate that Minits-AllOcc always gives

the same sequential patterns in terms of the num-
bers and contents, excluding the temporal relation,
PrefixSpan was used[8]. PrefixSpan was chosen
because it is one of the well-known algorithms for
discovering sequential patterns. It has been proven
to produce complete and correct sequential patterns.
First, all temporal relations were removed from
the patterns that were generated by Minits-AllOcc.
Next, these patterns were compared to the patterns
that were generated by PrefixSpan to make sure that
each sequential pattern generated by PrefixSpan has
a matching one generated by Minits-AllOcc and
MMinits-AllOcc. For example, a sequential pattern
X = < {a} {b} {a, b} > was generated by Prefix-
Span, and a timed sequential pattern Y = < {a} [2, 5]
{b} [3, 7] {a, b} > was generated by Minits-AllOcc
and MMinits-AllOcc. We took away the temporal
relations from Y and compared them with pattern
X. In case the order of at least one item set was dif-
ferent, the pattern X was not matching the pattern
Y. For instance, Z = < {b} [2, 5] {a} [3, 7] {b, a}
> was not matching pattern X because the item <
{b} > occurred before < {a} >. However, within the
last itemset {a, b} the order did not matter because
all the items appeared at the same timestamp. At
the end of this experiment, we found that the two
algorithms—Minits-AllOcc and MMinits-AllOcc—
discovered the exact patterns that were produced by
PrefixSpan. All algorithms produced the complete
and correct set of sequential patterns.

5.5.2 Execution time
The execution time was recorded from the

moment that a dataset had been read to the moment
that an algorithm produced the timed sequential
patterns. Table 2 shows the average performance of
the two algorithms: Minits-AllOcc and MMinits-Al-
lOcc. The execution time (ET) of MMinits-AllOcc
decreases by 50% to 60% for T-Drive, Oklahoma
Mesonet, and synthetic datasets, respectively, com-

17

pared to the execution time of Minits-AllOcc.

Table 2. Average execution time (ET) and #patterns

Datasets Minits-AllOcc MMintis-AllOcc
ET #patt ET #patt

T-Drive 12.05 (hour) 126 5.97 (hour) 126
Oklahoma
Mesonet

20.319 (min) 3,756 8.604 (min) 3,756

Synthetic data 27.319 (min) 3,780 10.825 (min) 3,780

5.5.3 Impact of minimum support
In this set of experiments, we compared execu-

tion time (ET) and the number of patterns (#patterns)
for different values of minimum support threshold
(min_sup) for datasets T-Drive, Oklahoma Me-
sonet, and synthetic. From Figure 19(a), Figure
20(a) and Figure 21(a), we can see that when the
minimum support increased, the execution time of
all algorithms decreased. This is because the al-
gorithms generate fewer timed-sequential patterns
when the min-sup is high, because of fewer candi-
date sequences that satisfy the min-sup condition.
With a large amount of data and discovered timed
sequential patterns, MMinits-AllOcc outperformed
Minits-AllOcc, as shown in Figure 19(a), Figure
20(a), and Figure 21(a). Therefore, multi-core

CPUs ought to be used when the size of the timed
sequence database is large.

Figure 19. Parameter study for T-Drive dataset.

Figure 20. Parameter study for Oklahoma dataset.

The multi-core CPU version was also efficient
when we had low min-sup. As shown in Figures
20(a), and 21(a), the ETs of both Minits-AllOcc
and MMinits-AllOcc were very close when the

Figure 21. Parameter study (Min_sup and #Sequences) for synthetic dataset.

18

min-sup was greater than 60%. This is because
the number of candidate sequences, and thus the
number of timed sequential patterns, was getting
smaller, so most of the threads were idle. Therefore,
MMinits-AllOcc did not need to use all the avail-
able threads and behaved almost like a single-core
version Minits-AllOcc. Another observation was
made based on the number of timed sequential pat-
terns that were generated by these algorithms. All
algorithms discovered the same number of patterns;
thus, their curves were overlapping in Figures
19(b), 20(b), 21(b), 21(d), 22(b), and 22(d). When
the min-sup increased, the number of timed sequen-
tial patterns decreased because the patterns that
satisfied the min-sup condition became fewer. By
increasing the threshold min_sup, the percentage
of timed sequences in the timed sequence database
that was supposed to contain a candidate sequence
decreased, as shown in Figure 19(b), Figure 20(b),
and Figure 21(b).

5.5.4 Impact of the number of se-
quences in the database

In this set of experiments, we compared the
execution time (ET) and the number of discovered
timed sequential patterns (#patterns) according to

the number of the timed sequences (#seq). From
Figure 21(c), we can see that when the number of
timed sequences increased, the execution times of
all algorithms increased. This is because the algo-
rithms needed more time to check the extra timed
sequences that were added to the timed sequence
database to decide if they contained a timed sequen-
tial pattern or not. We observed that the number of
timed sequential patterns, which were generated
by these algorithms, increased when the number
of timed sequences increased, as shown in Figure
21(d). The number of timed sequential patterns that
were discovered by the algorithms also increased
because the possibility of finding more patterns in
the new timed sequences that satisfy the min-sup
(50% as the default value) condition also increased.
With an increased number of timed sequences in the
database, the algorithms needed to check if some
new patterns could occur and did not exist in the
old timed sequences. Next, the algorithm checked
their support against the threshold (min-sup). It
is possible that the support of some old patterns
in the database before new sequences was added
did not satisfy the min-sup condition because they
were not supported by enough timed sequences; but
with a new timed sequence database, these patterns

Figure 22. Parameter study (#events and #items) for synthetic dataset.

19

became timed-sequential patterns. Thus, the num-
ber of newly discovered timed sequential patterns
would increase. For example, if a database had 1,000
sequences in the synthetic dataset, the number of
timed sequential patterns was 3,720, while the number
of timed sequential patterns was 3,780 when the timed
sequence database had 10,000 timed sequences.

5.5.5 Impact of the number of events
per sequence

Figure 22 show the impact of the number
of events (#events) per timed sequence on the ex-
ecution time (ET) and the number of discovered
sequential patterns (#patterns). There was a strong
relationship between the length of a timed sequence
and the number of discovered patterns. Increasing
the length of timed sequences (#events) drove the
discovery of more patterns because the algorithm
could extend a pattern up to the length of the timed
sequence. If we have a timed sequence that contains
n events, we can discover a set of timed sequen-
tial patterns such that their length varies from 1 to
n. Subsequently, the required time of discovering
those patterns will increase as shown in Figure
22(a).

5.5.6 Impact of the number of items
per event

In the last experiment, we increased the num-
ber of unique items in each event. That means many
new items appear in the timed sequence database
TSDB which leads to detecting new timed sequen-
tial patterns. When the number of items increases,
the number of possible combinations between those
items to generate candidates also increases. Thus,
the number of patterns increased, as shown in Fig-
ure 22(d). Growing the length of events led to the
growth of the number of candidates, which means
the algorithms needed more time, as shown in Fig-
ure 22(c), to check those events, generate candi-
dates, and determine if they were timed sequential
patterns and reported the temporal relations.

6. Conclusion and future work
In this paper, we presented an algorithm

called Minits-AllOcc, to discover timed sequential
patterns TSP, which are sequential patterns that
include the transition times between all timesets. A
temporal relation in the timed sequential patterns

is calculated after considering all possible pattern
occurrences across the timed sequence database
TSDB. We implemented two versions of Minits-Al-
lOcc: 1) Minits-AllOcc using single-core CPUs,
and 2) MMinits-AllOcc on multi-core CPUs. We
conducted experiments to compare the accuracy and
execution time of the algorithms. The experiments
showed that the algorithms produced accurate
patterns. Also, MMinits-AllOcc outperformed Mi-
nits-AllOcc when the dataset was enormous in size,
in the length of timed sequences, or in the number
of items per event. For future work, we plan to im-
prove Minits-AllOcc to account for both long timed
sequences and Dynamic Timed Sequence Database
(DTSDB). The algorithm will be able to mine TSP
without re-executing everything from scratch.

Conflict of interest
On behalf of all authors, the corresponding au-

thor states that there is no conflict of interest.

References
1. Agrawal R, Srikant R. Mining sequential patterns.

In: Proceedings of the eleventh international confer-
ence on data engineering; 1995 Mar 6–10; Taipei.
New York: IEEE; 2002. p. 3–14. doi: 10.1109/
ICDE.1995.380415.

2. Brock FV, Crawford KC, Elliott RL, et al.
The Oklahoma Mesonet: A technical over-
view. Journal of Atmospheric and Oce-
anic Technology 1995; 12(1): 5–19. doi:
10.1175/1520-0426(1995)012<0005:tomato>2.0.
co;2.

3. McPherson RA, Friedrich CA, Crawford KC, et
al. Statewide monitoring of the mesoscale environ-
ment: A technical update on the Oklahoma Mesonet.
Journal of Atmospheric and Oceanic Technology
2007; 24(3): 301–321. doi: 10.1175/JTECH1976.1.

4. Jay N, Herengt G, Albuisson E, Kohler F. Sequen-
tial pattern mining and classification of patient path.
Medinfo 2004; 1667.

5. Pramono YWT, Suhardi. Anomaly-based intrusion
detection and prevention system on website usage
using rule-growth sequential pattern analysis: Case
study: Statistics of Indonesia (BPS) website. In:
2014 International Conference of Advanced In-
formatics: Concept, Theory and Application (IC-
AICTA); 2014 Aug 20–21; Bandung. New York:
IEEE; 2015. p. 203–208. doi: 10.1109/ICAIC-
TA.2014.7005941.

6. Dermy O, Brun A. Can we take advantage of

20

time-interval pattern mining to model students ac-
tivity? In: International Conference on Educational
Data Mining; 2020 Jul 10–13; Online. Massachu-
setts: International Educational Data Mining Socie-
ty; 2020. p. 69–80.

7. Rossetti MA. Analysis of weather events on US
railroads [Report]. Volpe National Transportation
Systems Center; 2007.

8. Simes T. A blow to train operations, can strong
winds cause derailment [Report]. Australian Trans-
port Safety Bureau; 2011.

9. Han J, Pei J, Mortazavi-Asl B, et al. FreeSpan:
Frequent pattern-projected sequential pattern min-
ing. In: Proceedings of the sixth ACM SIGKDD
International Conference on Knowledge Discovery
and Data Mining; 2000 Aug 20–23; Boston. New
York: Association for Computing Machinery; 2000.
p. 355–359.

10. Han J, Pei J, Mortazavi-Asl B, et al. PrefixSpan:
Mining sequential patterns efficiently by prefix-pro-
jected pattern growth. In: Proceedings of the 17th
International Conference on Data Engineering;
2001 Apr 2–6; Heidelberg. New York: IEEE; 2002.
p. 215–224.

11. Zaki MJ. Spade: An efficient algorithm for mining
frequent sequences. Machine Learning 2001; 42:
31–60. doi: 10.1023/A:1007652502315.

12. Jou C, Shyur HJ, Yen CY. Timed sequential pat-
tern mining based on confidence in accumulated
intervals. In: Proceedings of the 2014 IEEE 15th
International Conference on Information Reuse
and Integration (IEEE IRI 2014); 2014 Aug 13–15;
Redwood City. New York: IEEE; 2015. p. 771–778.
doi: 10.1109/IRI.2014.7051967.

13. Kumar S, Mohbey KK. A review on big data based
parallel and distributed approaches of pattern min-
ing. Journal of King Saud University-Computer and
Information Sciences 2022; 34(5): 1639–1662. doi:
10.1016/j.jksuci.2019.09.006.

14. Ghorbani M, Abessi M. A new methodology for
mining frequent itemsets on temporal data. IEEE
Transactions on Engineering Management 2017;
64(4): 566–573. doi: 10.1109/TEM.2017.2712606.

15. Zhao P, Jonietz D, Raubal M. Applying fre-
quent-pattern mining and time geography to im-
pute gaps in smartphone-based human-movement
data. International Journal of Geographical Infor-
mation Science 2021; 35(11): 2187–2215. doi:
10.1080/13658816.2020.1862126.

16. Aggarwal A, Toshniwal D. Frequent pattern mining
on time and location aware air quality data. IEEE
Access 2019; 7: 98921–98933. doi: 10.1109/AC-
CESS.2019.2930004.

17. Ritika, Gupta SK. HUFTI-SPM: High-utility and
frequent time-interval sequential pattern mining
from transactional databases. International Journal
of Data Science and Analytics 2022; 13: 239–250.
doi: 10.1007/s41060-021-00297-7.

18. Huang JW, Jaysawal BP, Chen KY, Wu YB. Mining
frequent and top-k high utility time interval-based
events with duration patterns. Knowledge and
Information Systems 2019; 61: 1331–1359. doi:
10.1007/s10115-019-01333-6.

19. Mirbagheri SM, Hamilton HJ. Mining high utility
patterns in interval-based event sequences. Data &
Knowledge Engineering 2021; 135: 101924. doi:
10.1016/j.datak.2021.101924.

20. Giannotti F, Nanni M, Pedreschi D. Efficient min-
ing of temporally annotated sequences. In: Frasconi
P, Landwehr N, Manco G, Vreeken J (editors).
Proceedings of the 2006 SIAM International
Conference on Data Mining; 2006 Apr 20–22;
Bethesda. Philadelphia: Society for Industrial and
Applied Mathematics; 2006. p. 348–359. doi:
10.1137/1.9781611972764.31.

21. Yang H, Gruenwald L, Boulanger M. A novel
real-time framework for extracting patterns from
trajectory data streams. In: Proceedings of the 4th
ACM SIGSPATIAL International Workshop on
GeoStreaming; 2013 Nov 5; Orlando. New York:
Association for Computing Machinery; 2013. p.
26–32. doi: 10.1145/2534303.2534313.

22. Titarenko SS, Titarenko VN, Aivaliotis G, Palcze-
wski J. Fast implementation of pattern mining algo-
rithms with time stamp uncertainties and temporal
constraints. Journal of Big Data 2019; 6(1): 1–34.
doi: 10.1186/s40537-019-0200-9.

23. Karsoum S, Gruenwald L, Barrus C, Leal E. Us-
ing timed sequential patterns in the transportation
industry. In: 2019 IEEE International Conference
on Big Data (Big Data); 2019 Dec 9–12; Los An-
geles. New York: IEEE; 2020. p. 3573–3582. doi:
10.1109/BigData47090.2019.9006394.

24. Srikant R, Agrawal R. Mining sequential patterns:
Generalizations and performance improvements.
In: Apers P, Bouzeghoub M, Gardarin G (editors).
Advances in Database Technology—EDBT’96: 5th
International Conference on Extending Database
Technology; 1996 Mar 25–29; Avignon. Heidel-
berg: Springer; 1996. p. 1–17.

25. Fournier-Viger P, Lin JCW, Kiran RU, et al. A sur-
vey of sequential pattern mining. Data Science and
Pattern Recognition 2017; 1: 54–77.

26. Huynh B, Vo B, Snasel V. An efficient method for
mining frequent sequential patterns using multi-core
processors. Applied Intelligence 2017; 46: 703–16.

21

doi: 10.1007/s10489-016-0859-y.
27. Li H, Zhou X, Pan C. Study on GSP algorithm

based on Hadoop. In: 2015 IEEE 5th International
Conference on Electronics Information and Emer-
gency Communication; 2015 May 14–16; Beijing.
New York: IEEE; 2015. p. 321–324. doi: 10.1109/
ICEIEC.2015.7284549.

28. Wei Y, Liu D, Duan L. Distributed PrefixSpan
algorithm based on MapReduce. In: 2012 Interna-
tional Symposium on Information Technologies in
Medicine and Education; 2012 Aug 3–5; Hokkaido.
New York: IEEE; 2012. p. 901–904. doi: 10.1109/
ITiME.2012.6291449.

29. Yu X, Li Q, Liu J. Scalable and parallel sequential
pattern mining using spark. World Wide Web 2019;
22(1): 295–324. doi: 10.1007/s11280-018-0566-1.

30. Gan W, Lin JCW, Fournier-Viger P, et al. A survey
of parallel sequential pattern mining. ACM Transac-
tions on Knowledge Discovery from Data (TKDD)
2019; 13(3): 1–34. doi: 10.1145/3314107.

31. Dong G, Pei J. Sequence data mining. New York:
Springer Science & Business Media; 2007.

32. Patnaik D, Butler P, Ramakrishnan N, et al. Ex-
periences with mining temporal event sequences
from electronic medical records: Initial success-
es and some challenges. In: Proceedings of the
17th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining; 2011
Aug 21–24; San Diego. New York: Association
for Computing Machinery; 2011. p. 360–368. doi:
10.1145/2020408.2020468.

33. Chen YL, Chiang MC, Ko MT. Discovering time-in-
terval sequential patterns in sequence databases.
Expert Systems with Applications 2003; 25(3):
343–354. doi: 10.1016/S0957-4174(03)00075-7.

34. Hu YH, Huang TCK, Yang HR, Chen YL. On min-
ing multi-time-interval sequential patterns. Data &
Knowledge Engineering 2009; 68(10): 1112–1127.
doi: 10.1016/j.datak.2009.05.003.

35. AlZahrani MY, Mazarbhuiya FA. Discovering
constraint-based sequential patterns from medical
datasets. International Journal of Recent Technol-
ogy and Engineering 2019; 8(4): 724–728. doi:
10.35940/ijrte.D7011.118419.

36. Giannotti F, Nanni M, Pinelli F, Pedreschi D.
Trajectory pattern mining. In: Proceedings of the
13th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining; 2007
Aug 12–15; San Jose. New York: Association for
Computing Machinery; 2007. p. 330–339. doi:
10.1145/1281192.1281230.

37. Mannila H, Toivonen H, Inkeri Verkamo A. Dis-
covery of frequent episodes in event sequences.

Data Mining and Knowledge Discovery 1997; 1:
259–289. doi: 10.1023/A:1009748302351.

38. Zimmermann A. Understanding episode mining
techniques: Benchmarking on diverse, realistic,
artificial data. Intelligent Data Analysis 2014; 18(5):
761–791. doi: 10.3233/IDA-140668.

39. Zhang D, Lee K, Lee I. Mining medical periodic
patterns from spatio-temporal trajectories. In: Siuly
S, Lee I, Huang Z (editors). Health Information
Science: 7th International Conference; 2018 Oct 5–7;
Cairns. Berlin: Springer International Publishing;
2018. p. 123–133.

40. Zhang D, Lee K, Lee I. Mining hierarchical se-
mantic periodic patterns from GPS-collected
spatio-temporal trajectories. Expert Systems with
Applications 2019; 122: 85–101. doi: 10.1016/j.es-
wa.2018.12.047.

41. Yuan J, Zheng Y, Zhang C, et al. T-drive: Driving
directions based on taxi trajectories. In: Proceedings
of the 18th SIGSPATIAL International Conference
on Advances in Geographic Information Systems;
2010 Nov 2; San Jose. New York: Association
for Computing Machinery; 2010. p. 99–108. doi:
10.1145/1869790.1869807.

42. Yuan J, Zheng Y, Xie X, Sun G. T-drive: Enhancing
driving directions with taxi drivers’ intelligence.
IEEE Transactions on Knowledge and Data En-
gineering 2011; 25(1): 220–232. doi: 10.1109/
TKDE.2011.200.

43. Ester M, Kriegel HP, Sander J, Xu X. A densi-
ty-based algorithm for discovering clusters in large
spatial databases with noise. In: Simoudis E, Han
J, Fayyad U (editors). Proceedings of the Second
International Conference on Knowledge Discovery
and Data Mining; 1996 Aug 2–4; Portland. Wash-
ington, D.C.: AAAI Press; 1996. p. 226–231.

44. Karsoum S, Gruenwald L, Leal E. Impact of tra-
jectory segmentation on discovering trajectory
sequential patterns. In: 2018 IEEE International
Conference on Big Data (Big Data); 2018 Dec 10–
13; Seattle. New York: IEEE; 2019. p. 3432–3441.
doi: 10.1109/BigData.2018.8622209.

45. What is the heat index? [Internet]. Amarillo: Weath-
er Forecast Office; [2021 Oct 17]. Available from:
https://www.weather.gov/ama/heatindex.

46. Water Science School. The 100-year flood [Inter-
net]. Virginia: USGS; 2018 [cited 2021 Oct 17].
Available from: https://www.usgs.gov/special-topic/
water-science-school/science/100-year-flood?qt-sci-
ence_center_objects=0#qt-science_center_objects.

47. The Beaufort wind scale [Internet]. London: Met-
Matters; [cited 2021 Oct 17]. Available from:
https://www.rmets.org/resource/beaufort-scale.

22

48. Dew point vs humidity [Internet]. La Crosse:
Weather Forecast Office; [cited 2021 Oct 17]. Avail-
able from: https://www.weather.gov/arx/why_dew-
point_vs_humidity.

49. Fournier-Viger P, Lin JCW, Gomariz A, et al. The
SPMF open-source data mining library version

2. In: Berendt B, Bringmann B, Fromont É, et al.
(editors). 19th European Conference on Principles
of Data Mining and Knowledge Discovery (PKDD
2016) Part III; 2016 Sept 19–23; Riva del Garda.
Berlin: Springer; 2016. p. 36–40. doi: 10.1007/978-
3-319-46131-1_8.

