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ABSTRACT

This study aims to explore the feasibility of using an in-house developed photoacoustic (PA) system for predicting

blood phantom concentrations using a pretrained Alexnet and a Long Short-Term Memory (LSTM) network. In two

separate experiments, we investigate the performance of our strategy using a point laser source and a color-tunable Light-

Emitting Diode (LED) as the illumination source. A single-point transducer is employed to measure signal change by

adding ten different black ink concentrations into a tube. These PA signals are used for training and testing the employed

deep networks. We found that the LED system with light wavelength of 450 nm gives the best characterization

performance. The classification accuracy of the Alexnet and LSTM models tested on this dataset shows an average value

of 94% and 96%, respectively, making this a preferred light wavelength for future operation. Our system may be used for

the noninvasive assessment of microcirculatory changes in humans.
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1. Introduction

Ink is a pigmented solution or liquid material that marks or colors

a surface to create an image, text, or pattern. A significant application

of ink is in the preparation of medical phantoms. In most practical cases,

prior knowledge of ground truth is unavailable, so phantoms are often

prepared for evaluating and validating the performance of a proposed

approach[1] or instruments under development, particularly those

intended for clinical use before the in-vivo study. Phantom for clinical

applications (or medical model) can reproduce optical properties (e.g.,

absorption and scattering properties) of tissues[2,3], mimicking blood

flow conditions[4,5] and even the organs within the human body[6,7] so

that the anatomical structures or underlying physics[8] of human can be

sufficiently comprehended. The key benefits of inks are that they are

chemically and spectroscopically stable and harmless, making them a

suitable candidate for preparing tissue-simulating phantoms. In a study

by Cui et al.[9], the anisotropic cardiac patch with myocardial fibre

orientation was created using a gelatin-based printable ink composed

of Gelatin Methacrylate (GelMA) and Polyethylene Glycol Diacrylate

(PEGDA) to study the treatment of myocardial infarction. Others used

gelatin ink staining to evaluate microvascular perfusion and reported

serum MiR-98-5p as a feasible marker for microvascular perfusion[10].

Another work by Bachir and Dargham[11] used Indian ink to prepare a

phantom simulating subcutaneous veins in their study of blood vessel
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localization in dark skins. Other applications include the study of color shift on the surface of a cardiac phantom 

created from Polyvinyl Alcohol (PVA) hydrogel with temperature-responsive pigment inks to visually identify 

the catheter ablation zone by Imanishi et al.[12]. These innovative tissue and organ models and phantoms are 

beneficial in allowing validation studies of a system or method without risking harm to human subjects. 

Among the studies of phantom models that are worth mentioning include the work by Li et al.[13]. The 

authors demonstrated a Fibre Optic Spectrometer (FOS) system for characterizing skin pigmentation. This 

system is used to characterize an agar phantom dyed with red, green, and blue inks, with an accuracy of 96%, 

and was shown to discriminate the ink injection sites from normal tissue based on light scattering. In the study 

of Lam et al.[14], Multimodal Diffuse Optical Spectroscopy Imaging (MM-DOSI) technique was used for 

layered compositional analysis and metabolic tracking of tissue phantoms based on the absorptivity of the 

underlying chromophores (i.e., light absorbers). It was reported by Anugrah et al.[15] that the absorber’s (i.e., 

ink) concentration inside a phantom can be exploited to distinguish between different kinds of tissue. The 

hydrogen (O–H) bonds absorption peak increased with gelatin content, allowing localization of human soft 

tissue based on the categorization of Computed Tomography (CT)-Number values as a function of gelatin 

content. 

Photoacoustic imaging (PA) is another technology that has gained popularity as a noninvasive tool for 

studying optical absorption[10,16]. This approach combining optics and acoustics improves imaging sensitivity 

compared to absorption spectroscopy techniques. This technique begins with the transfer of light energy to the 

target samples. Acoustic waves are produced following the thermal expansion of tissues caused by light 

absorption in the medium. An ultrasonic transducer can be used to detect the produced waves, and their 

waveforms may be studied on an oscilloscope for further investigation and evaluation. Since chromophores’ 

light absorption is proportional to their concentration in the medium, PA imaging can be used to quantify the 

concentrations of chromophores present in the imaged region[17,18]. Roy et al.[19] investigated the influence of 

microfluidic channel diameters on the emitted acoustic signals using the methylene blue solution as its marker. 

The acoustic signal intensity was shown to vary linearly with increasing dye concentration, implying that this 

technique is feasible to characterize a dye concentration. In the work by Dolet et al.[20] multispectral PA 

imaging was used to estimate the fractional absorbers concentration (which is taken as oxygen saturation (SO2)) 

in the mice tumors model. 

The growth of Artificial Intelligence (AI) has revolutionized data science[21,22], industry practice[23], and 

particularly the medical sector[24,25]. Deep learning and machine learning are the subsets of AI. Machine 

learning techniques include Support Vector Machine (SVM), K-neighbors (KNN), Decision Tree, and Linear 

Regression. SVM is less computationally intensive than KNN and easier to read, but its application may be 

limited to linearly separable datasets. The Decision Tree is the most commonly used classifier due to its ease 

of implementation. However, slight changes in the data may result in significant changes in the tree’s structure. 

Linear Regression performs extraordinarily well for linearly separable data, while an Artificial Neural Network 

(ANN) is suitable for tasks that a linear method cannot handle. Deep learning is a representation-learning 

method that has multiple levels of representation. They are created by composing simple but nonlinear modules; 

each transforms the representation from a relatively simple level (begins with the raw input) to a higher level 

with complex and more abstract information. A pretrained deep model is a stored network previously trained 

on a large dataset for image-classification application. Since the representation it has learned is adequate (or 

readily transferable) for a given job, such as image classification or object detection, the pretrained model 

saves time by avoiding the need to train the network from scratch. Convolutional Neural Network (CNN) 

pretrained models include Alexnet, GoogleNet, and Visual Geometry Group Network (VGGNet). Alexnet is 

one of the most popular used networks using convolutional operation and max pooling to extract spatial-

dependent features in the data. It evolved from the need to better the ImageNet challenge results. It has shallow 

architecture, which places smaller demand on computational resources. GoogleNet is an inception module that 
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performs several convolutions with varying filter sizes and pooling in a single layer. Instead of requiring users 

to select the layer that produces the best results, the network determines this after training[26]. Pretrained 

VGGNet is a deeper network with much smaller filters. On the contrary, a self-developed deep learning model 

requires human expertise in its architecture design to categorize fresh, unseen data. It can learn more precise 

characteristics, perform well even when a pretrained network fails, and work better with additional data. 

AI has been extended in the field of characterizing tissue phantoms. Linear Regression is used in Bachir 

and Dargham[11] for differentiating vein depths using an 830 nm diode laser in illuminating Indian ink within 

an embedded polymer tube, which mimics subcutaneous veins, and reported a regression coefficient of 0.88. 

In the report by Youn et al.[27], an aortic phantom connecting a closed-circuit pulsatile flow system was 

developed to simulate the bolus geometry of the human abdominal aorta. The ANN with Multilayer Perceptron 

(MLP) architecture was used to predict the ideal bolus geometry with the corrected discrimination coefficient 

of 0.919. Zhang et al.[28] proposed a CNN named ring-array deep learning network (RADL-net) designed to 

reduce limited-view and under-sampling artifacts in PA data reconstructed from vascular images on a 

transparency film and in-vivo experiment using a three-quarter ring transducer array. It was shown that the net 

algorithm resulted in significant improvements in the image quality. RADL-net helped to restore the pixel 

intensity degraded by the limited-view issues while removing the background noise. In addition, the results 

showed that hemoglobin absorption was lower (in comparison to black ink), rendering a poorer image quality 

than in the phantom studies. The use of this CNN and PA was shown to be able to localize a target located at 

a depth of 40–60 mm below the surface. OxyGAN, a Conditional Generative Adversarial Network (CGAN) 

made up of two CNNs, i.e., a generator and a discriminator, was introduced by Chen and Durr[29] to estimate 

absorbers-related concentration (i.e., oxygen level) using single structured-light pictures. The authors reported 

a considerably good accuracy of 93%, suggesting the technique’s robustness to various tissue types. An 

encoder-decoder CNN architecture incorporating customized modules was proposed by Johnstonbaugh et 

al.[30]. This system was trained to detect the origin of PA wavefronts inside an optically scattering deep-tissue 

medium[30]. Even though CNN has been widely used in the field of photoacoustics, this method is well-known 

for the issue of vanishing gradients when the number of network layers increases[31]. Considering there might 

be delays of undetermined duration between critical occurrences in a time series, Long Short-Term Memory 

(LSTM) networks are suitable for classification, processing, and data related to time series[32]. In the phantom 

and in-vivo experiments of Siami-Namini et al.[31], the authors investigated the feasibility of an LSTM 

architecture for estimating blood flow index using Diffuse Correlation Spectroscopy (DCS). The results 

showed a linear relationship between blood flow changes and the flow velocity with a Pearson’s correlation of 

0.95 and 0.99, respectively. 

There has yet to be any documented work on the study of phantom characterization using LSTM and 

based on PA signals. Since a pretrained network can be used as an alternative for the classification problem, 

Alexnet is employed herein for comparison work. The training and testing of the pretrained Alexnet and LSTM 

models were performed on a DELL laptop with 16 GB RAM, 64-bit Windows 10, Intel® Xeon™ i7-1700M 

CPU @3.20 GHz. All the simulations have been carried out using MATLAB (2020b). It is also our intention 

to identify the best wavelength for phantom characterization. For this purpose, we used a 633 nm laser and 

color-tunable LED, producing six visible light bands as the system light source. 

2. Materials and methods 

2.1. PA detection system and phantom preparation 

Since the PA has been reported to vary with the wavelength-dependent medium’s absorptivity, we 

investigated the performance of PA-based phantom characterization using different light wavelengths. We 

considered two different light sources, i.e., a 633 nm laser source and a color-tunable LED source. Figure 1 

shows an in-house assembled PA system using a 633 nm continuous wave laser source (R-30993 New-port 
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Corp.), while Figure 2 shows the system using the LED light source. This multi-wavelength illumination 

system consists of two 5 mm ultra-bright transparent white LEDs (model. 5LED-UL-W) used to consecutively 

illuminate a set of color filters (model. FKB-VIS-10 Thorlabs). In this study, we used six visible light 

wavelengths, namely 450 nm, 500 nm, 550 nm, 600 nm, 650 nm, and 700 nm, for demonstration. A modulating 

light signal is produced after passing the light through an Acousto Optic Modulator (AOM), which is controlled 

by a radiofrequency (RF) driver with a carrier frequency of 15 MHz. Meanwhile, an ultrasonic flaw detector 

(EPOCH 650, Olympus Corp, Japan) is used for detecting the produced acoustic energy. A wideband bandpass 

filter with fixed cut-off frequencies (0.5–4 MHz) inside the EPOCH 650 was used to eliminate baseline drift 

and suppress high-frequency noise. 

 
Figure 1. Laser-based PA system for ink concentration characterization (left) and its experiment setup (right). 

 
Figure 2. PA system using color-varying LED as its illumination system (left) and its experiment setup (right). 

A single transparent Poly Vinyl Chloride (PVC) hollow tube (model: PRO 797–388) with an inner 

diameter of 4 mm installed inside a water tank (dimensions of 36 cm × 18 cm × 20 cm) is used to represent the 

blood vessels. The water tank was filled with tap water up to two-thirds of its capacity to establish an effective 

acoustic coupling between the phantom and transducer for the measurement. The illuminated tube containing 

the dye was completely immersed in the water throughout the whole experiment. In our study, commercial 

black ink was used as the dye. The peak wavelength of its light absorption is measured to be 450 nm using a 

USB spectrometer (model Ocean Optics USB 4000). Ten liquid samples were prepared and allowed to flow 

through the tube one at a time. They are undiluted ink (as the control sample) and water mixed with nine ink 

concentrations. The ink volumes considered are 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 2, and 3 ml, respectively, added 

into 1000 mL of tap water. We considered a small concentration increment of 0.2 mL at the low ink 

concentrations to evaluate the sensitivity of the PA system in detecting small changes in signals and the 

performance of the classification system. These samples were stirred for about 15 seconds to ensure 

homogeneous mixing. The light absorption-induced pressure changes are measured with a flat acoustic 

transducer (V323-SU/2.25 MHz, Olympus NDR) immersed in the water. 

The head of this sensor was placed next to the illumination area and at 3 cm from the region under study. 

This device was connected to the flaw detector for measuring ultrasonic waves as a function of time. A total 
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of 100 signals were collected under each ink concentration. The screenshot of these signals was saved on a 

microSD memory card before they were processed and analyzed offline. 

2.2. Signal restoration 

Since EPOCH 650 is not equipped to save raw data, signal restoration has been performed for the image 

frame to convert the image into numeric or matrix form for use with LSTM. Shown in Figure 3 is the 

screenshot image during one of the experiments (left) and the restored signal (right). This is feasible because 

of the color change in the image (i.e., green color is the measured signal against the dark background). The 

screenshot image (left) was first converted into a black-and-white binary image using the im2bw function (i.e., 

pixel “0” represents the background, and pixel “1” represents the object pixel). Next, the binarized 2D image 

matrix is converted into a 1D matrix form of size 1 × 494 (i.e., X1, …, X494), fed into the network input layer 

for further classification and analysis. 

 
Figure 3. A screenshot of the PA signal measured using the V323-SU transducer (left) and the restored signal obtained from the 
binarization process and data transformation (right). 

2.3. Data distribution 

The obtained PA signals were used to train, validate, and test the employed model. A total of 100 PA 

signals have been measured for each ink concentration and illumination wavelength. These signals were 

randomly divided into 70%/15%/15% splits for training, validation, and testing purposes in Table 1. The 

validation set was used to provide evidence of over- or under-fitting of the model during the network training. 

Each model was trained three times using these data, and the average is reported in the results section. 

Table 1. The distribution of wavelength-dependent PA data used for training, validation, and testing of the Alexnet and LSTM 
model. 

Class label Ink concentration (ml)/L Dataset* 

Training data Validation data Testing data 

1 0.2 70 15 15 

2 0.4 70 15 15 

3 0.6 70 15 15 

4 0.8 70 15 15 

5 1.0 70 15 15 

6 1.2 70 15 15 

7 1.4 70 15 15 

8 2 70 15 15 

9 3 70 15 15 

10 Undilute 70 15 15 

Total 700 150 150 

*Numbers of data shown are for each wavelength. 
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2.4. Transfer learning Alexnet 

Alexnet is one of the most popular CNN models, which architecture consists of five convolutional layers, 

the max-pooling layers, three fully connected layers, and normalization layers. This model adopts non-

saturating Rectified Linear Unit (ReLU) activation function, which outperformed sigmoid in training. It is the 

process of applying filters over an image to output feature maps for the given input data. This network in 

Figure 4 has an input layer of size 494 × 329 × 3, consistent with the original image size. No image 

preprocessing has been performed on the input images. The input is fed into the network composed of a series 

of convolutional, ReLU layers, and Max Pooling layers. A dropout layer of 0.50 is placed after layers 19th and 

22nd to prevent overfitting of the model. While the earlier layers were frozen during the training, the last fully 

connected layer (i.e., layer 23) was set as 10 according to the target class size in Table 1. 

 
Figure 4. Architecture of the Alexnet model used in this study. 

2.5. LSTM model 

The LSTM model is another classification model used to classify different ink concentrations because of 

its outstanding prediction results compared to the other RNN model[33]. It is a Recurrent Neural Network (RNN) 

that deals with the vanishing gradient problem faced by CNN. The forget gate, input gate, and output gate are 

the three basic components of an LSTM. The first section determines whether the information from the 

preceding timestamp is important to remember or may be ignored. The cell attempts to learn new information 

from the input in the second phase. Finally, the cell sends updated information from the current timestamp to 

the next timestamp in the third component. It can deal with sequential data and learn time series information, 

and it is easy in its implementation. Figure 5 shows the LSTM network that is used for the PA signal 

classification task. We used 150 hidden layers in the LSTM model to extract the important time features of the 

1D matrix, as it was found that a large hidden size value greater than 150 increases the training time without 

further enhancing the classification accuracy. This is followed by three fully connected layers, FC, of sizes 

100, 35, and 10. A dropout layer with a value of 0.3 was set right before the last FC layer to prevent the 

overfitting of the model. The output of the FCs is fed to a SoftMax classifier to classify the output into ten 

classes. 

 
Figure 5. Architecture of the proposed LSTM model. 
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2.6. Network training and hyperparameters tuning 

Both the abovementioned classification models were trained using an Adaptive Moment (ADAM) 

optimizer because of its rapid computation time and fast converging speed, as reported by Gupta[34], while 

some of the important hyperparameters, namely Epochs number, mini batch-size, initial learning rate, and 

gradient descent threshold, were manually tuned. Since all parameters should be nonzero and real positive, 

lower bounds are set close to the origin to prevent exploring in the negative direction, as shown in Table 2. 

Properly selecting hyperparameters would ensure better extraction of useful features for classification. 

In our experiments, the epoch number was adjusted from 1 to 3000, while the initial learning rate ranged 

from 0.0001 to 1. In addition, the mini batch-size was allowed to vary from 1 to 256. Gradient descent is an 

efficient optimization process that aims to find the local or global minimum of the cost function. It is not 

feasible to reduce the cost function’s value in infinitesimal steps; thus, the gradient threshold was arbitrarily 

adjusted in the range of 0.001 to 1 to avoid the non-convergence results. The upper limit of these parameters 

shown in Table 2 is chosen as we noticed a negligible change in the performance metrics beyond these values. 

There is inconsistency in the upper limit of the epoch number and mini-batch-size used for training the models 

because our experimental results showed that the LSTM model required a longer time in the training to achieve 

acceptable classification accuracy; hence it is necessary to use larger numbers of epoch and mini-batch sizes 

for model convergence. 

A total of 100 sets of these parameters combined based on the values in Table 2 were attempted in our 

simulations. The prediction accuracy was shown to vary from 10% to 99%, while the training time varied 

between 20 minutes and 1400 minutes for both models. At the end of the process, the best combination is 

identified as the set that produced the best training accuracy (i.e., 100%). 

Table 2. The upper and lower limits of the considered hyperparameters used in training the Alexnet and LSTM model. 

Parameter Models Limit Step of change Best hyperparameter 

Lower Upper 

Epoch number Alexnet 1 20 5 15 

LSTM 1 3000 100 3000 

Mini batch-size Alexnet 2 32 2n, where n = 2, 4, 6, …, 8 8 

LSTM 2 256 2n, where n = 2, 4, …, 6 128 

Initial learning rate Alexnet and 5 × 10−4 1 5 × 10−4 5 × 10−4 

LSTM - 

Gradient descent 
threshold 

Alexnet and 1 × 10−3 1 1 × e−n, n = 3, 2, 1, 0 1 × 10−3 

LSTM - 

2.7. Traditional multi-class classification methods 

Since most prior works[35,36] dealt with ink concentration prediction using hyperspectral imaging 

techniques, we used three traditional machine learning methods, namely SVM, KNN, and Decision Tree (DT), 

for comparison with the deep networks using the same PA dataset. The training and classification are done 

using MATLAB’s multisvm, fitcknn, and fitctree functions, respectively, for SVM, KNN, and DT-based 

multi-class concentration classification. A KNN of K value = 7 is used in the classifier, while the maximum 

split number is set to be 10 in the DT as they produced the best performance among other values from the pre-

experiment runs. 

2.8. Performance metrics 

Mean classification accuracy, precision, specificity, and sensitivity in Equations (1)–(4) are used as the 

performance metrics to compare and evaluate the classification performance of the pretrained Alexnet and 
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LSTM models and traditional models used in this study. While accuracy refers to how near a forecast is to the 

true value, specificity and sensitivity measure how well a model can distinguish between different ink 

concentrations. Precision indicates the ability of the classification model to identify only the relevant data 

points in the prediction of ink concentration. 

Accuracy = 
∑

𝑇𝑃𝑖+ 𝑇𝑁𝑖
𝑇𝑃𝑖+ 𝑇𝑁𝑖+ 𝐹𝑃𝑖+ 𝐹𝑁𝑖

𝑇
𝑖=1 

𝑇
 (1) 

Precision = 
∑

𝑇𝑃𝑖
𝑇𝑃𝑖 + 𝐹𝑃𝑖

𝑇
𝑖=1 

𝑇
 (2) 

Specificity = 
∑

𝑇𝑁𝑖
𝑇𝑁𝑖 + 𝐹𝑃𝑖

𝑇
𝑖=1 

𝑇
 (3) 

Sensitivity = 
∑

𝑇𝑃𝑖
𝑇𝑃𝑖 + 𝐹𝑁𝑖

𝑇
𝑖=1 

𝑇
 (4) 

T is the total number of class labels (T = 10). A true positive (TPi) is a concentration class that is correctly 

predicted to be a specific class label, i. A false positive (FP) is a non-concentration class that is incorrectly 

predicted to be a class member, and a false negative (FN) is a concentration class member that is misclassified 

as a non-concentration class member. A true negative (TN) is a non-concentration class member correctly 

classified as a non-concentration class member. 

3. Results 

Figure 6 shows the measured PA signal for the ink concentrations experiment using the light wavelength 

of 450 nm. The signals for this wavelength are chosen for demonstration because of their higher signal 

strengths compared to others, allowing better visualization of signal characteristics with sample concentration. 

The figure shows the produced values decrease with the dilution of the ink, consistent with the findings by 

Rajian et al.[37] that the signal amplitudes are directly proportional to the media absorption coefficient. 

 
Figure 6. The 3D visualization of the PA signals measured from different ink solution concentrations at 450 nm. 

Based on this diagram, it can be noticed that signals from 0.6 mL to 1.4 mL suspensions of ink have 

similar amplitudes and signal trend characteristics. Therefore, in Figure 7, we compared the signals between 

0.2 mL, 1 mL, 2 mL, 3 mL, and undiluted ink solution. In addition to the consistent increase in the signal 

strength, the delay in the arrival of the acoustic waves can be seen with increasing medium light absorption. 

The delay is consistent, particularly between 50 and 100 µs and from 150 to 300 µs, suggesting the likelihood 

of light scattering by light-absorbing particles within the medium. This increases the medium refractive index 

causing changes in the sound waves propagated in the medium[38]. Even though changes in the patterns and 

characteristics of the PA waves are pronounced for the sparsely-spaced concentration levels in Figure 7, 



9 

Figure 6 shows that their trends can be relatively similar for closely-spaced concentration levels. To this end, 

the Alexnet and LSTM models are trained to classify the ink concentration. Using the best parameters setting 

in section 2.6 in the network training, the best and the worst performing models are presented in Figures 8 and 

9. The mean and standard deviation of the considered metrics calculated from three consecutive runs are shown 

in Table 3. The average training time for Alexnet and LSTM is 37 ± 4.71 minutes and 1364 ± 21.78 minutes, 

respectively. Table 4 shows the overall classification performance of these models averaged based on their 

results in Table 3. Also included in this table are the classification performance results of the considered 

traditional methods. 

 
Figure 7. A comparison of the produced PA signals recorded for sparsely-spaced concentration levels at wavelength 450 nm. 

Table 3. The average classification performance of Alexnet and LSTM tested on datasets of different wavelengths for ink 
concentration classification. 

Wavelength (nm) Average model performanceƗ (%) 

Alexnet LSTM 

450 Acc: 94.00 ± 0.00 
Spec: 90.20 ± 0.12 
Sen: 90.00 ± 0.50 
Prec: 87.00 

Acc: 96.00 ± 0.97 
Spec: 93.80 ± 0.17 
Sen: 99.30 ± 0.59 
Prec: 93.00 

500 Acc: 83.00 ± 0.00 
Spec: 75.00 ± 0.22 
Sen: 84.70 ± 0.90 
Prec: 90.00 

Acc: 87.30 ± 0.84 
Spec: 84.30 ± 2.55 
Sen: 87.90 ± 2.63 
Prec: 91.00 

550 Acc: 75.00 ± 0.00 
Spec: 70.00 ± 0.55 
Sen: 77.30 ± 2.70 
Prec: 70.00 

Acc: 94.00 ± 0.41 
Spec: 94.90 ± 0.52 
Sen: 94.70 ± 2.03 
Prec: 93.00 

600 Acc: 70.00 ± 0.00 
Spec: 74.70 ± 0.32 
Sen: 70.40 ± 0.60 

Prec: 76.00 

Acc:70.00 ± 0.30 
Spec: 76.80 ± 0.26 
Sen: 72.00 ± 0.34 

Prec: 88.00 

633* Acc: 87.00 ± 0.00 

Spec: 88.00 ± 1.45 
Sen: 91.20 ± 0.36 
Prec: 88.00 

Acc: 76.00 ± 0.64 

Spec: 81.81 ± 0.21 
Sen: 76.70 ± 0.92 
Prec: 85.00 

650 Acc: 75.00 ± 0.78 
Spec: 68.20 ± 0.22 
Sen: 68.00 ± 0.79 
Prec: 79.00 

Acc: 72.70 ± 0.60 
Spec: 67.40 ± 0.15 
Sen: 70.21 ± 2.13 
Prec: 82.00 
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Table 3. (Continued). 

Wavelength (nm) Average model performanceƗ (%) 

Alexnet LSTM 

700 Acc: 66.00 ± 0.61 
Spec: 63.30 ± 0.40 
Sen: 65.00 ± 0.72 
Prec: 70.00 

Acc: 58.92 ± 0.67 
Spec: 65.80 ± 0.23 
Sen: 64.37 ± 0.03 
Prec: 58.00 

ƗAcc = accuracy, Spec = specificity, Sen = sensitivity, Prec = precision. 
* Laser illuminated. 

Remarks: The best models are highlighted in blue, and the worst models are in orange. 

Table 4. A comparison of the overall classification performance of Alexnet, LSTM, and traditional machine learning methods for ink 
concentration classification. 

Average model performance (in %) Accuracy Specificity Sensitivity Precision 

 Alexnet 78.57 ± 9.15 75.67 ± 9.240 78.09 ± 9.93 80.00 ± 7.84 

LSTM 79.27 ± 12.62 80.69 ± 10.70 80.74 ± 12.32 84.29 ± 
11.39 

SVM 59.81 ± 14.10 62.70 ± 12.18 52.84 ± 11.76 60.40 ± 
13.21 

KNN 60.43 ± 14.10 60.22 ± 13.71 62.74 ± 11.09 64.73 ± 
10.97 

Decision 
Tree 

46.86 ± 20.50 51.07 ± 13.47 47.80 ± 9.21 51.33 ± 9.82 

Table 4 shows that even though LSTM produced a slightly better average performance in all metrics than 

Alexnet, the latter produces higher consistency with smaller standard deviation values due to the higher 

consistency in the results in Table 3. The layers in the Alexnet apply a set of learnable filters to the input image 

and each filter to detect spatial patterns in the dataset, whereas the LSTM network uses time series data and a 

control gate method to update the cells. Thus, the LSTM model may be sensitive to the time domain variation 

in the data, such as that noticeably seen near the end of the time series in Figure 7. An investigation into the 

signals at other wavelengths revealed larger data inconsistency and noise, especially for wavelength 700 nm. 

Training LSTM with corrupted signals made the network less capable of learning hidden patterns, leading to 

variations in the performance in Figure 9 and Table 4, and it also demands a longer training time to achieve 

a reasonable performance. Meanwhile, the KNN model surpassed SVM and DT in terms of average accuracy, 

sensitivity, and precision. The DT method obtained the worst classification performance with the lowest values 

in all performance measures. 

The confusion matrix of the best results from the Alexnet model is shown in Figure 8 to achieve 95.3% 

testing accuracy with a training time of 30 minutes (using epochs: 20, mini batch-size: 15, gradient descent 

threshold: 0.001, and learning rate: 0.001). This is chosen from three simulation runs using the 450 nm dataset. 

The LSTM model achieved 99.3% testing accuracy using the same dataset at the price of a longer training time 

(i.e., 1404 minutes using epoch no.: 3000, mini batch-size: 256, gradient descent threshold: 0.001, and learning 

rate: 0.0005). Figure 9 shows the classification performance of the worst-performing models. Both the Alexnet 

and LSTM have the lowest prediction accuracy using 700 nm data. 
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Figure 8. The confusion matrix of the best models. The diagram shows the class predictions for the 450 nm testing dataset using 
Alexnet (top) and LSTM (bottom). 
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Figure 9. The confusion matrix of the worst models. The diagram shows the class predictions for the 700 nm testing dataset using 
Alexnet (top) and LSTM (bottom). 

4. Discussion 

This work considered single-wavelength laser and multi-wavelength LED illumination systems to 

identify the best light wavelength for black ink concentration prediction. While our results in Table 3 revealed 

a small difference in the performance of the two deep models using photoacoustic data, the prediction 

performance depends largely on the illuminating wavelength. The pretrained Alexnet slightly underperformed 
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compared to its time-recurrent counterpart, wherein the latter allowed data to travel through each layer, keeping 

only relevant information and discarding irrelevant information in each cell during the training phase. This 

characteristic of LSTM has slightly improved the overall accuracy, especially when there is a consistent trend 

in the concentration-dependent temporal changes in the acoustic wave signals, as shown in Figures 6 and 7. 

This pattern may be a significant feature for detecting concentration levels. Nonetheless, we observed larger 

fluctuations in their training and validation accuracies against the epoch count while training the model, which 

we attributed to the inefficiency of the hyperparameter tuning process. In addition, we do not rule out the 

possibility that the model is learning noise patterns in the data. 

According to Table 3, the classification performance of both models generally decreases with an increase 

in wavelength. We attributed this observation to the peak light absorption at the wavelength of 450 nm, 

producing high signal intensity in Figure 6. The same (but weaker) effects have been produced by the highly 

intense and highly directional the laser system. Table 4 shows superior classification results using the 10 mW 

633 nm laser, compared to its neighbouring wavelengths at 600 and 650 nm (from the LED). The LED system 

used in this study has a higher total output intensity of 64 mW, but it has high-angle illumination beams of 

120°, lowering the energy of light illuminating the selected region. Thus, producing a lower signal-to-noise 

performance than the laser beam. The worst results are observed in Table 3 and Figure 9 for models trained 

using the 700 nm dataset. The light absorption at this wavelength is the lowest, rendering high noise levels and 

a lack of distinctive features of the concentration-dependent photoacoustic signal. The inconsistency in the 

features that the networks used to recognize concentration levels at this wavelength implies the need for a more 

robust noise suppression system, for example, a lock-in amplifier, in the future. 

Based on Figure 8, the Alexnet model failed to classify class 2 and class 4 signals, while the LSTM model 

produced near-perfect results for all classes except for class 1 (i.e., 1L of water added with 0.2 mL ink). The 

signals in class 1 were wrongly categorized as class 2 (i.e., 0.4 mL ink sample). These signals were investigated 

using the cross-correlation coefficient method (xcorr in MATLAB 2020b). The result shows a high correlation 

factor of 0.991, which explains the insufficiency of the models to differentiate between the two classes. 

The results shown in Table 4 comparing classification results from deep networks with a Decision Tree, 

SVM, and KNN showed the overall inferiority of the traditional methods, with an average performance of 

46.86 ± 20.50%, 59.81 ± 14.10%, and 60.43 ± 14.10%, respectively. SVM, which uses a clear margin 

hyperplane to separate different classes, failed to establish a linear separation between signals of different ink 

concentrations. Meanwhile the Decision Tree that separates the data based on their signal behaviours cannot 

accurately identify signals with similar patterns. KNN, on the other hand, judged the outcome based on 

similarity in the neighbourhood. The considerable overlap in the signals’ characteristics might have 

compromised the accuracy of this classifier. It is promising to note that using PA technology with deep learning 

produced an overall promising classification accuracy. This implies the feasibility of the PA technology and 

deep learning approach for predicting the optical properties of a scattering-absorbing medium. Such 

application includes characterizing blood components (such as blood carbon monoxide levels) for medical 

diagnosis, treatment and health research. 

5. Conclusion 

Our results show that the Alexnet and LSTM models can classify ink concentrations based on PA signals. 

They yielded considerably good results in terms of the high classification accuracy and precision of 95.3% and 

87%, and 99.3% and 93% for Alexnet and LSTM, respectively. The LSTM model produced a better 

performance at the price of a longer training time. Through these efforts, we conclude that the PA system and 

time series deep learning models have a promising future in medical diagnosis and treatment due to their ability 

to give valuable insights into the optical properties of a medium (e.g., tissues) without the need for a contrast 

agent. A possible application of this strategy is in monitoring the changes in carboxyhemoglobin levels, in 
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which the differences in their PA signatures could be distinguished based on changes in light absorption. Future 

work deals with implementing the proposed system for animal studies before human experimentation in the 

study of drug delivery and disease progression and treatment. In addition, a noise filter may also be applied to 

remove the noise in the signals to achieve noise-free features and improve the signal’s signal-to-noise 

performance. 
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