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ABSTRACT
Grinding wheel condition monitoring is an important step towards the prediction of grinding wheel faulty

conditions. It is beneficial to define techniques to minimize the wear of the grinding wheels and finally enhance the life
of the grinding wheels. Grinding wheel condition monitoring is done by two techniques such as (i) direct and (ii)
indirect. Direct monitoring employs optical sensors and computer vision techniques, and indirect monitoring is done by
signal analysis such as acoustic emission (AE), vibration, cutting force, etc. Methods implemented for grinding wheel
monitoring in the published research papers are reviewed. The review is compiled in five sections: (a) process
parameters measurement, (b) data acquisition systems, (c) signal analysis techniques, (d) feature extraction, and (e)
classification methods. In today’s era of Industry 4.0, a large amount of manufacturing data is generated in the industry.
So, conventional machine learning techniques are insufficient to analyze real-time conditioning monitoring of the
grinding wheels. However, deep learning techniques such as artificial neural network (ANN), convolutional neural
network (CNN) have shown prediction accuracy above 99%.
Keywords: grinding wheel; condition monitoring; artificial neural network; convolutional neural networks

1. Introduction
In the recent past, the demand for quality parts has been

increased enormously. Grinding is a widely used precision finishing
process. More than 70% high precision parts are manufactured using
grinding process. It is used to produce very accurate dimensions and
fine finishing for machined parts[1]. Grinding process is used in
automobile, medical, marine, and aerospace industries. Grinding is an
essential process as it is the final step in the manufacturing of any
part. Any defect in this step can not only hamper the quality of the
product but also the parts need to be scrapped. This causes a loss in
production time and cost[2]. The main part of the grinding machine is
the grinding wheel, which contains abrasive grains, bonding materials,
and pores[3]. After a few cycles of grinding, the cutting ability of the
grinding process deteriorates due to abrasive particle wear, bond
material failure, and abrasive wheel loading and glazing of the
grinding wheel[4]. This happens due to mechanical vibrations and
friction with the part surface. Because of this wear on the grinding
wheel, the accuracy of part dimensions and quality of the surface may
get affected. So, monitoring of the grinding wheel is much needed to
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prevent excessive wear of grinding wheels[5,6]. Condition monitoring of the grinding wheels is usually done 
manually, which is an inefficient method[7]. Tool condition monitoring has become an essential field for 
monitoring various production process parameters due to significant developments in sensor and computing 
technologies in recent years[8]. It detects a change that indicates fault development. Tool condition 
monitoring is implemented for fault detection as well as predicting the healthy condition of machines[9]. Tool 
condition monitoring provides information about the state of the grinding wheel. By knowing the state of the 
grinding wheel, we can predict different failures and increase the grinding wheel life. Tool condition 
monitoring also helps in minimizing grinding wheel wear. During condition monitoring, different types of 
sensors and transducers are employed to monitor vibrations, acoustic emission, sound, motors, etc. to predict 
the condition of the grinding wheel. Moreover, different process parameters like acoustic emission, vibration, 
force, power, acceleration, and temperature are monitored in the grinding process[10]. 

2. Grinding processes 
Grinding is used to manufacture high accuracy work pieces. The emerging field of automation in 

industry depends upon the high-quality parts[11]. In the grinding process, grinding wheel wear is more 
significant because it affects the accuracy and surface finish of the machined parts[12]. 

2.1. Types of grinding wheel 
Many researchers have been carrying out experimentation in the past with different types of grinding 

wheels (Table 1). Lin and Wu have used a diamond abrasive grinding wheel for sapphire wafer grinding in 
the experimentation[13]. In the study conducted by Wang et al. for finishing of quarter glass, they have 
employed a grinding wheel of diamond material[14]. In the experimentation, aluminium oxide wheelswere 
used. These were used for grinding of ANSI 4140 steel alloy parts with hardness HRC45, HRC55[15]. Mahata 
et al. had performed grinding tests on a grinding wheel of aluminium oxide material. This was employed for 
grinding E31 workpiece with hardness HRC60[1]. Lee et al. have conducted experimentation by employing 
Monocrystalline aluminum oxide to grind carbon steel (S45C) work pieces[5]. Nguyen et al. used three 
silicon carbide vitrified abrasivegrinding wheels with external diameters 300, 350, and 400 for 
experimentation. The work piece material was Ti-6Al-4V alloy and the dimension of the work pieces were 
100 (L) × 10 (T) × 20 (W) mm[16]. 

Table 1. Types of grinding wheel. 

Sr. No. Grinding wheel material Workpiece material Grinding wheel size Author 

1 Diamond abrasive grinding wheel Sapphire wafers External diameter 12" Lin YK and Wu BF[13] 

2 Diamond grinding wheel quartz glass 20 × 20 mm (D, T) Wang Y et al.[14] 

3 Aluminum oxide ANSI 4140 steel alloy 355 × 25 × 127 mm (D, T, H) Zhang B et al.[15] 

4 Aluminum oxide EN 31 6" × 3/8" × 1–1/4" (D, T, H) Mahata S et al.[1] 

5 Monocrystalline aluminum oxide Carbon steel (S45C) 355 × 38 × 27 mm (D, T, H) Lee CH et al.[5] 

6 Silicon carbide Ti-6Al-4V alloy External diameter 300, 350, 400 mm Nguyen DT et al.[16] 

2.2. Monitoring methods 
Monitoring and prediction of grinding wheel wear is difficult because there is a lack of efficient 

methods to give real-time feedback during grinding (Figure 1). In the grinding process, mechanical 
vibrations and sound signals are observed. These signals are used for monitoring of grinding wheel 
conditions. Sound and vibration sensors are used for the collection of these signals[17]. In the recent past, new 
reliable and efficient tool monitoring methods are developed for accurate measurement of signals (Figure 2). 
These are classified into two categories (i) direct and (ii) indirect. Direct monitoring uses optical equipment 
such as CCD cameras, optical sensors, etc., and computer vision systems for identifying the state of the 
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grinding wheels. These methods do not obstruct the grinding process. Direct methods achieve accurate 
measurement in ideal conditions. But these methods are unsuitable for manufacturing industry as the cost of 
equipment is very high. So, the use of these equipment increases the manufacturing cost. Moreover, due to 
the presence of cutting fluid/coolant and workpiece chips, the measurement accuracy gets affected. So, 
indirect tool monitoring methods are widely employed to predict grinding wheel conditions. These methods 
are less expensive compared to direct methods. In indirect methods, various signals are captured from 
different process parameters such as vibration, acoustic emission force, temperature, motor current, etc. 
These signals are used to monitor grinding wheel conditions[10]. Indirect methods are very beneficial for 
reducing the downtime of machines and increasing the quality of parts. 

Indirect tool condition monitoring comprises of the following steps: 

1) Sensor selection—suitable sensor for measuring process parameters is selected, such as AE sensor, 
accelerometer, etc. 

2) Data acquisition—signals are acquired for different process parameters such as vibration, Acoustic 
Emission, temperature, etc. 

3) Signal conditioning on the collected signals is performed. 

4) Feature extraction—this step involves the conversion of the original signal into significant features. 

Decision making—grinding wheel condition is predicted using various decision making techniques such 
as support vector machine (SVM), Hidden Markov model (HMM), and artificial neural network (ANN)[18,19]. 

 

 
(i) (ii) 

Figure 1. (Continued). 
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(iii) 

Figure 1. Grinding wheel monitoring using AE and vibration signals[17]. (i) The gear grinding machine and workpiece; (ii) Overview 
of the grinding process; (iii) Measured AE signals less than 100 repeated trials: (a) original data, (b) one experiment on average, and 
(c) tenexperiments on average. 

 
(a) 

Figure 2. (Continued). 



5 

 
(b) 

Figure 2. Tool condition monitoring[20]. (a) Framework of Tool condition monitoring; (b) An online tool condition monitoring 
system’s concept. 

3. Process parameter measurement 
Grinding wheel condition monitoring is done by acquiring different signals from the grinding process. 

Vibration signals and acoustic signals are widely used for monitoring of grinding wheel conditions. 
Measurement of acoustic emission and vibration signals done by different researchers is discussed. 

3.1. Acoustic emission 
It is generated when the grinding wheel comes in contact with the work piece. Other causes of acoustic 

emission in grinding operation are crack generation and deformation in part due to the load applied while 
grinding dislocations, and phase transformations[10]. AE sensors are used in grinding wheel condition 
monitoring due to the following reasons (i) better accuracy and precision, (ii) higher sensitivity to machining 
parameters, (iii) the installation is simple, (iv) better real-time monitoring, (v) high frequency (1 kHz–1 MHz) 
signals can be acquired, (vi) higher signal to noise ratio, (vii) neural network prediction accuracy for 
grinding parameters increases[4–21]. Alexandre et al. conducted a study of AE signal frequency (25–40 kHz) 
for monitoring of grinding wheel dressing conditions and surface irregularities. The grinding wheel surface 
state was identified by a fuzzy model[11]. Liu and Ou used AE sensor (Model: VM25, Balance Systems, 
Make: MI, Italy) with sampling frequency 20 Hz to acquire AE RMS (AE root-mean-square) signal from 
Al2O3 grinding wheel condition of the gear grinding machine. The main outcome of this study is the use of 
AE signals for enhancing grinding quality[22]. In this study, an acoustic emission sensor was used to monitor 
aluminium oxide grinding wheels. Feature extraction is done using time-domain analysis. Support vector 
machine algorithm was implemented to identify the grinding wheel condition[10]. In this paper, the test was 
conducted on aluminum oxide grinding wheels and the workpiece material was 45 carbon steel with hardness 
24 HRC. AE Sensor-SAEU2S, Make-Beijing Shenghua was used to collect grinding wheel signals. 
Classification of grinding wheel conditions was done by BP neural network[7]. In this study, AE signals from 
aluminium oxide grinding wheels were acquired by a piezoelectric AE sensor (Table 2). A neural network-
multilayer perceptron type was trained with another algorithm (Levenberg-Marquardt) was used for the 
classification of the grinding wheel as a sharp, dull condition[23]. In this paper, the burn of aluminium oxide 
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grinding wheel was monitored with an intelligent system. The study was conducted on a surface grinding 
machine and SAE 1020 workpiece material was used. AE sensor (Make-Sensis) is used to collect vibration 
and acoustic signals. Classification of the three conditions as burn, no burn, and high roughness value was 
done by a neural network-multilayer perceptron[17]. Feature extraction for burn was done by using different 
sensors like AE, voltage, accelerator, and current. A sensor system using motor current sensors, voltage 
sensors, accelerator, and acoustic emission sensor for grinding burn feature extraction. Signal processing for 
AE and accelerator signals is done by Hilbert-Huang transform (HHT) method to classify burn[24]. In this 
experimentation, first AE signals were acquired and autoregressive model is used for signal processing to 
extract the features. Ant colony optimization (ACO) and sequential forward floating were used to select the 
best features[25]. Acoustic emission signal of the diamond grinding wheel was measured by AE sensor-
piezoelectric type with sample frequency 1.25 MHz. The sensor was mounted on mild steelwork pieces. FFT 
analyser was used for signal analysis of AE signals[26]. 

Table 2. Types of sensors and their temperature ranges. 

Sr. No. Sensor type Sensor details Authors 

Sensitivity 
(in dB) 

Frequency limit 
(in Hz) 

Temperature 
limit (in ºC) 

1 Hydrophone AE fluid 
sensor-Make-Balance 
Systems 

- 10 kHz–1 MHz - Lin YK and Wu BF[13] 

2 AE Sensor-Model-
R50A–Make-
Physical Acoustic 
Corporation 

62 100–700 kHz −65 to 177 Bi G et al.[27] 

3 AE sensor Micro30 
D-Make-Physical 
Acoustic Corporation 

65 100–350 kHz −65 to 177 Shivith K and Rameshkumar K[4] 

4 AE Sensor-Model 
DM-42, Make-Sensis 

- up to 1 MHz - Lopes WN et al.[28] 

5 AE Sensor-Model -
R15-UG–Make-
Physical Acoustic 
Corporation 

69 50–200 kHz −65 to 75 Zhang B et al.[6] 

6 AE sensor Micro30 
D-Make-Physical 
Acoustic Corporation 

65 100–350 kHz −65 to 177 Krishnan PS and Rameshkumar 
K[29] 

7 AE Sensor-Model: 
VM25, Make-
Balance Systems 

- 20 Hz - Liu CS and Ou YJ[22] 

8 AE Sensor-DITTEL 
(DittelMesstechnik 
GmbH, Landsberg 
am Lech, Germany) 

- - - Mirifar S et al.[21] 

9 AE Sensor-Model 
DM-42, Make-Sensis 

- up to 1 MHz - Aulestia MA et al.[30] 

10 Piezoelectric type, 
Model 7BB-20-6, 
Make-MURATA 
Inc., USA. 

- 2.8 kHz −20 ℃ to 70 ℃ Junior PO et al.[31] 

11 AE sensor Micro30 
D-Make-Physical 
Acoustic Corporation 

65 100–350 kHz −65 to 177 Arun A et al.[10] 

12 Omni directional 
microphone 

58 dB/mW + 
2 dB 

20–16 kHz - Sane NM and Tamboli M[32] 
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Table 2. (Continued). 
Sr. No. Sensor type Sensor details Authors 

Sensitivity 
(in dB) 

Frequency limit 
(in Hz) 

Temperature 
limit (in ºC) 

13 AE Sensor-Model 
DM-42, Make-Sensis 

- up to 1 MHz - Alexandre FA et al.[11] 

14 AE Sensor-SAEU2S, 
Make-Beijing 
Shenghua 

- 80–1100 kHz - Ding N et al.[7] 

15 AE Sensor-Model 
DM-42, Make-Sensis 

- Up to 300 kHz - Moia DFG et al.[23] 

16 AE Sensor-Soundwel 
SR 150 

- Working: 40–400 
kHz, Sample-2E 6 
Hz 

- Yang Z et al.[24] 

17 AE Sensor-Model 
DM-42, Make-Sensis 

- Up to 1 MHz - Liu CS and Ou YJ[17] 

18 Acoustic emission 
sensor (R80D) 

- 30 kHz–1 MHz - Devendiran S and Manivannan 
K[33] 

19 AE sensor (Micro80), 
Make-Physical 
Acoustics 
Corp. 

57 170–1000 kHz −65 to 177 Feng J et al.[34] 

20 Piezoelectric 
transducer sensor-
Model WDI, Make-
Physical Acoustics 
Corp 

- 100–1000 kHz - Stephenson DJ et al.[35] 

21 Piezoelectric 
transducer sensor-
Model-S9225 

- Up to 100 kHz to 
1.2 MHz 

- Mokbel AA and Maksoud 
TMA[26] 

22 AE sensor - 50–1000 kHz - Tönshoff HK et al.[36] 

3.2. Vibration signal 
In grinding, two types of vibrations are observed: forced and self-excited vibrations. Forced vibrations are caused 

by the misalignment of the grinding wheels and eccentricity. Self-excited vibrations are caused by the regenerative 
effect which is incurred due to the waviness of the grinding wheel[37]. These Vibrations can cause waviness on the 
surface of the part, higher surface roughness values, increased wear of the grinding wheel, and reduced machine life. 
Moreover, excessive noise is observed due to vibration. Online monitoring of vibration signals is very crucial to reduce 
grinding wheel wear and increase machine life (Table 3). Many researchers have monitored the grinding wheel using 
the vibration analysis technique[38]. In this study, the vibration signals of the cylindrical grinding process were acquired 
using two accelerometers. These are placed on the X and Y-axis of the tailstock spindle. Time-domain signal extraction 
is performed by empirical mode decomposition (EMD). Surface finish prediction is done by a gradient boosting 
algorithm[1]. In this paper, chatter in aluminium oxide and CBN grinding wheels were monitored using vibration signals. 
The accelerometer was used for the collection of these signals. Short-time Fourier transforms (STFT) and the ratio of 
power (ROP) statistic is used for signal processing[39]. Wheel loading is monitored by using secondary vibration signals. 
A piezoelectric sensor was used for the collection of secondary vibration signals. This sensor was mounted on the 
housing of the grinding spindle. Signal analysis was done by LabVIEW software. A regression model has used the 
prediction of grinding wheel loading. It was concluded that this method is very efficient in online grinding wheel 
monitoring in mass production[38]. In this study, the grinding burn was monitored by using AE and vibration signals. 
Experiments were conducted on an aluminium oxide grinding wheel and parts made up of SAE 1020 steel. Piezoelectric 
sensor–Model 353B03 (Make–PCB Piezotronic) was used for vibration signal measurement. An oscilloscope was used 
for signal acquisition with a sampling frequency 2 MHz. Burn, no burn, and surface roughness states were classified by 
using artificial neural network (ANN)[17]. Tool life and wear monitoring in a Micro-grinding process for ceramic 
materials were done in this experimentation. Vibrations on the workpiece and fixture were collected by using two 



8 

accelerometers (PCB ICP-typed 352 A21). Signal extraction is done by using time-domain analysis. Feng et al. used 
RMS values of the signal for grinding wheel monitoring[34]. In this experimentation, tests were conducted on a grinding 
wheel of Aluminium Oxide material. Chatter in the grinding wheel was monitored by AISI 1045 steel workpiece 
material. Accelerometer was used to measure vibrations in the grinding wheel and workpiece. Signal acquisition was 
performed by using an oscilloscope with a sampling frequency 2 MHz. Chatter conditions are classified by spectral 
analysis using the Ratio of Power (ROP) parameter[40]. In this paper, two accelerometers are used for the measurement 
of radial and axial vibrations. Tests were conducted on 5–diamond grinding wheels used for machining of sapphire 
wafers. Classification of grinding wheels was performed by k-NN, ANN, SVM models and a comparative study was 
done[13]. In this paper, belt grinding tool wear was monitored by a polishing process. Vibration signals were collected by 
using a 3-axis accelerometer. It was attached to the tension arm of the grinder for the acquisition of vibration signals 
from mild steel specimens and belt. Vibration data was analysed for individual axes (X, Y, Z) as well as combinations 
of different axes such as XY, YZ, XZ. States of the grinding belt were classified by a convolutional neural network 
(CNN) algorithm[41]. In this experimentation, monitoring of double-sided grinding wheel was done by piezoelectric 
(IEPE) type accelerometers for vibration signal measurement. This type of sensor is suitable for dynamic temperature 
conditions. RMS feature is extracted from the vibration signal. It is used for the classification of the surface quality of 
the workpiece[2]. This study was conducted on a cylindrical traverse grinding machine and an aluminium oxide grinding 
wheel. Two PCB piezoelectric accelerometers were used for tangential acceleration and normal acceleration near the 
tailstock. These sensors are less costly and installation is easy. Feature extraction is done using time and frequency 
domain analysis for vibration signals. Fuzzy based network (basic function type) was used to classify grinding wheel 
wear[6]. 

Table 3. Types of sensors and their specifications. 

Sr. No. Sensor type Sensor details Authors 

Sensitivity (in mV/g) Frequency limit (in Hz) Temperature limit 
(in °C) 

1 Accelerometer–Model 
786A–Wilcoxon Research 

100 0.5 Hz–14,000 Hz −55 to +120 Lin YK and 
Wu BF[13] 

2 Triaxial accelerometer-
Model-8763A500-Make-
Kistler 

100 1 Hz to 10 kHz −54 to +121  Caesarendra 
W et al.[41] 

3 Piezoelectric 
Accelerometer-Model-
8703A50M1-Make-Kistler 

100 0.5 Hz to 10 kHz −55 to 165 Kumar S et 
al.[2] 

4 Piezoelectric 
Accelerometer-Make PCB  

- 0 to 5 kHz - Zhang B et 
al.[6] 

5 Accelerometer-Model 
3055B2-Make Dytran 

1 to 500  1 Hz to 10 kHz −62 to 163 Mahata S et 
al.[1] 

6 Accelerometer-Model 
353B03-PCB Piezotronics 

10 1 to 7000 Hz −54 to +121 Thomazella 
R et al.[39] 

7 Piezoelectric accelerometer 100 1 Hz to 10 kHz. −54 to +121 Baban M et 
al.[43] 

8 Accelerometer-Model 
353B03-PCB Piezotronics 

10 1 to 7000 Hz −54 to +121 Alexandre FA 
et al.[40] 

9 Piezoelectric Accelerometer-
Model S9225 

- - - Subbiah P et 
al.[38] 

10 Accelerometer-Model 
353B03-PCB Piezotronics 

10 1 to 7000 Hz −54 to +121 Liu CS and 
Ou YJ[17] 

11 Accelerator, Kistler 8042 - 0 to 8 kHz. - Yang Z and 
Yu Z[42] 

12 Accelerometer (PCB ICP-
typed 352 A21) 

10 1–10,000 Hz −54 to +121 Feng J et 
al.[34] 
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4. Data acquisition system (DAQ) 
Data acquisition system is an important element of tool condition monitoring system. In the data 

acquisition system, various types of sensors are used for measuring different types of signals. While 
monitoring the grinding process, acoustic emission signals, vibration signal, cutting force signal, surface 
roughness, and electric current, etc. are measured by using different types of data acquisition systems. It is 
used to sense, condition and transmission of these signals to the digital systems after further processing. In 
the tool condition monitoring, various types of DAQ systems are used, mainly NI instruments, oscilloscopes, 
fast Fourier transform (FFT) analysers, and Arduino based DAQs etc. 

4.1. NI DAQ systems 
NI DAQ systems are used mainly for the collection of acoustic emission, vibration, and power signals[1]. 

These systems have 2, 4, 8, and 16 input data channels to interface different sensors used for tool condition 
monitoring. NI DAQ cards are used along with LabVIEW software and MATLAB.These softwares are used 
for display, storage, and analysis of acquired signals[8,32,44]. These systems can be easily combined with 
different types of sensors. These are commonly used in tool condition monitoring. 

4.2. FFT analyser 

Fast Fourier transform is an essential tool used for the measurement and analysis of signals. FFT 
analyser is widely used for sound and vibration measurement and analysis. FFT analyser along with different 
software such as DEWE is used for signal processing. After the signal is acquired, the frequency content of 
the signal is measured by using FFT. FFT analyser is used to collect different Time-domain signals, 
converting it into frequency domain for display and analysis[5]. 

4.3. Oscilloscope 
Oscilloscope is a data acquisition system used for measurement different types of signals such as 

vibration, sound, or acoustic emission signals. Moreover, the oscilloscope displays different signals 
graphically on its screen. Researchers can see the changes in the signal with respect to time. In the study 
conducted by Junior et al. Oscilloscope (Make-Yokogawa) was used to measure vibrations with a sampling 
frequency of 2 MHz[45]. Tomezella et al. used an oscilloscope for collection of vibration signals which were 
measured by Accelerometers[46]. In the experimentation done by Aulestia et al. acoustic emission and PZT 
raw signals were acquired with the use of Oscilloscope-Model-DL850-made–Yokogawa at sampling 
frequency 2 MHz[30]. 

4.4. MEMS sensor data collection 
In tool condition monitoring, different types of MEMS sensors are interfaced with Arduino based data 

acquisition systems for signal collection. In the study conducted by Aswin et al., vibration signals are 
measured by a 3–axis accelerometer MEMS sensor. These signals are processed by Arduino nano 
microcontroller. Speed of the equipment is measured by reflective sensors. This signal is a processed by 
Arduino Pro-Mini Microcontroller[48]. Kanu et al. used two accelerometers (MEMS sensors) that are used for 
the acquisition of vibration signals[49]. In these systems, low-cost MEMS sensors and Arduino processors are 
used. So, the overall cost of the system is low compared to other DAQ systems (Table 4). Moreover, the 
optimal performance is achieved using these systems[50]. 
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Table 4. Types of DAQs and their specifications. 

Sr. No. Name of DAQ Specifications Reference 

Operating 
temperature 
range [°C] 

Signal 
range 

No. of channels Sample 
rate 

1 KistlerLabAmp 
5165A 

0–60 ±10 V 4 - [2] 

2 PCI 2-Make-Physical 
Acoustic System 

−5 to 45 ±10 V 2 1 MHz [28] 

3 NI 9205 −40 to 70 ±10 V 32 Single-
Ended, 16 
differential 

67 Hz [1] 

4 VM25, Balance 
Systems 

−20 to 65 ±10 V 4 20 Hz [22] 

5 Oscilloscope-
Picoscope 4424 

0 to 45 ±50 mV to 
±100 V 

4 1 MHz [21] 

6 Fast Fourier 
Transform (FFT) 

- - - 300 Hz to 
500 Hz 

[5] 

7 NI USB-6221 0 to 45 ±11 V 8 differential or 
16 single ended 

250 kS/s [32] 

8 NI USB-6008  0 to 55 ±10 V 8 10 kS/s [16] 

9 Oscilloscope-Model-
DL850-Make-
Yokogawa 

5 to 40 ±8 V 16 2 MHz [45] 

10 Oscilloscope-Model-
DL850-Make-
Yokogawa 

5 to 40 ±8 V 16 2 MHz [46] 

11 Oscilloscope-Model-
DL850-Make-
Yokogawa 

5 to 40 ±8 V 16 2 MHz [47] 

12 Siemens LMS data 
acquisition system-
Vibration Signal 

−20 to 55 ±10 V 6 or 12 3200 Hz [51] 

13 Soundwel SAEU2S 
DAQ system-AE 
signal 

−10 to 45 ±10 V 200 2000 kHz [51] 

14 NI PCI-6111 0 to 45 ±11 V 2 5 MS/s/ch [8] 

15 ADVANTECH USB-
4711 card 

0 to 60 ±10 V 16 40 kHz [52] 

16 DAQ Card-PC 104 −40 to 85 ±10 V 4 8 kHz [53] 

17 Digital DAQ −10 t 55 ±10 V 12 0–25.6 kHz [54] 

18 Advantech 6700L −40 to 70 ±10 V 4 100 kHz [55] 

19 DAQ Card-PC based- 
Make–ADLINK-2010 

0 to 55 ±10 V 4 2 kHz [56] 

20 NI PCI-6011 0 to 55 ±10 V 8 differential or 
16 single ended 

2.5 MS/s [44] 

21 DAQ Card-PC based-
Make–ADLINK-2010 

0 to 55 ±10 V 4 1 MHz [57] 

22 DAQ Card–Model 
6036E-Make 
National Instruments  

0 to 55 ±10 V 16 200,000 
samples/s 

[58] 

23 AEDSP-32/16 card 
(TMS320C40 
Embedded) 

0 to 85 −0.3 V to 
7 V 

6 - [59] 
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Table 4. (Continued). 

Sr. No. Name of DAQ Specifications Reference 

Operating 
temperature 
range [°C] 

Signal 
range 

No. of channels Sample rate  

24 NI PCI-6035E DAQ 
board 

0 to 55 ±10 V 8 differential or 
16 single ended 

2 KS/s [60] 

25 Dynamic Signal 
Acquisition module-
DT9738B 

 0 to 55 ±10 V 4 Up to 105.4 KS/s [61] 

26 NI9234 −40 to 70 ±5 V 4 10,240 s/ch [62] 

27 NI9205 −40 to 70 ±10 V 7 - [63] 

28 Arduino Pro Mini NA 5–12 V 14 8 MHz to 16 MHz [48] 

29 Arduino Nano 
controller 

NA 7–12 V 8 16 MHz [48] 

5. Signal analysis techniques 
After data acquisition of different signals, these signals are analysed before further feature extraction is 

done. Time-domain analyses, frequency-domain analysis, time-frequency domain analysis, and Hilbert-
Huang transform (HHT) are the main techniques used for signal analysis. 

5.1. Time domain signal analysis 
Time domain signal analysis is a basic technique used for signal analysis. Performance of this method is 

severely affected by the signal, process parameters under evaluation and the type of machining process. This 
approach is suitable for real-time applications since it allows fast signal processing[64]. This can be 
advantageous in some occasions. However, in some cases, this approach is incapable to identify substantial 
data inside the signal[65]. This is used for signal analysis of cutting force signals. 

5.2. Frequency domain analyses 
The Fourier series is used in frequency domain analysis. Every periodic function can be calculated 

using a Fourier series given in sine and cosines, according to the Fourier series. This denotes that each signal 
is represented by a set of cycles with different frequencies and amplitudes[66]. This domain is well suited for 
signal analysis for vibration and sound signals. In a study conducted by Alexandre et al. frequency domain 
signal analysis was done by Welch’s approach for acoustic emission signals and frequency bands were 
selected to finely characterise this process. After frequency band selection, for diagnosis of the condition of 
grinding wheel, the counting statistic method was used[11]. Stochastic characteristic of the process was 
reflected by vibrations in the grinding. Frequency domain analysis is required to identify the pattern of signal 
behaviour. A Fourier transform can be used to generate the power spectral density (PSD), which shows how 
the signal’s power is spread across all of its frequency components[45]. 

5.3. Time-frequency domain analysis 
Wavelet packet transforms (WPTs) are used to generate features in time-frequency signal analysis. It 

refers to the simultaneous classification of the signal in time and frequency domain, which significantly 
lowers the processing time. Aulestia et al. applied time-frequency domain signal analysis for the extraction of 
features from acoustic emission signals to monitor the surface roughness of ceramic components during 
surface grinding[30]. Junior et al. monitored the dressing tool through electromechanical impedance (EMI) 
using wavelet analysis[31]. Pandiyan et al. used time-frequency domain signal analysis to extract features 
from AE signals and force signal to monitor abrasive belt wear conditions[19]. Kanu et al. applied wavelet 
packet transform for feature extraction of AE signals to identify grinding burns[67]. 
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5.4. Hilbert-Huang Transform (HHT) 
This is a recent method which is used in tool condition monitoring for time-frequency domain analysis. 

This is mainly used to analyse non-stationary and non-linear signals[68,69]. The main difference between HHT 
and other methods is HHT applies algorithm to the acquired signal data instead of theoretical tools. HHT 
method comprises of Hilbert spectral analysis and empirical mode decomposition (EMD). When signals 
consist of multiple oscillatory modes, Hilbert transform cannot be used because it is unable to produce 
complete frequency content. So, EMD is used to decompose signal data into intrinsic mode functions 
(IMF)[24]. Mahata et al. used Hilbert–Huang transform for the analysis of vibration and power signal for 
prediction of surface roughness[1]. In this paper, vibration and acoustic signals are measured using HHT for 
the analysis of grinding wheel conditions such as chatter and grinding wheel wear in cylindrical plunge 
grinding process[70]. Yang et al. used HHT for grinding burn detection from acoustic emission and vibration 
signals in a surface grinding process[24]. 

6. Feature extraction for grinding 
Feature extraction is done after data acquisition and signal analysis in the monitoring of grinding wheel. 

Feature extraction is an essential issue in condition monitoring of any engineering system. Feature extraction 
is a process which converts the acquired signal into important features that can be used for giving input to the 
algorithms[71]. Various feature extraction techniques used are statistical analysis, histogram analysis, and 
wavelet transform. These techniques are briefly explained in subsections 6.1, 6.2, and 6.3. 

6.1. Statistical feature extraction 
Statistical feature extraction is a widely used feature extraction method. This is employed to extract 

statistical features from acoustic emission signal, vibration signals, and images. Various statistical features 
are mean, mode, median, bias, variance, standard deviation, kurtosis, skewness, etc. These features are sent 
to different algorithms for classification of grinding wheel conditions. Classification accuracy depends upon 
which type of statistical feature is selected for feature extraction[72–74]. 

6.2. Histogram feature extraction 
Histogram technique separates the whole signal data set into different classes or subsets. This is used for 

the representation of numerical and discrete data which is acquired with defined time gaps. This technique is 
generally used for the representation of large signal data. It is also helpful in finding out outliers from the 
signal data. Histogram feature extraction is used for continuous signal data acquired using different sensors. 
This method is mainly used for the analysis of images of the grinding wheel during the process. Kanu et al. 
monitored and evaluated alumina grinding wheel wear and loading by using this technique. In this, images 
captured from the surface of a grinding wheel were observed and analysed[75]. Kanu et al. measured grinding 
wheel loading by grinding wheel image processing. Digital camera is used for taking images of the grinding 
wheels. During edge detection, grey pixel values along lines A-B are represented using a histogram[76]. In 
this study, grinding wheel loading analysis is done by processing of grinding wheel surface images. Grinding 
wheel surface images are captured by a microscope with 20 X magnification. Histogram of grey scale images 
of the fully loaded wheel was analysed and the threshold range was decided by considering the unloaded 
grinding wheel image[77]. 

6.3. Wavelet transform 
Wavelet transform converts the time domain signals into time-frequency domain signals[78]. It is a 

technique which is used to decompose different types of signals to several lower resolution levels. Shifting 
and scaling factors of a single wavelet function are controlled to achieve this. The main reason to use wavelet 
transform is local spectral and temporal signals can be extracted simultaneously. The state of the grinding 
wheel is monitored by using continuous and discrete wavelet transform. These are also used for signal 
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extraction[4]. In this study, feature extraction from the force signals is done by wavelet packet decomposition 
(WPD) for a micro grinding machine. These features were applied to back-propagation neural network for 
monitoring the state of the grinding wheel. Three grinding wheel surface statuses—dull, middle, and sharp 
are classified using BPNN[79]. In this study, feature extraction from acceleration signals was done using WPD 
technique to identify grinding wheel wear. Signals in the complete frequency band were decomposed to 
obtain specific decomposed components. In WPD, the time domain signal is converted to individual 
frequency bands. Then the extraction of band energies was performed and these are mixed with time-domain 
to get features. By using normalization, a typical energy ratio is extracted from the energy ratio. At the end, 
the final feature is extracted which can be used for grinding wheel wear monitoring[80]. In this paper, feature 
extraction is done from acoustic emission signals using wavelet transform. These features are applied to a 
genetic clustering algorithm for the classification of sharp and dull grinding wheel states. This method 
achieved 97% average clustering accuracy[81]. 

7. Classification methods for grinding 
In the recent past, artificial intelligence-based classification methods have been increasingly used by 

researcher’s tool condition monitoring. It is found that the performance of these methods can be improved 
easily. Moreover, modifications can be implemented easily compared to conventional methods. These 
classification methods are very adaptive for the new Industry 4.0 era. Artificial Intelligence methods are 
classified into two groups, (i) machine learning and (ii) deep learning. 

7.1. Machine learning 
Machine learning is the use of different computer algorithms which are used to make accurate diagnosis 

and prediction for different real-time situations and different actions of human beings. Machine learning 
algorithms learn from the past data and make improved decisions for the future. This artificial intelligence 
technique primarily focuses on prediction. SVM, genetic algorithm, random forest, linear regression are 
some examples of machine learning algorithms. A recent study on grinding wheel condition monitoring by 
using a machine learning algorithm is presented here. Table 5 summarizes a few papers that deal with fault 
diagnosis of different grinding wheel conditions, signal extraction techniques, machine learning algorithms, 
and classification accuracy. In this, various feature extraction strategies like statistical feature extraction, 
time-domain analysis, frequency domain analysis, and wavelet transform were implemented. For fault 
classification, numerous algorithms were applied, including support vector machine (SVM), artificial neural 
networks (ANN), k-Nearest neighbour (KNN), ant colony optimization-random search (ACO-R) algorithm, 
ant colony optimization-sequential forward search (ACO-S) and genetic algorithm (GA). Some machine 
learning algorithms are discussed in subsections 7.1.1, 7.1.2, 7.1.3, and 7.1.4. 

7.1.1. Artificial neural network (ANN) 
This is a simplified model of the networks of neurons which occur naturally inside the brain. The ANN 

is constructed from three layers, namely, input, hidden, and output layers. Input layer is the layer which 
receives input information like text, images, pixels, etc. Hidden layers are in between input and output layers 
which process the information or data and the output layer is the layer which produces the result for the 
given initial information. ANN works with a training algorithm for study datasets which changes the weights 
of the neuron depending on the error rate between the target and the actual output[82]. ANN is a powerful tool 
for tool monitoring of grinding process. Relation between surface roughness parameters, AE signals, and 
forces due to the grinding process was explored by Mirifar et al. by using ANN[21]. ANN model is used for 
the estimation of the life of grinding wheels. By observing the results, it is seen that around 95% prediction 
accuracy is achieved by ANN to estimate the grinding wheel life[83]. 
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7.1.2. Support vector machine (SVM) 
It is a supervised machine learning algorithm which can be applied for classification and regression 

problems. It is mainly used for classification of tool conditions. Tool condition monitoring using SVMs is 
feasible and can ensure reliable production quality. Support vector machines-least square type (LS-SVM) 
can make good classification with a small amount of time and training data. It has been demonstrated that the 
performance of the grinding process can be monitored by using a LS-SVM algorithm[84]. Quadratic SVMs 
are used to perform the classification of the best tool conditions with the prediction accuracy of 94.7%. From 
this study, it is observed that SVMs can be used for monitoring of belt tool condition effectively[19]. 

7.1.3. Fuzzy logic 
Fuzzy Logic is a thinking approach which resembles human reasoning. It predicts ‘yes’ and ‘no’ options. 

Recently, fuzzy logic has been utilized to monitor the states of different tools. Fuzzy inference is the process 
of formulating the mapping from the specified input to the output using fuzzy logic. Fuzzy inference process 
includes association functions, ‘If-then’ rules, and fuzzy logical operators. Fuzzy analysis is separated in 
three steps: (i) input value Fuzzification; (ii) rules-based reasoning; and (iii) defuzzification of output 
values[11]. States of grinding wheels are monitored by using fuzzy logic[15–32]. 

7.1.4. Adaptive neural fuzzy inference system (ANFIS)-Gaussian process regression (GPR) 
hybrid algorithm 

ANFIS-GPR hybrid algorithm is used to increase the benefits of both ANFIS and GPR algorithms. This 
is implemented to solve approximation issues and nonlinear functions. By using this, the values of 
dependence functions can be altered manually the same as ANFIS model. It is used for online monitoring of 
grinding wheel wear and surface roughness during grinding. It gives the confidence intervals of the estimated 
results. The findings demonstrate that the technique is very intelligent and easily adapts to intelligent 
production conditions. It may offer a wide range of potential applications[16]. 

7.2. Deep learning 
Deep learning is a technique that mimics the working of the human brain for data processing and pattern 

creation in order to make decisions. It is also called as deep neural learning or deep neural network. 
Traditional models of machine learning such as linear regression, Bayesian networks, SVM, logistic 
regression, and single-layer ANN do not predict the tool conditions effectively when the amount of training 
data is enormous (Table 5). Multi-layer neural networks and deep learning approaches, on the other hand, 
perform better for learning and prediction as the amount of training data is excessive[20]. Convolutional 
neural network (CNN), recurrent neural network (RNN), Generative adversarial network, Multilayer 
perceptron neural network, back propagation, and long–short-term memory is some of the deep learning 
algorithms. It is observed that recently different deep learning models were employed for monitoring 
different states of grinding wheel. TCM based on deep learning can be utilized for a variety of machining, 
including turning, milling, drilling, broaching, and grinding. Grinding wheel wear was monitored by using 
convolutional neural network (CNN) and spectrum analysis[5]. From this study, it has been observed that a 
deep learning algorithm named long short-term memory network (LSTM) was developed for the monitoring 
of grinding wheel wear. It is evaluated with a random forest algorithm. After observing the results, it is seen 
that even with fewer features, the long short-term memory model is able to forecast the wear of the grinding 
wheels more accurately[51]. Deep convolutional neural network (DNN) is employed for classifying vibration 
signals in gear grinding monitoring[85]. 
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Table 5. Fault diagnosis technique. 

Sr. No. Fault 
detection 

Signal 
processing/feature 
extraction system 

Method Classification technique Accuracy 
(in %) 

References 

1 Grinding 
wheel wear 

Time-frequency 
domain/Continuous 
wavelet domain, discrete 
wavelet transform 

Machine learning J48 and CART algorithm 97.06 [4] 

2 Grinding 
wheel wear 

Statistical analysis Machine learning Support vector regression 
model 

95.90 [72] 

3 Grinding 
belt wear 

Short-time Fourier 
transform (STFT) 

Deep learning Convolutional neural 
networks (CNN) 

94.23 [41] 

4 Grinding 
wheel burn 

Time-frequency 
domain/PSD, STFT, 
WPT, EEMD, and VMD 

Machine learning K-nearest neighbours (KNN) 
algorithm 

99 [86] 

5 Surface 
roughness 

- Machine learning Gaussian process regression 
(GPR) 

98 [87] 

6 Grinding 
wheel burn 

Time-frequency domain 
(HHT, CWT, STFT) 

Deep learning Convolutional neural networks 
(CNN) 

99.40 [88] 

7 Grinding 
belt wear   

Time-frequency domain Machine learning Bayesian network model 85 [89] 

8 Grinding 
burn, 
surface 
roughness 

- Machine learning Bayesian network model 95 [90] 

9 Surface 
roughness 

Time-frequency domain  Deep learning Long short-term memory 
(LSTM) network 

- [91] 

10 Grinding 
belt wear 

Time domain Machine learning Random forest algorithm, 
multiple linear regression 
(MLR) 

90, 96 [64,92–94] 

11 Grinding 
wheel wear 

Statistical Machine learning Interval type-2-fuzzy basis 
function network (FBFN) 

- [6,95–97] 

12 Grinding 
wheel wear 

Empirical mode 
decomposition 

Machine learning Gradient boosting algorithm 88 [1,99–105] 

13 Grinding 
wheel wear 

Spectrum analysis Deep learning Convolutional neural network 
(CNN) 

97.44 [5] 

14 Surface 
roughness 

- Artificial neural 
networks (ANN) 

Feedforward Bayesian 
backpropagation algorithm 

99 [21] 

15 Grinding 
wheel wear 

Discrete wavelet 
transform 

Artificial neural 
networks (ANN) 

Fuzzy systems - [32] 

16 Grinding 
wheel wear 

Statistical Artificial neural 
networks (ANN) 

- 95 [83] 

17 Grinding 
wheel wear 

Taguchi method Machine learning Adaptive neural fuzzy 
inference system (ANFIS)-
Gaussian process regression 
(GPR) hybrid algorithm  

98 [16] 

18 Surface 
Quality 

MATLAB software-
digital signal processing 
by time–frequency 
domain 

Machine learning Short-time Fourier transform 
(STFT) 

- [31] 

19 Grinding 
wheel wear 

Waveform data analysis 
(time and frequency 
domain) 

Machine learning support vector machine, 
genetic algorithm 

94.7 [19] 

20 Grinding 
wheel 
dressing 
condition 

Frequency domain 
analysis 

Machine learning Fuzzy model - [11] 
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7.3. Case study: A deep learning-based and intelligent system for monitoring the condition of 
grinding wheels 

The accuracy of the workpiece’s surface during grinding is directly impacted by the immediate 
monitoring of the grinding wheel’s conditions. This study uses artificial intelligence to try to learn the 
experience of auditory recognition of experienced operators because the variation in machining sound during 
the grinding process is essential for the field operator to judge whether the grinding wheel is worn or not. 

As a result, researchers suggest an intelligent system based on deep learning and machining sound to 
identify the grinding wheel state. This work collects audio signals from the grinding process using a 
microphone integrated into the machine, and then utilizes spectrum analysis to extract the most differentiated 
features. To develop a deep learning-based training model for differentiating between the various conditions 
of the grinding wheel, the features will be entered into the specified CNNs architecture (Figure 3). The 
proposed method can obtain an accuracy of 97.44%, a precision of 98.26%, and a recall of 96.59% from 820 
testing samples, according to the experimental results. 

 
(a) 

 
(b) 

Figure 3. (Continued). 
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(c) 

  
(d) (e) 

Figure 3. A deep learning-based and intelligent system for monitoring the condition of grinding wheels[106]. (a) The layout of the 
suggested intelligent system for tracking grinding wheel condition; (b) The suggested architecture for CNNs; (c) two FFT machining 
sound spectrums recorded while using worn-out, sharp grinding wheels. The 300 Hz to 500 Hz range is shown by the red dotted line; 
(d) The grinding machine’s experimental equipment configuration; (e) The proposed acoustic-based features’ receiver operating 
characteristic (ROC) curve for classification results. 

8. Conclusions 
In the first section of the article, the need of tool condition monitoring is discussed. As a result of 

considerable advancements in sensor and computational technology over the past several years, tool 
condition monitoring has emerged as a crucial field for tracking numerous manufacturing process parameters. 
Monitoring tool condition is used to both identify faults and forecast the health of equipment. Grinding 
processes, types of grinding wheel, and the monitoring methods are highlighted in the second section. 
Because there are not any effective ways to provide real-time feedback while grinding, monitoring and 
predicting grinding wheel wear is challenging. Mechanical vibrations and acoustic signals are detected 
during the grinding process. The signals are used to monitor the grinding wheel’s condition. Monitoring the 
state of grinding wheels involves gathering various signals from the grinding operation, including (a) 
acoustic output and (b) vibration signal (Section 3). Different types of data collecting systems are used to 
measure acoustic emission signals, vibration signals, cutting force signals, surface roughness, electric current, 
etc. while monitoring the grinding operation (Section 4). Different signals are acquired as data, and before 
further feature extraction is done, these signals are examined. The primary methods for signal analysis 
include the Hilbert-Huang transform (HHT), time-domain analyses, frequency-domain analyses, time-
frequency analyses, and time-frequency analyses (Section 5). Data collection and signal analysis are 
completed following feature extraction in the monitoring of the grinding wheel. A crucial problem in 
engineering system state monitoring is feature extraction. The process of feature extraction transforms the 
obtained signal into significant features that may be used as input for the algorithms (Section 6). Recent 
years have seen a rise in the application of artificial intelligence-based classification techniques by 
researchers for tool condition monitoring. It has been discovered that these approaches’ performance can be 
easily enhanced. In addition, adjustments are simpler to implement than with traditional techniques. The 
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emerging Industry 4.0 age may easily adapt to these classification systems. Machine learning and deep 
learning are the two categories in which artificial intelligence techniques are discussed in Section 7. 
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Brain (IoB), artificial intelligence, advanced computing, smart machine/design, adaptive sensing, smart 
networks and information. 
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