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ABSTRACT 
This paper explores various approaches to enhance federated learning (FL) through the utilization of edge 

computing. Three techniques, namely Edge-Fed, hybrid federated learning at edge devices, and cluster federated learning, 
are investigated. The Edge-Fed approach implements the computational and communication challenges faced by mobile 
devices in FL by offloading calculations to edge servers. It introduces a network architecture comprising a central cloud 
server, an edge server, and IoT devices, enabling local aggregations and reducing global communication frequency. Edge-
Fed offers benefits such as reduced computational costs, faster training, and decreased bandwidth requirements. Hybrid 
federated learning at edge devices aims to optimize FL in multi-access edge computing (MAEC) systems. Cluster 
federated learning introduces a cluster-based hierarchical aggregation system to enhance FL performance. The paper 
explores the applications of these techniques in various domains, including smart cities, vehicular networks, healthcare, 
cybersecurity, natural language processing, autonomous vehicles and smart homes. The combination of edge computing 
(EC) and federated learning (FL) is a promising technique gaining popularity across many applications. EC brings cloud 
computing services closer to data sources, further enhancing FL. The integration of FL and EC offers potential benefits 
in terms of collaborative learning. 
Keywords: cloud computing; edge computing; federated learning; hybrid federated learning; cluster federated learning; 
asynchronous federated learning; multi-tasking federated learning (MTFL); multi access edge computing (MAEC); 
vehicular edge networks (VEN); mobile edge computing (MEC) 

1. Introduction 
A modern form of machine learning that deals with the issues of 

data privacy and decentralization is federated learning. Traditional 
machine learning environments frequently collect and store data in 
centralized servers, causing issues with security and privacy. A 
solution is provided by federated learning, which enables machine 
learning models to be trained directly on distributed edge devices such 
as mobile phones, tablets, or Internet of Things (IoT) devices without 
the need for raw data to leave the devices. Federated learning greatly 
improves privacy protection by keeping data local and decentralized. 
The models are trained locally on the devices utilizing the relevant data 
instead of transferring the data to a central server for analysis. Only 
model updates or combined data are then shared with a central server. 
By ensuring that critical data stays on the devices, this method reduces 
the possibility of hacking or unauthorized access. Applications that 
deal with sensitive or personal data, like those in healthcare, banking, 
or personalized recommendations, have a lot of commitment to 
federated learning. While protecting data privacy and control, it 
enables organizations to take use of the collective understanding of 
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distributed devices. Developments in many fields are made possible through federated learning, which uses 
the power of machine learning while protecting privacy[1]. Coming to edge computing, edge computing 
emerged as an evolutionary paradigm that deals with the limitations of traditional cloud-centric architectures 
in the context of rapidly increasing data volumes and real-time applications. Rather than depending entirely 
on centralized cloud servers, edge computing brings computational resources and data storage closer to the site 
of data generation, which is often at the edge of the network. Edge computing offers better processing, less 
latency, and better reaction times by placing edge devices, such as edge servers, gateways or IoT devices, at 
the network edge. Edge computing has a major beneficial effect on real-time applications like self-driving cars, 
virtual reality, augmented reality, and industrial IoT because it reduces the time and bandwidth needed to 
transport data from a location to a centralized cloud. By distributing computational tasks across edge devices 
and reducing the load on centralized cloud servers, edge computing also provides scalability benefits. 
Organizations without their own data centers can use cloud resources efficiently and cheaply due to this 
decentralized architecture[1,2]. 

We observed from many studies that, as a result of cloud computing the way we live, work, and learn has 
greatly changed but not in all cases, for example consider cisco internet business solutions group, once said 
that by the year 2020 the usage of 50 billion things that are connected to the internet will be formed but their 
assumption had become false and yet present the number of IoT devices connected to the internet are 14.4 
billion because certain IoT applications need very quick responses, some of which may contain private data, 
and others of which may generate a lot of data, placing a tremendous burden on networks[3]. Therefore, cloud 
computing is not effective enough to support these applications for this kind of network. We envision that the 
edge of the network is transitioning from a data consumer to a data producer as a result of the pull from IoT 
and the push from cloud services. Here, the data that the cloud is consuming is very high such that the 
processing of the data is also becoming a huge task for the cloud. In this type of situation, the capacity of the 
cloud will not be suitable for heavy computations. Take Amazon as an example, in the year 2022, the company 
has an increasing number of job applicants, but it is difficult to accommodate them all. As a result, the 
employees have been let go. The same thing is happening in the cloud environment, where the number of 
devices is growing, and data processing is getting more and more challenging. 

We researched the benefits of edge computing over cloud computing as well as several edge computing 
applications on Internet of Things (IoT) devices. We also discussed Edge-Fed and Fed-Avg, the advantages of 
Edge-Fed over Fed-Avg and Edge-Fed’s future possibilities. We worked on cluster federated learning, 
dynamic federated learning[4], multitasking in federated learning[5] and hybrid federated learning at edge 
devices. Multi-tasking federated learning for predicting traffic. Asynchronous federated learning[6], 
collaborative federated learning at IoT devices, collaborative federated learning in healthcare for COVID-19 
diagnosis, collaborative data sharing in vehicle systems, and wireless communications performance for 
collaborative federated learning[7]. We have collaborated on a table that covers things that are taken into 
consideration from various federated learning in edge computing sectors, such as energy consumption 
management in federated learning in edge systems and how caching and offloading take place in federated 
learning in mobile edge computing[8]. 

The rest of the paper is organized as follows. We presented the different applications of federated learning. 
The usage of federated learning over edge computing in different areas. In section 2, we presented Edge-Fed 
and its applications. In sections 3 and 4, we presented the hybrid FL, clustered FL, and dynamic FL. In section 
5, the asynchronous FL is presented. In section 6, federated SGD is discussed. In section 7, multi-tasking FL 
is discussed. In section 8, collaborative FL over different applications in edge computing is presented. A few 
case studies are also discussed for all sections mentioned above. In section 9, energy consumption in FL is 
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discussed. In section 10, caching and offloading in FL over mobile edge computing are discussed. In section 
11, FL in wireless communication is discussed. 

There are different types of techniques in federated learning. As edge computing is an emerging 
technology, our main theme of the research is to relate usage of federated learning in edge computing. So that 
the edge technology can be more efficient in different applications. Data privacy and security has been 
improved with federated learning, because federated learning enables training of the models locally without 
sharing raw data to the central server. Edge devices often operate in dynamic and unreliable network conditions. 
Federated learning can handle intermittent connectivity and device failures by allowing training to continue 
on available devices. 

We used below mentioned techniques of federated learning because these techniques are widely used in 
different applications and these techniques will be helpful for enhanced data privacy, reduced communication 
overhead, lower latency, improved scalability, resilience, personalization and energy efficiency. These 
improvements make federated learning an attractive approach for deploying machine learning models in edge 
computing scenarios. 

The techniques we included in this paper are Edge-Fed, cluster-dynamic cluster FL, hybrid FL, 
asynchronous FL, federated SGD and multi-tasking in FL, collaborative federated learning over different 
applications of edge computing. 

2. Edge-Fed 
Actually, mobile devices have to perform lots of calculations if they use the federated averaging (Fed-

Avg) algorithm. Federated averaging (Fed-Avg) is an algorithm that is efficient in communication for 
distributed training with a larger number of clients. In Fed-Avg, a central server is used to communicate 
between the clients, and clients keep their data locally for privacy protection, but in Fed-Avg the distance 
between the central server and the clients will be more where that much bandwidth will take time[2]. 

To solve this problem, we have Edge-Fed where, Edge-Fed is a network with the central cloud server, 
edge server, and IoT devices, where the central cloud server all the global aggregations will take place, in the 
edge server, it takes some of the workloads from the IoT devices and finally, in IoT devices, local aggregations 
happen. In this section, the efficient usage of federated learning in edge computing is elaborated, which is also 
shown in Figure 1. 

Between the edge server and the central server, bandwidth is less than the bandwidth between the clients 
and the edge server. Edge-Fed can decrease the needed global communication frequency to reach a satisfying 
accuracy. Consequently, the global communication cost can be reduced compared with Fed-Avg. Edge-Fed 
has advantages in different bandwidth scenarios from mobile clients to the edge server. By offloading part of 
the calculations, the computational cost of the mobile devices and the global communication expense can be 
simultaneously reduced as compared to Fed-Avg. For optimizing the federated learning based on edge 
computing, we can overcome the large computational cost in edge devices while performing Fed-Avg. 

Some experiments were done (a division of the process of local updates to be completed by both mobile 
devices and the edge server and in between the edge servers and the central server, a global aggregation process 
was conducted). Those results show that the total computational and communication cost of edge devices are 
simultaneously reduced than Fed-Avg. If you want to do many calculations, then it may take more time. To 
reduce this type of time complexity the researchers found edge computing which collaborated with federated 
learning and formed edge federated learning. Each device will process autonomously with the help of Edge-
Fed. The edge server now collects all outputs from mobile devices in order to increase learning effectiveness 
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and decrease global communication frequency. The computation costs and computations from mobile clients 
to the edge server will decrease as a result of this Edge-Fed. 

Some of the primary benefits of Edge-Fed are as follows: the local updates will happen in both IoT devices 
and edge servers. Where IoT devices can focus more on low layers and edges, services can do more 
computational tasks with the required resources. IoT devices and edge servers make up the two categories of 
local updates for this model. While services can do more computational activities with the necessary resources, 
IoT devices may concentrate more on low layers and edges. So that the training needed for mobile devices will 
be low and faster. The bandwidth of clients on the edge server is very high so, by using Edge-Fed we can 
reduce bandwidth. By Edge-Fed we can also apply some guidelines in which the model can run accurately 
with less resource cost. 

IoT helps the present world in many ways. IoT stands for the Internet of Things, which is the networking 
of physical things equipped with sensors, software and other technologies for establishing connections and 
exchanging data with other devices through the internet. These days, IoT devices are employed more in public 
safety equipment and by farmers to monitor their crops and do surveys, among other uses. Low latency and 
power consumption are required for IoT devices to carry out duties like monitoring and uploading sensor data, 
among others[3]. 

 
Figure 1. Efficient usage of federated learning in edge computing. 

Generally, IoT devices are weak due to security issues. For IoT, device authentication is required to ensure 
that the connected devices on the IoT are trusted. For that unique identifier is needed. In order to optimize 
mobile edge computing and communication, Deep reinforcement learning (DRL) and federated learning (FL) 
frameworks were combined with mobile edge systems. Energy consumption and execution delays are some 
advantages of this partnership. Only the local information is required for this, the channel state information 
can be known afterward. 

We came across some of the assumptions as follows: IoT devices are typically thought of as being 
extremely powerful gadgets with the capacity to train their own DRL agents on their own. IoT devices may 
not be as powerful in the near future, they may only be able to compute using minimal neural networks. 
Researchers were inspired to develop a new type of computing known as edge computing, which aids in 
processing data at the network’s edges, as a result of the Internet of Things (IoT) explosive growth and the 
enormous popularity of its rich cloud services. We will examine a variety of case studies in this, ranging from 
the cloud to smart cities and smart homes, as well as collaborative edge to broaden the idea of edge computing. 

Some of the case studies explain cloud offloading, smart city, and video analytics where they have used 
edge computing and federated learning for better results. 
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1) Akamai: Akamai is a leader in content delivery networks and edge computing. Akamai has a network of 
servers deployed at the edge of the internet, providing advanced services like streaming video and web 
acceleration. Akamai’s edge computing platform provides the scalability, security, and performance 
necessary to serve the world’s most heavily trafficked websites. 

2) Fastly: Fastly is an edge computing platform that enables organizations to build, deploy, and scale 
applications at the edge of the internet. Fastly’s edge network provides customers with faster page load 
times, lower latency, and improved reliability. Fastly’s edge computing platform is powered by its 
proprietary varnish cache technology, which allows customers to quickly deliver content and applications 
without relying on the traditional data center model. 

2.1. Applications of Edge-Fed 
There are several applications of Edge-Fed in daily life where we see the usage of Edge-Fed. Now we 

will discuss some of the scenarios on Edge-Fed. 

2.2. Smart city 
In a smart city we have a number of IoT devices that all are connected to an edge server where all the 

computations will occur and that is sent to the cloud server for global aggregation. For example, take a house 
in a smart city where all the devices are connected using edge computing where all the computations of that 
house are stored in an edge in the same way all the houses in that city are connected to the edge computing 
and all their computations and security should be maintained by the edge computing. So, if we use cloud 
computing for this type of computing it will not be efficient. 

2.3. Vehicular network 
Federated learning in edge computing can be utilized in autonomous vehicles to improve their perception 

and decision-making capabilities. Edge devices within vehicles can collaboratively train models using data 
collected from multiple vehicles while preserving data privacy. This allows for real-time learning, personalized 
driving experiences, enhanced safety through shared knowledge and insights. 

3. Hybrid federated learning at edge devices 
In a typical FL process, clients (end devices) finish model training on local data during each training cycle, 

and the cloud combines local models into a global model using a weight-averaging technique called Fed-Avg[2]. 
Hybrid FL’s energy-saving function might actually draw in more end devices throughout each cycle. The 
amount of energy used by a gadget can have a significant impact on its owner’s willingness to take part in FL 
training. 

In this study, comprehensive tests were done, and the findings show that hybrid FL greatly enhances FL 
in the MAEC system by lowering device-side energy consumption, reducing the average round length, 
accelerating the convergence of the global model, and enhancing model correctness. The suggested protocol’s 
(hybrid FL) performance in enhancing FL efficiency, enhancing the quality of the global model and reducing 
on-device energy consumption in a three-layer MAEC system has been evaluated using the two machine 
learning tasks in various environmental circumstances. They performed the FL process in two approaches: 
Stop the procedure after a certain number of rounds. Tmax and stop when a preset accuracy is achieved for the 
global model. Some of the case studies that include hybrid federated learning at edge devices for better results 
are as follows: 

● A large retail chain wanted to develop a personalized customer experience by predicting customer 
preferences in a privacy-preserving manner. The company had millions of customers and wanted to use 
this data to develop a personalized customer experience for their customers. The company decided to use 
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hybrid federated learning to address its needs. They used a private cloud infrastructure to deploy a 
federated learning system. The federated model was trained using customer data from two of the 
company’s stores. The first store was used as the main training set and the second store was used as a test 
set. The model was trained using a federated learning algorithm and the data was anonymized before 
being sent to the cloud. This enabled the company to keep customer data secure and private. The company 
was able to successfully train its model and obtain better results than using traditional centralized training. 
This helped them increase customer satisfaction and profits. 

● A large financial institution was looking for a way to securely share customer data with its partners 
without compromising privacy. The company wanted to use machine learning to gain insights from the 
data but wanted to ensure that the data remained private and secure. The company decided to use hybrid 
federated learning to address its needs. They used a private cloud infrastructure to deploy a federated 
learning system. The federated model was trained using customer data from the financial institution and 
its partners. The model was trained using a federated learning algorithm and the data was anonymized 
before being sent to the cloud. This enabled the company to keep customer data secure and private while 
still obtaining insights from the data. The company was able to successfully train their model and was 
able to gain insights from the data without compromising privacy. This helped them increase profits and 
customer satisfaction. 

3.1. Applications of hybrid federated learning 
There are several applications of hybrid federated learning in daily life where we see the usage of hybrid 

federated learning. Now we will discuss the scenarios of hybrid federated learning. 

3.1.1. Health care 
Scenario: 

Hospitals and medical institutions often have sensitive patient data that cannot be shared due to privacy 
regulations. Hybrid federated learning can be employed to train predictive models on patient data from multiple 
institutions without the need to transfer the data to a centralized location. 

Details: 

The central server provides an initial model, and local clients (hospitals) train the model on their 
respective datasets. The updated models are then sent back to the central server, which aggregates the model 
updates and shares a new global model. This iterative process ensures that the model improves while preserving 
patient privacy. 

3.1.2. Cybersecurity 
Scenario: 

Organizations often collect vast amounts of security-related data, including network traffic, logs and 
intrusion detection alerts. Sharing this data for centralized training poses privacy and security risks. Hybrid 
federated learning can be employed to collaboratively train intrusion detection or malware detection models 
across multiple organizations while preserving the confidentiality of their data. 

Details: 

Each organization acts as a local client and trains a model using its own security data. The central server 
coordinates the training process and aggregates model updates from the organizations. By combining 
knowledge from different sources, the global model becomes more robust against emerging cyber threats. 
However, the raw data remains on the local clients, ensuring data privacy and minimizing the risk of exposing 
sensitive information. 
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3.1.3. Natural language processing (NLP) 
Scenario: 

NLP models often require large amounts of text data for training, which may come from various sources, 
such as social media, news articles and private documents. In situations where the data sources cannot be 
centrally accessed due to privacy concerns, hybrid federated learning can be used to collaboratively train NLP 
models across multiple data owners while maintaining data privacy. 

Details: 

Data owners, such as different organizations or individuals, act as local clients and train NLP models 
using their respective text datasets. By combining knowledge from diverse data sources, the global NLP model 
becomes more versatile and accurate. Importantly, the raw text data remains localized, ensuring data privacy 
and confidentiality. 

4. Cluster federated learning 
The researchers have created a cluster-based, hierarchically aggregated federated learning system in this 

work. CFL also can be done dynamically too. They have developed a successful strategy that divides the edge 
nodes into K clusters using balanced clustering. The edge nodes in one cluster send their local updates to the 
cluster header for synchronous aggregation or cluster aggregation in order to determine the optimal number of 
clusters with resource constraints and perform edge computing training. To address the actual network 
dynamics, they further developed their method. Their experimental findings showed that, as compared to 
baselines, the suggested mechanism may achieve exceptional performance when faced with resource 
limitations[4]. Please refer to “Table 1”, for the results of experimental findings between cluster FL and 
dynamic cluster FL. 

Table 1. Observations and results of cluster FL and dynamic cluster FL. 

Algorithms 
performed 

Accuracy (while training CNN 
model over CIFER-10 dataset) 

Accuracy (while training CNN 
model over MNIST dataset) 

Observations 

Cluster-based FL 
(CFL) 

35% 74.2% Effectively deals with data 
imbalance. 

Dynamic CFL 
(DCFL) 

51% 95.9% Handles the node failure and 
maintains the training process well. 

Some of the case studies that include cluster federated learning for better results are as follows: 

1. Cluster federated learning on electronic health records: a case study of anemia diagnosis. 

2. Cluster federated learning on mobile applications: a case study of predicting user engagement. 

4.1. Applications of cluster federated learning 
There are several applications of cluster federated learning in daily life where we see the usage of cluster 

federated learning. Now we will discuss the scenarios on cluster federated learning. 

4.1.1. Autonomous vehicle training 
Autonomous vehicles require large amounts of data to train and traditional methods of data sharing are 

not efficient or secure. Cluster federated learning can be used to train autonomous vehicles, with data from 
multiple sources, in a secure and decentralized manner. 

4.1.2. Healthcare 
Cluster federated learning can be employed in healthcare systems that consist of multiple hospitals or 
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healthcare institutions. Devices within each cluster, such as hospital servers or patient monitoring devices, can 
collaborate to train models specific to their cluster while adhering to data privacy regulations. This enables 
knowledge sharing, disease detection, treatment recommendation systems, and improved healthcare outcomes 
across different clusters. 

4.1.3. Recommendation systems 
Recommendation systems require large amounts of data to be trained on. Cluster federated learning can 

be used to train recommendation systems on multiple datasets without having to share the underlying data. 

4.2. Applications of dynamic cluster federated learning 
There are several applications of dynamic cluster federated learning in daily life where we see the usage 

of dynamic cluster federated learning. Now we will discuss the scenarios of dynamic cluster federated learning. 

4.2.1. Autonomous driving 
Dynamic cluster federated learning can be used for intelligent traffic management in urban areas. Clusters 

can be formed based on traffic patterns, such as congestion-prone areas or specific road segments. Devices 
within each cluster can collaborate to train models for real-time traffic prediction, adaptive traffic signal control, 
and congestion mitigation. This approach enhances traffic flow efficiency, reduces travel time, and optimizes 
transportation systems. 

4.2.2. IoT devices 
Dynamic cluster federated learning can be employed in adaptive IoT systems where the clustering is based 

on the changing context or network conditions. Clusters can be dynamically formed to optimize data 
processing, resource allocation and service provisioning in IoT networks. This approach enables intelligent 
and self-adaptive IoT systems that can adjust their operations based on the dynamically changing environment. 

4.2.3. Healthcare 
Dynamic cluster federated learning can enhance personalized healthcare by considering the dynamic 

formation of clusters based on patient characteristics, disease types or treatment requirements. Clusters can be 
formed to allow collaboration between medical devices, hospitals, and research institutions. This facilitates 
privacy-preserving model training for personalized diagnosis, treatment recommendation, drug discovery and 
improving healthcare outcomes while maintaining data confidentiality. 

5. Asynchronous federated learning 
With the massive growth of IoT, a large amount of data is generated from the real world every day. The 

data will move to the central place or center through the network for the instruction, which will use huge 
amounts of bandwidth usage. Due to this, it can keep more load on the local server, and it has sent a lot of 
work on the edge, which we can say is edge computing. This FL application has been used at those edges. We 
use FL because it keeps the security of the clients whose data is stored on those servers. 

FL can be done on one or many servers (parameter server) which can be known as a group of servers. In 
which we need many numbers of edge nodes or edges. In these many servers, each one is controlled by the 
head and they have kept a division of the widely shared parameters. Let us take the example as one parameter 
server in which each edge worker is taken care of computing the work in the local server after completing the 
work in each server, they send the data of the completed one into the parameter server. 

To perform this there are many factors such as resource constraints, data imbalance, edge uncertainty. 

The two methods for federated learning in the edge computing: 
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1) Synchronous scheme: using this approach, data is gathered from all local servers and transferred to the 
training data’s global servers. The parameter server will then divide the work into smaller tasks and 
deliver information about each edge node’s updated nodes for the specified amount of time. However, 
there will be drawbacks such as issues with bandwidth and training time. 

2) Asynchronous scheme: with this approach, data is gathered from a few local servers and transferred to 
the training data’s worldwide servers. The parameter server will then divide the work into smaller tasks 
and deliver information about each edge node’s updated nodes for the specified amount of time. We also 
require a lot of time and bandwidth for this. 

Communication-efficient asynchronous federated learning (CE-AFL) approach is employed to get around 
this. This approach collects data from a specific number of edge nodes’ local servers and sends it to the training 
data’s global servers. The work of a specific number of edge nodes will be combined by the parameter server, 
which will then update the local server in the order of arrival time. In edge computing with limited resources, 
federated learning enables the training of global models over over-dispersed datasets. The ideal outcome of 
training data from various users and devices is enhanced model representation and generalization[6]. 

For optimizing this federated learning, we use two solutions like gradient descent, stochastic gradient 
descent. 

The case study of asynchronous federated learning for mobile applications is described below: 
● A corporation that has to access client data from various sources, such as mobile applications, online 

browsers and other connected devices, may be the subject of a federated learning case study. The 
corporation wants to use the information gathered from various sources to create a model that can 
precisely predict client behavior. The business would need to create an asynchronous federated learning 
system in order to achieve this goal. Multiple models of various sources of client data would be used in 
this system. The findings would be synced among the models after each model had been trained on a 
portion of the data. By doing so, the model would be able to use data from different sources while learning 
patterns that might be particular to each data source. The models can be used to forecast customer 
behavior once they have been trained. After that, the business can utilize this data to decide how to 
improve customer service. This might entail adjustments to goods or services, marketing plans or 
customer service techniques. The organization can acquire insights from several sources of consumer data 
by using asynchronous federated learning without having to move the data between sources. This keeps 
customers’ personal information private while still giving the business useful information. 

5.1. Applications of asynchronous federated learning 
5.1.1. Federated learning in unstable environments 

Asynchronous federated learning is more resilient to unstable network conditions, device failures and 
dropouts. Since updates can be sent independently, the learning process can continue even when devices 
experience intermittent connectivity or are temporarily offline. This makes it suitable for applications in remote 
areas, disaster-prone regions, or mobile networks with unreliable connections. 

5.1.2. Large-scale collaborative systems 
In scenarios where a massive number of devices or nodes participate in the federated learning process, 

synchronous communication can become a significant challenge. Asynchronous federated learning enables a 
more scalable approach by allowing devices to contribute updates at their own pace. This makes it suitable for 
applications like social networks, federated recommendation systems and crowd-sourced data analysis, where 
numerous users contribute to the learning process. 
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5.1.3. Real-time adaptation and personalization 
Asynchronous federated learning enables real-time adaptation and personalization of models. Devices 

can update their local models based on their individual data and preferences, without waiting for 
synchronization with other devices. This enables applications like personalized news recommendations, 
adaptive chatbots and real-time user behavior modeling, where timely updates and personalized experiences 
are critical. 

6. Federated SGD 
These days, the corporate community is paying close attention to machine learning, which the company 

will handle the data. The data is gathered from many sources, and ML applies operations to it. However, the 
problem is that the collected data should be moved to a single location where the ML can execute its duty as 
stated above, but due to security concerns, which prevented anybody from authorizing the move, the 
company’s reputation and their clients’ data were damaged. The solution is PPML (privacy preserving machine 
learning), but because ML algorithms in telecommunications are data-hungry, we can’t take the data into a 
single spot due to a number of problems. 

Due to the aforementioned factors, the FL framework was applied in this communication. Tensor flow 
and pytorch were used to create this framework. 

The optical networks are becoming their own distinct entities and ML is probably going to play a different 
role in this. However, there are a lot of difficulties to be aware of throughout this era of change. The 
inaccessibility of the original data that was collected makes it difficult to create ML-based solutions. While 
the FL framework fixes the ML issues in optical networks. 

Federated SGD (stochastic gradient descent) is a distributed machine learning technique that allows 
multiple devices to collaborate in training a machine learning model. This technique enables devices that are 
not connected to a central server to train a model without needing to share their local data. Federated SGD can 
be used to train models on data that is distributed across multiple devices, such as smartphones, IoT devices, 
and edge devices. This allows for distributed training in a secure manner and can be used to train models that 
would otherwise require a central server. 

Some of the case studies that include for better results are as follows: 
● The first case study concerns a study carried out in the UK that employed federated SGD to lower the 

price of optical network planning. In order to learn a model of the network topology and evaluate it to 
improve the arrangement of the optical links, the project employed federated SGD. This decreased the 
cost of network setup and maintenance and allowed the team to plan the network quickly and precisely. 

● The second case study focuses on a study that was carried out in the US and employed federated SGD to 
lower optical network’s power requirements. In order to reduce power consumption, the project optimized 
the location of optical links and components using federated SGD, which was used to learn a model of 
the optical network. As a result, the team was able to considerably lower the network’s overall power 
consumption. These case examples demonstrate that federated SGD can be used to plan effectively and 
precisely. 

6.1. Applications of federated SGD 
Federated SGD has a wide range of applications in machine learning, particularly in the areas of 

healthcare, finance, and communication. 

6.1.1. Healthcare 
Fed-SGD can be employed in federated healthcare systems, where multiple hospitals or healthcare 
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institutions collaborate to train models on patient data while preserving privacy. Each institution performs local 
updates using stochastic gradient descent on its own patient data, contributing to the collective learning process. 
Fed-SGD can be used for disease prediction, treatment recommendation, clinical decision support, and medical 
research while adhering to privacy regulations. 

6.1.2. Finance 
Fed-SGD can be applied to federated financial systems to train models on distributed financial data while 

respecting privacy and security. Each financial institution performs local updates using stochastic gradient 
descent on its transactional data, allowing for collaborative learning without sharing sensitive customer 
information. Fed-SGD can be used for fraud detection, risk assessment, personalized financial services and 
regulatory compliance in a privacy-preserving manner. 

6.1.3. Distributed machine learning platforms 
Fed-SGD can be integrated into distributed machine learning platforms that span multiple devices or 

cloud servers. Each computing node performs local stochastic gradient descent updates, and the model updates 
are aggregated to create a global model. Fed-SGD enables distributed training, efficient utilization of 
computing resources and scalability for large-scale machine learning applications. 

7. Multi-tasking federated learning (MTFL) 
It is a unique function of federated learning that solves concerns like user-content recommendation and 

enhances the accuracy of each individual user model (UA). Non-federated batch-normalization (BN) layers 
are added to the data by MTFL. By enabling users to train models specifically tailored to their data, MTFL 
improves user model accuracy and convergence speed. 

Some of the case studies that included multitasking are as follows: 
● One example of a study using MTFL comes from a research project conducted at the university of Oxford 

in which the researchers used MTFL to train a model for predicting hospital readmission risk for patients 
with chronic obstructive pulmonary disease (COPD). The researchers used data from multiple hospitals 
in the United Kingdom, which were collected in a federated manner. The model was trained using MTFL, 
which allowed the researchers to take advantage of data from multiple sources while preserving the 
privacy of the patient’s data. The researchers found that MTFL was able to improve the accuracy of the 
model compared to traditional machine learning methods. Moreover, the model was able to generalize 
well to new datasets and was able to be deployed in a real-world setting. The results of the study 
demonstrate the potential of MTFL for healthcare applications. 

● Multi-task federated learning has been used in computer vision and speech recognition tasks. Researchers 
have developed federated learning models that jointly learn to recognize objects in images and transcribe 
speech. By combining these tasks, the models benefit from shared representations and improve 
performance on both tasks. 

● In the context of autonomous driving, multi-task federated learning was employed to simultaneously learn 
perception tasks, including object detection and lane detection. The study involved a fleet of vehicles that 
collaboratively trained a shared model while respecting data privacy. Each vehicle contributed its local 
sensor data for training, and the federated learning framework facilitated the exchange of model updates 
between the vehicles. By jointly learning multiple perception tasks, the vehicles improved their ability to 
detect objects and lanes, enhancing overall safety and performance. 

● Multi-task federated learning was applied to IoT applications, specifically in a smart home environment. 
The goal was to collectively train a shared model on devices within the home to perform tasks like activity 
recognition, energy optimization, and anomaly detection. By training the model collaboratively while 
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keeping data local, the privacy of users’ activities and preferences was preserved. The shared model 
learned from the distributed data, enabling it to make accurate predictions about activities, optimize 
energy consumption, and identify anomalous events within the smart home ecosystem. 

7.1. Applications of multi-task federated learning 
There are several applications of multi-tasking federated learning in daily life where we see the usage of 

multi-tasking federated learning. Now we will discuss the scenarios of multi-tasking federated learning. 

1) Without actually exchanging the data obtained among traffic stations, we can still optimize the traffic 
forecast models. The route planning problem, which utilizes a modified A* algorithm, is addressed by the 
multi-task FL model that is proposed. The suggested multi-task FL framework’s improved prediction accuracy 
has been confirmed by simulation results. 

2) We can choose an efficient route with shorter travel time than Google maps and distance-based 
schemes by using multi-horizon traffic speed prediction. 

3) Different optimization strategies (including Fed-Avg-Adam can be used within MTFL). 

Now, we discuss the MTFL algorithm working in edge computing. This algorithm is mainly based on the 
client-server framework which is shown in Figure 2. 

 
Figure 2. Client-server framework. 

Rounds of training are conducted here until a termination condition is satisfied. The server, which is seen 
in the above image, starts these rounds. 

The processes involved in using the MTFL algorithm in edge computing are listed below. 

The server selects a group of clients to participate in the round from its whole database and sends them a 
task request. The clients now get the request from the server and send back an accepted message in response 
based on the user preferences. This suggests that a user may set up their gadget such that it only participates 
in the FL when it is fully charged and linked to a Wi-Fi network. Clients who accept the request then signal 
the server with an accept message. The server now sends the global model to its receptive clients. The clients 
modify the local copy of the global model with their own fixes. We use patches from batch-normalization 
layers in this. The clients now carry out local training before conserving their patches for the following round. 
A subset of clients that agreed to participate in the rounds submit their non-private model and optimizer settings 
to the server after waiting a predetermined amount of time. The server then saves the aggregate to create a 
single global model that is saved on the server after sorting all models by average. After that, the server may 
start a fresh round. 
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7.1.1. Traffic prediction by multi-task federated learning 

In this, we did the traffic system prediction of the traffic jam and the speed detection of the vehicle for 
the upgrade of the intelligence transportation systems. Because it helps the citizens when choosing their raid 
and both to improve fuel economy and to reduce air pollution. These will benefit the populace and are essential 
to cutting-edge traffic management systems[5]. An inductive loop may monitor travel speed by measuring how 
inductance varies over time in the corresponding traffic lights and Internet of Things devices and this 
information can be utilized to estimate traffic speed. They’ll utilize a lot of IoT devices to gather an unrivaled 
amount of traffic data from the actual world. This enormous amount of data may lead to an increase in studies 
in this area. They can be taken into an entity into two categories: the ARIMA model, and the Kalman filtering 
models. 

When dealing with traffic simply in regular changes, for instance during rush hours or peak hours in a 
city, we may provide reports that are worthwhile. The value will differ from the real values during peak hours 
due to the unusual nature of the traffic and the parametric approach’s projections. We may fit the data and do 
ML-like non-parametric techniques by gathering the data and performing the above-mentioned mathematical 
procedures. Using data gathered by the signal and its arriving and departing traffic signals, a long short-term 
memory (LSTM), recurrent neural network (RNN) can anticipate the speed and filling of a traffic jam. To 
capture the latent traffic evolution patterns inside the underlying traffic network, we shall employ the 
convolution neural network (CNN). This project seeks to use cutting-edge ML, where we may utilize a single 
task learning approach, sometimes referred to as the (STL). However, in actuality, there will be a variety of 
elements at play, including changes in the weather as well as several events like camps and protests. A 
significant responsibility or load for STL is laying the new roads and modifying the existing ones. We can 
presume that the local data or traffic signal may have a memory limit where there will be issues with bandwidth 
and storage. To address this, they provide multi-task federated learning (FL), which will improve the traffic 
conditions as previously described. We first employ the acquired traffic data’s field values, which are impacted 
by their immediate neighbors, and build a divisive hierarchical clustering (DIANA), which separates the traffic 
data at each signal into a collection of clusters. The federated learning will then do or train them at each local 
data set without doing so on the global or central cluster for each data cluster scattered across signals. In this 
situation, the proposed multi-task FL architecture can safeguard privacy and lower transmission costs because 
no local data is exchanged among stations. On the map where the plan was carried out, we applied the multi-
horizon speed prediction from the multi-task federated learning framework. The dependency graph will be 
used to create them in this road map and the modified A* method will be used to identify the cheapest and 
fastest route possible. To provide the most accurate traffic predictions in a variety of anomalous traffic 
scenarios, we additionally take into account the traffic and route map. 

8. Collaborative federated learning 
Collaborative federated learning allows for the implementation of FL on edge devices with a reduced 

need for a central controller. Supporting privacy framework having the capacity to use more training data 
samples than original FL. Due to collaborative FL’s ability to support more devices in the FL process compared 
to original FL, it is suitable for application in large-scale systems. For secure data sharing this collaborative 
federated learning is efficient. 

Some of the case studies in collaborative federated learning are as follows: 
● Google’s federated learning of cohorts (FLoC): Google’s federated learning of cohorts (FLoC) is a 

collaborative federated learning method that uses a machine learning model to group users into cohorts 
based on their browsing history. This helps Google to deliver more relevant ads to users while protecting 
their privacy. FLoC is a privacy-preserving technique that allows Google to use the data from a user’s 
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browsing history to identify similarities between them and other users. The data is then used to group 
users into cohorts, or groups of users, who share similar interests and behaviors. This allows Google to 
target ads more accurately and efficiently. 

8.1. Applications of collaborative federated learning 
There are several applications of collaborative federated learning in daily life where we see the usage of 

collaborative federated learning. Now we will discuss the scenarios of collaborative federated learning. 

8.1.1. Collaborative federated learning for diagnosis of COVID-19 using X-ray and 
ultrasound 

Collaborative federated learning in the health care system has the main advantage of data privacy of the 
patient. Sending data directly between end devices and cloud servers may lead to security problems. By using 
ML at the edge devices, the security of the system increases. The two datasets X-ray and ultrasound are taken 
to detect COVID-19. Clustered federated learning is in which the parameters are trained jointly[7]. 

Each cluster has a number of clients. Each client trains the model which is shared by the server. After 
completion of the training of models the clients share the learned weights with the server, then the server 
calculates the Fed-Avg. The model is updated with new weights after which multi-modal data testing will be 
performed and check whether the criteria are matched if not the process repeats. 

The datasets in this instance are split into two categories: a training set and a testing set. Each data set has 
20% for testing and 80% for training. The two baselines specialized federated learning and conventional 
federated learning are used to compare the performance of clustered federated learning. The model is trained 
in a federated learning environment while using customized FL. An ML model is introduced in the federated 
learning environment in conventional FL. 

The results of the approach are that the performance of clustered federated learning is better than the 
performance of conventional federated learning. In ultrasound, if the inflection point in the value of the loss 
function is reached the federated learning rounds will be stopped. If the multimodal machine learning model 
beyond which cannot be enhanced, then the point is called the inflection point. 

8.1.2. Collaborative data sharing in vehicular edge devices using federated learning 
The Internet of vehicles (IoV) is a newly emerging technology in which all vehicles are connected and 

share vehicular data through wireless connections to control traffic and to make traffic well organized. 

Multi-access edge computing (MAEC) can retain sensitive vehicular data close to the vehicles by utilizing 
federated learning in the vehicular edge networks (VEN) and only transferring the locally learned feature 
parameters to the cloud server for global aggregate[9]. 

The architecture has four layers: 

Cloud computing layer (CCL): traditional cloud servers and VEN-specific cloud servers are the two 
categories of cloud servers. Wired fiber lines are used to connect the two cloud servers. 

Load balance and cache layer (LBCL): load balancers identify the traffic source by gathering protocol 
headers and distributing traffic according to application scenarios to increase the effectiveness of resource 
usage for network traffic and data. Caches are set up to work with load balancers to resolve duplicate services 
and pre-allocate storage resources. 

Edge computing layer (ECL): VEN’s vehicular edge devices are supported primarily by the ECL in terms 
of a variety of services and applications. 
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Vehicular edge layer (VEL): in the VEL, vehicle edge devices are directly connected to neighboring 
MAECS (multi access edge computing servers) over wireless cellular networks, and they produce data traffic 
from different user defined VEN services and applications. 

Advantages of using federated learning for MAEC-empowered IoV: 

Reduction in network bandwidth. Massive VS data is not transmitted to the data center for training since 
federated learning can decentralize to learn a deep model at different MAECSs. The use of network bandwidth, 
energy consumption, and data transfer could all be significantly decreased via federated learning. Privacy 
protection. Users’ sensitive information is shielded from the risk of hacking because less data must be sent to 
the data center and their privacy is somewhat secured by low latency. Each local participant (edge server or 
device) in federated learning takes decisions in real time, allowing the deep models to be consistently trained 
and updated while lowering transmission latency. 

The results for the approach are as follows, the convergence of the proposed algorithm is faster than the 
centralized scheme. The latency of the proposed algorithm and centralized scheme are similar which means 
both methods give optimal results. 

8.1.3. Wireless communications for collaborative federated learning 
In order to use FL over IoT networks in practice, edge devices must repeatedly send their trained ML 

models to a central controller over wireless links. Only some devices can use FL due to constrained wireless 
resources, such as those found in an IoT. 

The learning process is hampered by wireless channel faults and delays that are transmitted from IoT 
devices to a central controller (such as a base station). In order to enhance FL performance, it is required to 
take into account wireless network optimization[10]. 

Performance of collaborative federated learning over wireless networks: 

Loss function: CFL training’s objective is to locate an ML model that depends on the local FL models of 
all involved devices, which minimizes the loss function. These models encounter transmission delays and 
mistakes when sent over wireless networks, which might have an adverse effect on the loss function during 
training. Due to limited energy only a few data samples were involved, and the loss function increased. 

Convergence time: the time it takes for each device to train its local FL model plus the number of iterations 
needed for FL convergence makes up the CFL convergence time. 

For each CFL iteration, there are a predetermined amount of local FL model changes. 

Energy consumption: the amount of energy used by CFL depends on a number of factors, including the 
size of the FL model data, the distance between the BS and the devices, the needed convergence time, and the 
goal loss function value. 

Reliability: the wireless channel conditions affect CFL’s reliability. Each device’s transmit power 
improves as a result, which reduces the number of inaccurate local FL models and raises CFL reliability. 

9. Energy consumption management in federated learning in edge 
environment 

This study proposes energy-aware resource management for the MAEC-enabled FL. By enabling mobile 
users to offload a portion of their local dataset to the MAEC server, the tradeoff between the performance of 
the training model and the energy consumption at user devices with regard to the number of data samples used 
for local training is particularly handled. To accomplish this, a resource management problem that considers 
energy limitations is created with the intention of decreasing training loss and time usage. The formulated 
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problem is split into multiple more manageable problems due to the relationship between the decision 
components. The strategy for controlling computing resources is then created by ensuring the energy budget 
of mobile users. The phrasing of the dataset offloading and uplink resource management problem as a GNEP 
(generalized nash equilibrium problem) also leads to the conclusion that a GNE exists. The dataset offloading 
and uplink bandwidth allocation issues are resolved to decrease overall time consumption. To accomplish this, 
the energy-aware resource management algorithm is recommended. The proposed MAEC-enabled FL model’s 
overall time consumption is competitively lower than that of the traditional FL technique, according to 
extensive simulations that employ the recommended resource management algorithm. The performance 
parameter energy consumption is considered by many researchers. 

Due to the limited energy and computational capabilities of mobile devices, the efficiency of model 
training to meet the aim of local energy reduction is always in jeopardy. Multi-access edge computing 
(MAEC)-enabled FL eliminates the trade-off between the model performance and the energy use of mobile 
devices by allowing users to send a portion of their local dataset to an edge server for the model training. Due 
to the edge server’s enormous processing capability, the amount of time needed for model training is 
minuscule[11]. 

10. Caching and offloading in federated learning in mobile edge computing 
(MEC) 

The MEC system’s communication and computing resources, as well as both scenarios of compute 
offloading and edge caching, are managed by deep reinforcement learning (DRL). The distributed training of 
these DRL agents is carried out in the following manner using federated learning as a framework: 

Significantly lowering the quantity of data that needs to be uploaded over the wireless uplink channel. A 
response on the part of the mind to cellular network circumstances and the mobile communication environment. 
adaptation using diverse UEs in a real-world cellular network. protecting the privacy of personal data. Major 
flaws due to the wireless MEC system communication. Increasing the importance of uplink wireless channels 
and increasing the amount of training data while taking into account many UEs. Might result in privacy-related 
privacy mishaps, and training data uploading to edge nodes, or the cloud might be sensitive to privacy. Due to 
the alteration of training data for privacy reasons, proxy data on the server is less pertinent as compared to on-
device data. 

Mobile edge computing networks can perform and operate more effectively by using task offloading and 
data caching. The quality of service and resource utilization of mobile edge computing networks can be 
improved by concurrently improving task offloading and data caching. Please refer to “Table 2”, for 
observations of different factors of computing resources and offloaded data. 

Each client has to submit the most recent version of their model within the FL framework. Without the 
FL framework, UEs would have to use centralized DRL to upload all of the training data via wireless channels, 
which would use up more communication resources. 

A mobile edge system’s edge caching and compute offloading scenarios are investigated through tests, 
and the “in-edge AI” is assessed and shown to be capable of achieving performance that is very close to ideal[12]. 

Table 2. Observations of different factors between computing resources and offloaded data. 

Increase in Loss Time consumption Energy consumption 

Computing resources allocation Decreases Decreases Increases 

Offloaded data set size Decreases Increases Decreases 
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The results are as follows, the proposed MAEC-enabled FL performs better than the traditional FL due 
to the offloading and collaborative training of the local datasets at the edge server. The MAEC-enabled FL can 
function with less time consumption than the traditional FL thanks to the proposed resource management 
technique. Although there will ultimately be an energy cap for mobile users, the energy use of cell-center users 
fluctuates more than that of cell-edge users. 

11. Federated learning for wireless communications 
The wireless communication network contains a large amount of data, which makes it possible to use ML 

models to train the data. However, the acquisition of ML is insufficient since wireless communication is more 
complex there. It is a distinct manner of applying mathematical techniques. As the data is moved from each 
server to the central or global server and contains a lot of private data, it might provide challenges for the 
individual company since it is located at the center and has a large quantity of data that could be attacked. The 
decentralized ML technique, which we called FL, has been introduced to address this problem. The training 
has been carried out in this decentralized system at each server and the trained data has been sent to the central 
server. This federated ML is a development of the first federated strategy that Google just released. We used 
the FL framework for communication across 5G networks. Because they concern performance, privacy, and 
security. 

In contrast to the previous ML, which sent the raw data, this ML trains the data at each local server before 
sending it to the global server. If the collection has usage, it will transmit the data to the local server after using 
the global model’s local model parameters should be updated. As a result, without explicitly accessing their 
privacy-sensitive data, each local learner uses the datasets of the aggregator’s global model, which is the only 
way the other students can learn. Wireless communication presents various security and privacy problems[13]. 

There are characteristics of non-IID (independent and identically distributed), distributed, and unbalanced 
training data that have been mentioned, including distributed learning, parallel learning, distributed ensemble 
learning and there are numerous applications for wireless communication that uses federated learning. These 
are edge computing, caching, spectrum management and 5G core network. 

Some of the parameters that we came across are the various literatures which are considered by the 
researchers in their work. Please refer to “Table 3”, for factors considered by researchers are as follows: 

Accuracy (A): which tells us how closely the sample parameters match the characteristics of the 
population by providing the near value results to the provided parameters quality. 

Latency (L): the delay in time it takes a data packet to go from one network node to another is referred to 
as latency in networking. A network tool called ping, or a diagnostic command called traceroute are frequently 
used to monitor latency on the internet. 

Time (T): time is what appears to be an unstoppable sequence of existence and events moving from the 
past through the present and into the future. 

Energy consumption (E): energy consumption is the term used to describe the use of all energy to perform 
an action, build something or simply occupy space. 

Reliability (R): reliability is the potential for a product, system or service to perform as intended for a set 
period of time. 

Edge computing (EC): edge computing is a distributed computing paradigm that moves processing and 
data storage closer to the data sources. This ought to cut down on bandwidth usage and quicken response times. 
Edge computing is a sort of distributed computing that is not specific to any one technology but is topology 
and location sensitive. 
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Federated learning (FL): federated learning is a machine learning technique that trains an algorithm using 
a number of distributed edge devices or servers that each maintain their own local data samples without sharing 
them. This strategy is distinct from more traditional decentralized approaches, which usually assume that local 
data samples be distributed equally and traditional centralized machine learning techniques, where all local 
datasets are uploaded to a single server. 

Environment (Env): there are two types of environments in which we conclude they are known as 
● Heterogeneous environment (het): using equipment and operating system software from several suppliers. 

Computers, operating systems, and databases from many suppliers are often used by businesses. 
● Homogenous environment (hom): using software and hardware from the same supplier. 

Throughput (TP): throughput is the amount of data that actually moves over a certain period of time. It 
may also be described as the maximum quantity of traffic that a website or application can manage. 

Scalability (S): scalability is the capacity of a system to modify its cost and performance in response to 
changes in application and system processing demands. 

Computational power (CP): computing power is a computer’s capacity to do a task quickly and accurately. 

Hardware (HWR): data on hardware capacity reveals the communication and computing power of various 
devices. 

Bandwidth (BND): to ensure minimum transmission delay for training traffic, edge computing introduces 
bandwidth slicing to allow federated learning. 

Communication cost (CC): the communication cost of a task is the size of the input to the task and can 
also be in bytes. 

Loss (L): loss of the data happened during different communication rounds. 

Table 3. Factors that are considered from different areas of federated learning in edge computing. 

References A L T E R EC FL Env TP S CP HWR BND CC L 

[1] ✔ ✔   ✔ ✔ ✔ Het ✔ ✔ ✔ ✔ ✔ ✔  

[2] ✔ ✔    ✔ ✔ Het    ✔ ✔  ✔ 

[3]      ✔ ✔ Het ✔ ✔ ✔ ✔ ✔   

[4] ✔     ✔ ✔       ✔  

[5] ✔  ✔   ✔ ✔  ✔     ✔  

[6] ✔  ✔   ✔ ✔ Het     ✔   

[7] ✔              ✔ 

[8] ✔  ✔ ✔            

[9]  ✔              

[10]   ✔ ✔ ✔          ✔ 

[11] ✔  ✔   ✔ ✔       ✔  

[13] ✔ ✔ ✔ ✔  ✔ ✔ Het  ✔   ✔ ✔  

[14] ✔ ✔ ✔   ✔ ✔ Het  ✔ ✔ ✔ ✔   

[15] ✔ ✔    ✔ ✔ Het       ✔ 

[16]      ✔ ✔         

[17] ✔     ✔ ✔       ✔  

[18] ✔  ✔   ✔ ✔      ✔   

https://ieeexplore.ieee.org/abstract/document/9340296
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Table 3. (Continued). 

References A L T E R EC FL Env TP S CP HWR BND CC L 

[19] ✔ ✔ ✔ ✔ ✔ ✔ ✔ Both  ✔   ✔ ✔  

[20] ✔  ✔            ✔ 

[21] ✔               

12. Discussion and analysis 
Despite its benefits, federated learning also has some drawbacks. For example, it can be challenging to 

ensure the accuracy and reliability of the model when training with distributed data sources. Additionally, 
federated learning can require more computing power than a centralized approach, as each device needs to be 
able to process the updates sent by the server[22–26]. 

Model aggregation delay is indeed one of the drawbacks associated with federated learning (FL). During 
the training process in federated learning, the individual edge devices or clients perform local model updates 
using their respective data[26–28]. These local updates need to be aggregated to create a global model that 
represents the collective knowledge of all participating devices. This aggregation typically occurs on a central 
server or in a distributed manner. However, the process of aggregating the local model updates introduces a 
delay in FL. This delay is primarily caused by factors such as network latency, communication bandwidth 
limitations, and computational overhead[29–32]. As the number of participating devices increases, the time 
required for aggregation also increases, resulting in longer model aggregation delays. 

Model aggregation delay can have several implications: 
● Training efficiency: longer model aggregation delays can impact the overall training efficiency in 

federated learning. The delay can prolong the time required to complete a training round, leading to slower 
convergence or slower updates to the global model[33–36]. 

● Real-time applications: in scenarios where real-time decision-making is crucial, the model aggregation 
delay can introduce latency that hinders the ability to respond quickly[37–39]. Applications requiring 
immediate or near-real-time predictions may be affected by the delay in updating the global model. 

● Communication overhead: model aggregation involves transferring model updates from multiple devices 
to a central server or among devices. This communication incurs additional overhead in terms of 
bandwidth usage and network resources, particularly when dealing with large models or a large number 
of participating devices[40]. 

Edge-Fed computing helps to reduce the amount of data that needs to be transferred over the network, 
reducing latency and improving performance. Edge-Fed computing also allows devices and applications to be 
more responsive to user needs, as they can process data closer to where it is created. Hybrid federated learning 
is a new type of machine learning approach that combines traditional federated learning with distributed 
learning. In hybrid federated learning, data is stored in a single location, but it is shared between multiple 
different locations. This approach allows for greater scalability and privacy, as well as faster training and 
inference. Cluster FL has the potential to dramatically reduce the amount of data that needs to be stored and 
shared among devices for training. By using only local data, it eliminates the need for a central repository of 
data, which can be expensive and difficult to manage. In addition, dynamic cluster federated learning can 
improve scalability. By allowing multiple clusters of devices to train a model in parallel, the size of the model 
can be increased without sacrificing accuracy. Federated SGD is a powerful optimization technique for 
distributed machine learning that offers many advantages over traditional distributed computing. It allows for 
more efficient use of resources, reduces communication requirements, and increases data privacy[38]. 
Additionally, because updates can be made asynchronously, Asynchronous FL can be more efficient than 

https://ieeexplore.ieee.org/abstract/document/9194132
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traditional federated learning, as participants can continue training even when others are offline. In order to 
ensure that the model is able to learn from multiple tasks, it needs to be able to identify and isolate the features 
that are relevant to each task. This is accomplished by introducing regularization terms into the model, which 
penalize the model for using features that are irrelevant to the task. Overall, collaborative FL provides an 
efficient and secure way to share and learn from distributed data without compromising data privacy and 
security[38,41]. It is particularly useful in scenarios where data is sensitive or distributed across multiple devices. 
Additionally, it has been shown to improve the accuracy of machine learning models in federated settings. 

Finally, from the complete study of literature, we found that federated learning in edge computing gives 
better results than traditional works. 

13. Conclusion and future work 
The report highlights that cloud computing can present challenges related to security and privacy. To 

address these issues, the report suggests integrating edge computing with federated learning. This collaboration 
enables the achievement of accurate results while preserving data privacy. Caching and offloading techniques, 
when combined with federated learning, reduce the amount of data transmitted compared to traditional 
approaches. Caching involves storing frequently accessed data closer to edge devices, while offloading 
distributes computational tasks between edge devices and centralized servers. This integration improves 
efficiency by minimizing data transmission requirements. In communication networks, the usage of federated 
learning through edge computing is found to be more effective than traditional machine learning methods. By 
adopting federated learning, devices within the network can collaboratively train a shared model while keeping 
data local. This decentralized approach reduces communication overhead and improves efficiency. In the 
context of Android malware detection, the use of federated learning through edge computing outperforms 
centralized approaches. By training the model collaboratively on edge devices while preserving data privacy, 
the federated approach enhances the accuracy of detecting malware on Android devices. Future considerations 
include containerization, which enables developers to create and deploy applications faster and with improved 
security. The implementation of a security framework is recommended to effectively manage cybersecurity 
risks. Further action is needed to incorporate edge federated learning into current edge computing 
programming models for better results. 

In summary, the report concludes that edge computing integrated with federated learning resolves security 
and privacy concerns in cloud computing. The report highlights the benefits of caching and offloading, the 
effectiveness of federated learning in communication networks, the superiority of multi-task federated learning, 
the performance advantages in Android malware detection and the utility of collaborative federated learning. 
Future considerations include containerization, security frameworks and further advancements in edge 
federated learning for enhanced outcomes. 

From this work, we conclude that, if we take cloud computing we may get some issues regarding security 
and privacy. To resolve this type of similar issues edge computing is collaborated with federated learning to 
get accurate results. It is observed that caching and offloading with federated learning takes very less amount 
of data size than without federated learning. In a communication network the usage of federated learning 
through edge computing is more effective than machine learning. Usage of multitask federated learning gives 
more appropriate results than single task federated learning. In Android malware detection federated learning 
through edge computing the performance of federated approach gives better results than centralized approach. 
Collaborative federated learning is another type of federated approach which gives better security and is useful 
in a large range of systems like in healthcare systems and vehicular systems and in wireless communication. 
Using federated learning in edge computing has given efficient output compared to other approaches. 
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In future, we will consider containerization which allows developers to create and deploy applications 
faster and with more security. Security framework for managing cyber security risks. Action in current edge 
computing programming model to the edge federated learning for better results. 
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