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ABSTRACT 

In coronary artery disease, plaque builds up in the arteries that carry oxygen-rich blood to the heart. Having plaque 

in the arteries can constrict or impede blood flow, leading to a heart attack. Shortness of breath and soreness in the chest 

are common symptoms. Lifestyle modifications, medication, and potentially surgery are all options for treatment. In 

coronary artery disease, plaque builds up in the arteries that carry oxygen-rich blood to the heart. Having plaque in the 

arteries can constrict or impede blood flow, leading to a heart attack. Shortness of breath and soreness in the chest are 

common symptoms. Lifestyle modifications, medication, and potentially surgery are all options for treatment. This 

paper presents a Hybrid Boosted C5.0 model to predict coronary artery disease more precisely. A Hybrid Boosted C5.0 

model is formed by combining the C5.0 decision tree and boosting methods. Boosting is a supervised machine learning 

method that leverages numerous inadequate models to construct a more robust and powerful model. The proposed 

model and some well-known existing machine learning models, i.e., decision tree, AdaBoost, and random forest, were 

implemented using an online coronary artery disease dataset of 6611 patients and compared based on various 

performance measuring parameters. Experimental analysis shows that the proposed model achieved an accuracy of 

91.62% at training and 81.33% at the testing phase. The AUC value achieved in the training and testing phase is 0.957 

and 0.88, respectively. The Gini value achieved in the training and testing phase is 0.914 and 0.759, respectively, far 

better than the proposed method. 

Keywords: machine learning; C5.0 decision tree algorithm; coronary artery disease; prediction; over-fitting; boosting 

1. Introduction 

A constriction or blockage of their coronary arteries is caused by 

an accumulation of fatty material known as plaque, which describes 

the same condition. To put it another way, atherosclerosis leads to 

coronary artery disease. Plaque clogs their arteries, resulting in 

atherosclerosis. Blood clot-forming fibrin is found in plaque, 

cholesterol, fats, and other waste materials. Their arteries shrink and 

harden when plaque builds up on their walls[1]. As a result of plaque 

build-up, their heart’s blood flow might be slowed or even halted, 

causing cardiac arrest. Their heart can’t function correctly if it 

doesn’t receive the oxygen and nutrition it requires. This is known as 
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ischemia. Because of insufficient blood flow to the heart muscle, you may have chest pain or discomfort 

when exercising (called angina). As a result, it raises their chance of developing heart disease[2]. 

Heart disease affects everyone, regardless of age or ethnicity. A person’s success may vary depending 

on their unique circumstances. In the beginning, it’s common for children to begin the process. The walls of 

their blood vessels begin to show symptoms of fat at age 10. As their arteries get clogged, their bodies 

release white blood cells to clear the cholesterol. The assault, on the other hand, exacerbates the 

inflammation. An additional layer of blood vessels is formed around the plaque to protect it from damage. 

Breaking apart the plaque’s thin top is possible (due to blood pressure or other causes). Platelets, blood cell 

fragments that cling to the location of “the damage,” create a clot. The clot narrows the arteries even further. 

A blood clot can spontaneously disintegrate. When the clot stops blood flow, the heart is starved of oxygen, 

resulting in angina[3]. 

One word used to describe many health disorders that impact the heart’s structure and function is “heart 

disease”. Those with coronary heart disease have arteries that can not supply the heart with adequate oxygen-

rich blood. Deaths from this disease are at an all-time high in the United States of America. According to the 

Centres for Disease Control and Prevention, coronary artery disease in the United States is the most 

prevalent kind of heart disease, which affects 18.2 million individuals[4]. 

The more prominent coronary arteries on the surface of the heart are affected by coronary artery disease. 

Coronary microvascular disease, on the other hand, involves the heart’s tiny arteries. Women are more likely 

than males to develop coronary microvascular disease. The kind of coronary heart disease determines the 

source of the condition. As a result, the heart’s major arteries might become partially or entirely blocked by 

this deposit. Small blood veins in the heart malfunction, causing coronary microvascular disease. A heart-

healthy lifestyle can help avoid coronary heart disease in most people. Though two people have the same 

type of coronary heart disease, their symptoms may differ, even if they both have it. As a result, many 

persons with coronary heart disease go undiagnosed until they experience chest discomfort, a heart attack, or 

cardiac arrest, all indicative of impeded blood flow to the heart[5]. 

The signs and symptoms of coronary artery disease change with the progression of the disease. Damage 

can exist even if no visible symptoms of it are present. When you push yourself physically, you may 

experience shortness of breath or chest aches for the first time. These symptoms only appear for a small 

percentage age of the population on rare occasions. Chest discomfort or an actual heart attack may be the 

initial symptom for some. According to Park et al.[6], doctors use signs like blood pressure, cholesterol levels, 

and glucose levels from a blood test to determine if someone has coronary artery disease. This information 

may be used to predict their 10-year cardiovascular risk-their chances of a heart attack or stroke[6]. 

There are a variety of tests that may be performed to get more information about your condition, 

depending on your symptoms[7]: 

Coronary calcium testing: A CT scan shows calcium and plaque accumulation between heartbeats. 

The patients can see the damage known as the hardening of the arteries. Treating with a starting plus aspirin 

may be unsure in patients with no documented coronary heart disease. 

High sensitivity C-reactive protein blood test: This tells you if your inflammation levels are more 

significant than usual. 

Electrocardiogram (EKG or ECG): Relaxed heartbeats can be measured using an electrocardiogram 

(ECG). 

Exercise stress test (“treadmill test”): A treadmill test that measures a person’s heart rate while the 

heart pumps harder. 

Echocardiogram: An X-ray of the heart using an ultrasound. 
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Chest X-ray: In this shot, you can see their lungs and heart. 

Cardiac catheterization: Using a catheter, a small tube is introduced into a coronary artery to detect 

obstructions. 

Coronary angioplasty: To widen a constricted artery using an expanding balloon. When an artery 

narrows, nearly 90% of the time, a stent (a metal scaffold) is used to repair it[8]. 

In this paper, we provide a machine-learning model for predicting individual cases of coronary artery 

disease using the decision tree. Most of our time is spent delving into the specifics of each prediction. This 

research aims to construct a predictive model that can effectively estimate the probability of coronary artery 

disease by utilizing patient data. Providing an automatic method enables healthcare professionals to make 

well-informed decisions regarding patient care and treatment alternatives. Also, to enhance patients’ quality 

of life through early identification of coronary artery disease (CAD) and implementation of preventive 

measures. The main contributions of this paper are as follows: 

• The primary aims of utilizing a C5.0 decision tree in detecting coronary artery disease (CAD) 

encompass identifying the most significant risk factors linked to CAD. 

• Using the C5.0 decision tree model, we are trying to develop a very accurate model. Various features 

from the given prescribed dataset are used for coronary artery disease. 

• To explain individual predictions, AUC and Gini values are used. The hybrid C5.0 decision tree 

algorithm is designed to predict coronary artery disease. In addition, ophthalmologists may benefit from the 

explanation’s clinical relevance. 

• The proposed model and some well-known existing machine learning models, i.e., decision tree, 

AdaBoost, and random forest, were implemented using an online coronary artery disease dataset of 6611 

patients and compared based on various performance measuring parameters. Experimental analysis shows 

that the proposed model achieved an accuracy of 91.62% at training and 81.33% at the testing phase. 

The complete article is divided into various sections, which include. Section 2 covers related work, 

section 3 covers materials and methods, section 4 covers experimental results and analysis and section 5 

covers conclusions and future work. 

2. Related work 

Coronary artery disease significantly contributes to adult morbidity and disability in industrialized 

countries, leading to various illnesses, impairments and fatalities. This serves as a driving force for 

investigators to seek a highly effective resolution for the issue mentioned earlier. Several significant 

contributions can be identified. 

Ghosh et al.[9] created AI calculations for the ID of sickness and the guess of mortality risk to decide if 

such models perform better than traditional factual investigations. Zeroing in on fringe supply route sickness 

(PAD), patient information was obtained from an imminent, observational analysis of 1755 patients. Both 

machine-learned models were notably preferred and adjusted over the stepwise strategic relapse models, 

giving more exact illness and mortality risk gauges. AI approaches can create more precise infection 

arrangements and expectation models. These instruments might demonstrate clinically valuable for the 

mechanized distinguishing proof of patients with exceptionally horrible sicknesses for which forceful 

gambling factor the executives can further develop results. 

Goswami et al.[10] examines the chance of foreseeing ACS utilizing AI calculations at the beginning 

phase using clinical and research center information in patients who introduced chest torment at confirmation 

of trauma center or short-term patient facility. In light of the component example and channel qualities, the 
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authors can dissect which highlights have discriminative data while different elements assist with further 

developing precision by diminishing the clamour of highlights with discriminatory data. The order accuracy 

is average at 0.81 for non-prepared information, and the authors could choose significant elements of 

characterization and the highlights without discriminative data yet diminishing the commotion of applicable 

highlights. 

Similarly, in the research by Nakanishi et al.[11], when the authors kill the essential elements picked 

at the first stage, the less-educational highlights have discriminatory data accomplishing a precision of 81%. 

The gamble gathering of ACS patients can be chosen before the crisis utilizing expectation calculation, and 

the accuracy is high. There were a few missing pieces of information connected with foresee ACS in this 

review. In this way, later on, an extensive companion study without missing information ought to be 

expected to obtain an eventual outcome as described by Bom et al.[12]. 

Ramirez et al.[13] conducted the coronary artery disease learning and algorithm development (CADLAD) 

study to determine the demonstrated execution of cPSTA in surveying individuals with chest pain for 

coronary angiography, which is associated with coronary artery disease (ANGIO). For obese and older 

people, standard CAD diagnosis procedures may be less accurate. This examination focuses on these patients. 

This multi-centre, non-huge gamble study was designed to construct and evaluate machine-learned estimates 

for surveying the existence of CAD (defined as at least one 70% stenosis or fragmented stream hold 0.80). 

CADLAD’s broad break effects have been exhibited elsewhere. This inquiry focuses on CADLAD’s elderly 

and obese (BMI > 30) members. 

According to Collet et al.[14], preceding ANGIO, cPSTA signals were acquired exceptionally slowly. An 

approval partner was used to aimlessly and tentatively try highlights (numerical and topographic) extracted 

from the signs. Machine-learned angiography findings were matched with cPSTA data from 513 participants 

to construct a CAD survey. For preliminary testing, 94 people were used from a separately approved partner. 

This inquiry focused on those over 65 and those with a BMI of over 30. Resting cPSTA imaging appears to 

be effective across the board, including in the older and larger subpopulations, despite the limited power of 

the underlying data. 

Howard et al.[15] aimed to study AI to predict major adverse cardiovascular events (MACE) using 

clinical data and obtained image variables from pressure and rest examinations. A fast SPECT scan on 2619 

individuals (48% men, 16 to 65 years old) was performed in succession. The stress-just ML, the stress/rest 

ML, the master added pressure/distinction scores (SSS, SDS), and the scheduled pressure/ischemic complete 

perfusion shortfalls (TPD) MACE forecasts were examined by region under the beneficial working quality 

bend (AUC), and a MACE occurred in 320 patients (12%). Two hundred thirty-five patients (10%) 

developed MACE in their partners who had never had a MI or CABG. 

An AI-based model developed by Kim et al.[16] estimates the number of models on display, and the area 

under the recipient working trademark (AUROC) was used. One thousand nine hundred fifty-seven 

individuals were divided into sCAD (n = 1442) and non-sCAD (n = 515) groups according to whether the 

primary epicardial coronary vein showed 50% stenosis. Eighty-seven research facility markers were used in 

the forecast model. There were six ideal mixtures (T1, T2, ..., T6), each with a different number of the 

selected lab markers (ranging from 1 to 6). In every category, 77.47%, 85.21%, 8563%, 85.21%, 85.21%, 

85.21%, 85.21%, and 84.65%, respectively, were the most accurate. The AI model and its outcomes ought to 

be tried in an imminent observational concentration from here on out. 

Kawasaki et al.[17] proposed an original innovation in light of PC AI, which dissects natural thoracic 

signals and surveys discharge division in no time. Ventriculograms acquired during the coronary artery 

disease learning and algorithm development (CADLAD) study were utilized to decide analytic execution for 

figuring LVEF. Another goal of the CADLAD multicenter trial was to use machine learning to determine 
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LVEF to detect clinically significant CAD. Heart phase space tomography analysis (cPSTA) was used to 

acquire resting-state signal information from people with symptoms resembling CAD before 

ventriculography. 

Vazquez et al.[18], presented a machine-learned model to calculate the LVEF. The highlights used are 

depictions of stage space transformed into a three-layered image of the heart. The resulting stage space 

signals were fed into a machine-gained algorithm that examined LVEF. One would consider an LVEF 

advantage of 50% to be uncommon. A machine-learned method based on 96 participants’ ventriculography 

data and stage-space signals was used to measure LVEF. Tests were conducted on 29 unrelated symptoms. 

One hundred two people (81.6%) had LVEFs greater than 50%, whereas only 23 people (18.4%) had LVEFs 

lower than or equal to 50%. Using stage-space tomography, the authors found that the responsiveness was 

86%, and the specificity was 66%. According to Sandhu et al.[19], ML strategy promptly recognizes ordinary 

from strange EF (<50%) in this minor accomplice of subjects. Further, AI and enlistment are expected to 

build the exactness of the appraisal. Likewise, future examinations will incorporate matching stage signal 

information with the highest quality level (CMR) estimation of LVEF. 

Schwalm et al.[20] used the multi-ethnic study of atherosclerosis (MESA), to see if AI (ML) progress 

would allow for more developed expectations in the forecast of coronary illness (CHD) and atherosclerotic 

cardiovascular disease (ASCVD) events (MESA). A total of 6814 asymptomatic individuals who had 

undergone CAC examinations and had been monitored for CHD and ASCVD events for more than ten years 

were included in the review. ML’s analysis included medical imaging data such as CAC scores, CAC 

volumes, extracardiac scores, and pericardial fat volume. Beneficiary administrator bends examined the 

AUC region by comparing it to clinical information, the CAC Agatston score, and ML’s mix of all clinical 

and CT criteria. ASCVD risk (0.688, p0.001) and CAC score (0.742, p0.001) were both stronger predictors 

of CHD occurrences than ML with all covariates (0.765, p0.001). CAC score was more accurate than 

ASCVD risk. ML with all components (0.763) had a superior AUC for predicting ASCVD events than either 

the ASCVD risk score (0.710) or the CAC score (0.714). 

Swathy et al.[21] evaluated CCTA performed on 203 patients with suspected CAD. An artificial 

intelligence (AI) model developed by the researchers had an AUC (Application under the Bend) of 0.79, 

which outperformed the expected AUC (AUC = 0.65 + 0.04, P = 0.01) given easily accessible clinical 

variables. Another group of 34 proteins could predict the lack of CAD (AUC = 0.85 + 0.05, P = 0.05), again 

outflanking expectations with accessible characteristics (AUC = 0.70 + 0.04, p = 0.01). Ahmad et al.[22] 

developed two reciprocal protein markers using AI models based on designated proteomics. These 

encouraging findings support specialized proteomics in identifying cardiovascular risk factors in outcome 

studies. 

Chang et al.[23] utilizes an original AI-driven clinical and proteomic way to foresee clinically giant PAD. 

A cross-sectional study of 131 short-term patients was conducted under their direction (controls, 41; PAD, 

90). Because of its clinical appearance, claudication, and lower leg brachial record of less than 0.9, the 

cushion was examined by a board-certified vascular specialist. Ineligible were those who had appendage-

specific ischemia or a history of revascularization. The atherosclerotic disease had not been diagnosed in the 

control group, and the lower leg brachial file was less than 0.90. A blood sample was taken for a plasma 

proteome analysis. 

Hossain et al.[24] identified a board prophetic of PAD using the least point relapse and a final model with 

a minor outright shrinkage and determination administrator using five clinical criteria and 35 protein 

biomarkers. They went from a 1 to a three on the Rutherford scale in patients with PAD who had 

hypertension compared to controls (P = 0.05) (1, 32%; 2, 35%; 3, 33%). Indicative proteins were renal injury 

atom 1, aspiratory surfactant-related protein D, and interleukin receptor adversary, all linked to hypertension 
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as the sole clinical variable. The model judged cross-approval and in-example regions under the bend of 0.81 

and 0.84 as PAD’s existence. 

Considering all factors in the study of Liu et al.[25], the optimal score was 63% awareness, 93% 

particularity, and 95% positive prophetic value, bringing about an in-example region under the collector 

working trademark bend of 0.84. This clever AI-driven clinical and proteomic symptomatic device 

accurately distinguished PAD from an exhaustive clinical evaluation finished by a vascular specialist. As 

innovation’s job in helping doctors keeps developing, AI might acquire a more boundless job supporting the 

conclusion of persistent illnesses like PAD. 

Li et al.[26] depicts coronary atherosclerosis’ advancement in youthful patients and recognizes the 

gamble elements of unfortunate results. Members with severe or stable obstructive CAD under 45 were 

randomly recruited and closely monitored. The most important outcomes were all-cause mortality, MI, 

recalcitrant angina needing coronary revascularization, and ischemic stroke. While thinking about every 

repetitive occasion, similar variables and Asian nationality anticipated unfortunate results, yet relentless 

smoking greatly affected visualization. Untimely CAD is a forceful sickness, regardless of the suggested 

avoidance measures, with high paces of intermittent occasions and mortality. Identity and accompanying 

provocative illness are related to unfortunate anticipations, alongside lacking control of chance elements. 

Huang et al.[27] fostered a brain organization to perform mechanized pressure waveform investigation 

and permit continuous precise ID of damping. The neural network was built and tested based on two 

independent datasets of well-qualified feelings from the centre’s research lab. Waveforms of 5709 distinct 

heartbeats were extracted and grouped. The review developed an intermittent convolutional brain 

organization to group beats as one or the other usual, indicating damping or artefacts. Assessments from two 

independent labs were used to adjust for any inaccuracies. The brain network was 99.4% accurate (95% 

certainty stretch: 98.8% to 99.6%) while deciding against the judgments of the interior centre research 

facility when describing beats from the testing dataset. It was 98.7% exact (95% certainty stretch: 98.0% to 

99.2%) when decided against the assessments of an outer center research facility not engaged with brain 

network preparation. 

Gharleghi et al.[28] foster an ML model, using clinical factors to foresee stable obstructive coronary 

course illness (CAD). From August 2014 to January 2016, the authors analyzed 4906 individuals with stable 

angina or angina-like symptoms and underwent coronary angiography. Preparation (80%) and approval 

(20%) sets were generated from the dataset using the most prescient computation among five ML algorithms 

(20%). The authors compared and contrasted the pre-test probabilities of CAD scores models in the ML 

model (updated Diamond-Forrester and CAD consortium models). Consequences on coronary angiography, 

861 of the 1312 chosen patients had obstructive CAD. In the ML model, 78.6% of the predictions were 

correct. For the most part, the essential elements in situating were: age; haemoglobin A1c; direction; HDL 

cholesterol; and trooping T. Stable obstructive CAD may be predicted with high accuracy using ML models, 

and novel relationships between variables can be discovered using these models. 

Uma et al.[29] examined the impacts of consolidated appraisal based on CT-FFR data; six anatomic 

CCTA indicators were calculated (Agatston score, degree of stenosis severity, mean plaque CT 

decrementing esteem, the volume of non- and calcified plaques, renovating file). The characteristics are most 

helpful in identifying ischemia-related damage were separated using arbitrary woodland. One model, model-

1, had physical CT descriptors, whereas the other model, model 2, had both physical CT descriptors and CT-

FFR as part of its ROC bending. Ischemia-related sores had significantly more dangerous and non-calcified 

plaque volume than non-ischemic-related sores and a higher rate of rebuilding files (1.04 0.12 vs 1.11 0.13), 

according to the results of this study. In ischemia-related and non-ischemic-related injuries, the CT-FFR was 

0.84–0.14 and 0.71–0.14, respectively. Model-1 and model-2 had ROC bend regions of 0.738 and 0.835, 
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respectively. Adding CT-FFR to the ischemia sore gamble resulted in significant improvements in renaming 

and coordinated segregation, respectively, with net renaming improvements of 0.297 and 0.254. It was 

possible to differentiate painful explicit ischemia using a combined evaluation of physical CCTA highlights 

and utilitarian CT-FFR. 

Mehta and Shukla[30] investigated AI (ML) models using eXtreme Gradient Boosting (XGBoost). For a 

woman to be at risk for a STEMI, she must have persistent renal failure, a high pulse, and be over 70 years 

old. Elevated trooping T levels, severe renal failure, and age 75 and above were the most common indicators 

for males. Low trooping levels, high urea levels, and age over or equal to 80 years were the most critical 

indicators in women with NSTEMI. It had common for males to have an elevated pulse, high creatinine 

levels, and chronological age of more than 70 years. Results from their analysis of EHR-based mortality 

models for several subpopulations of the ACS suggested possible crucial and intelligent sex-explicit gamble 

signals. Men and women had different risk indicators, highlighting the importance of considering sex-

explicit risk factors when developing treatment plans and achieving better clinical outcomes. 

Numerous difficulties exist associated with the current methods for predicting artery disease. One 

significant challenge pertains to using conventional risk factors, including age, gender, and smoking status, 

in various scenarios. It is worth noting that these factors may not consistently serve as accurate predictors of 

disease across all individuals. Furthermore, it is worth noting that these methodologies may not adequately 

consider more contemporary risk factors, such as genetic predisposition or lifestyle variables, including 

dietary patterns and physical activity. One additional challenge pertains to the reliance on population-level 

data for many of these methods, which may not account for the unique characteristics of individual patients. 

Consequently, there is a potential for either overestimating or underestimating the associated risk. Ultimately, 

it is essential to acknowledge that potential challenges may arise concerning the quality or accessibility of 

data, thereby potentially compromising the precision of these predictive techniques. 

3. Materials and methods 

3.1. Dataset 

This research utilizes an online Kaggle dataset for CAD disease[31]. According to the Singapore Heart 

Foundation, 31.7% of all fatalities in Singapore in 2020 will be caused by cardiovascular disease. When fat 

deposits accumulate in the coronary arteries, the arteries that feed blood to the heart muscle stiffen and 

constrict, resulting in coronary artery disease (CAD). It is said that CAD is due to lifestyle, which, if detected 

early, might allow monitoring and lifestyle changes to reduce the risk of cardiovascular disease. This 

prompted me to focus on predicting CAD risk[32]. 

To facilitate the understanding of the diseases in the datasets, it has been mapped out the diseases. 

Many diseases, such as heart failure, heart attack, CHD, stroke, cardiogenic shock, and AV heart block, are 

caused by CAD directly/indirectly. As such, it has been excluded as the feature to predict CAD because it 

aims to have earlier detection of CAD to reduce the risk of those diseases. Those with stroke/heart failure 

would not need a prediction as they might have ended up in the hospital when they learned about it. 

3.2. Data pre-processing 

Outliers pose a severe threat. They have a significant impact on the model’s outcome. Researchers often 

examine outliers to determine if a given record is the consequence of a mistake in data collection or a unique 

phenomenon that should be considered when processing data[33]. 

3.2.1. Handling missing values 

The imputation process generates reasonable assumptions to fill up the data gaps. When the 10% of 

missing data is low, it is the most useful. Insufficient natural variation can prevent a helpful model from 
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emerging if there is excessive missing data[22]. Alternatively, you can purge the system of any previously 

stored information. Removing related data while dealing with data that is absent at random is possible. A 

reliable analysis may not be possible if there aren’t enough data points to conclude. In some cases, it may be 

necessary to keep track of certain occurrences or elements[33]. 

3.2.2. Handling outliers 

In this paper, an outlier is identified using the Z-score approach. When the distribution of a variable 

closely resembles that of a Gaussian, this approach is commonly employed. The Z-score measures how far a 

variable’s value is from its mean in terms of standard deviations[34]. 

Z– score = (X–mean)/Standarddeviation (1) 

When the standard normal distribution is the distribution of a variable, if the values of a variable are 

transformed to Z-scores and the standard deviation is equal to 1. To identify outliers, the Z-score approach 

relies on a user-specified cut-off. The most common lower and higher cut-off values are −3 and +3. 

According to a conventional normal distribution, 99.7% of all values fall inside a range of −3 and +3[35]. 

3.3. C5.0 decision tree algorithm 

Robust classifiers use a tree structure to describe connections between features and possible outcomes, 

such as decision tree learners tree-like structure was named because it mimics how a tree grows from a large 

trunk to smaller and smaller branches as one ascends[36]. There is no better choice for decision trees than 

C5.0, an algorithm that can handle most issues immediately. C5.0’s decision trees outperform other complex 

machine learning models but are simpler to comprehend and use. The following table illustrates that the 

algorithm’s vulnerabilities are minor and can be avoided in most cases[37]. 

Strengths 

• Highly automated learning technique that can accept numeric or nominal characteristics and missing 

data. An all-purpose classifier. 

• It removes features that aren’t necessary. 

• It may be applied to small and large datasets alike. 

• Results in a model that is understandable to those with no prior math knowledge (for relatively small 

trees). 

• Better than other sophisticated models in terms of efficiency. 

Weaknesses 

• Models based on decision trees tend to favour characteristics with many levels for splitting. 

• The model may easily be over- or under-fitted. 

• Because of the dependency on axis-parallel splits, it may be challenging to represent some 

interactions. 

• Even little adjustments to the training data can significantly impact the reasoning of the choice. 

• The judgments made by large trees may appear illogical because of the difficulty in interpreting their 

actions. 

For the sake of brevity, our prior decision tree examples omitted the mathematics needed in a machine’s 

divide and conquer method. Let’s take a closer look at this to see how this heuristic is put to use in the real 

world. More trials lead to better results when using C5.0’s boost feature, allowing any number of attempts to 

be used. Boosted classifiers are more time-consuming, but the benefits are worth the effort! Maximizing 

predicted accuracy using a boosted classifier is always a good idea, even if the unboosted classifiers are 

already highly accurate[38]. 
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Figure 1 depicts the three nodes of the total of 145 nodes generated for the current problem. The 

particular node shows the category (0 or 1), % (% age), and n (no of patients) of specific types. Variable 

misclassification costs are one of the many new features in C5.0. In theory, all classification errors are 

considered the same in C4.5, but specific ones are more significant in practice. To reduce expected 

misclassification costs rather than error rates, C5.0 builds classifiers with the ability to designate a different 

charge for each predicted/actual class combination. In addition, the cases themselves may be of varying 

interest to the public. For example, the value of each instance may differ depending on the account size in an 

application that defines persons as “churn-like” or “non-lurking.” A property in C5.0 that indicates the 

relevance of a case can be used to reduce the weighted predictive error rate[39]. 

 
Figure 1. Node in C5.0 decision tree. 

Dates, timings, timestamps, ordered discrete characteristics, and case labels are just some new data 

types in C5.0. C5.0 also allows values to be marked as inapplicable in addition to missing values. In addition, 

unique attributes may be defined as functions of existing attributes thanks to C5.0. With hundreds or 

thousands of characteristics, some modern data mining applications are incredibly high-dimensional. Only 

slightly relevant attributes can be automatically discarded before a classifier is formed in C5.0. Winnowing 

may minimize the size of classifiers and improve predicted accuracy in high-dimensional applications. It can 

also shorten the time constructing rule sets[19]. 

 
Figure 2. Predictor Importance in C5.0 decision tree. 

Figure 2 depicts the predicator importance in the C5.0 decision tree generated for the current problem. 

The following section represents the structure of the rules used for prediction of CAD prediction as given 

below: 
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Rule 1—Estimated accuracy 85.07% [boost 91.6%] 

 infective_endocarditis = 1 [Mode: 0] => 0 

 infective_endocarditis = 0 [Mode: 1] 

  hypertension = 1 [Mode: 1] 

   sno <= 5373.500 [Mode: 1] 

    valvular = 1 [Mode: 0] => 0 

    valvular = 0 [Mode: 1] 

     ventricular = 1 [Mode: 1] => 1 

     ventricular = 0 [Mode: 1] 

      stemi = 1 [Mode: 1] => 1 

      stemi = 0 [Mode: 1] 

       eject_fraction <= 59 [Mode: 1] 

        outcome = DAMA [Mode: 1] => 1 

        outcome = DISCHARGE [Mode: 1] 

      group_age in [“0–30” “76–150”] [Mode: 1] => 1 

      group_age in [“31–45”] [Mode: 0] => 0 

      group_age in [“46–60”] [Mode: 1] 

      group_plate = high [Mode: 1] => 1 

       group_plate = low [Mode: 0] 

       leuk_count <= 13.800 [Mode: 0] => 0 

       leuk_count > 13.800 [Mode: 1] => 1 

       group_plate = normal [Mode: 1] 

      cardiomyopathy = 1 [Mode: 0] 

       age <= 54.500 [Mode: 0] => 0 

       age > 54.500 [Mode: 1]    

   urea <= 24 [Mode: 0] => 0       

  urea > 24 [Mode: 1] => 1 

       cardiomyopathy = 0 [Mode: 1] => 1 

      group_age in [“61-75”] [Mode: 1] 

       atrial_fibril = 1 [Mode: 0] => 0 

        atrial_fibril = 0 [Mode: 1] => 1 

       outcome = EXPIRY [Mode: 0] => 0 

       eject_fraction> 59 [Mode: 0] => 0 

   sno > 5373.500 [Mode: 1] 

    outcome in [“DAMA” “DISCHARGE”] [Mode: 1] => 1 

    outcome in [“EXPIRY”] [Mode: 0] 

     group_age in [“0–30”] [Mode: 0] => 0 

     group_age in [“31–45” “61–75”] [Mode: 0] => 0 

     group_age in [“46–60”] [Mode: 1] => 1 

     group_age in [“76–150”] [Mode: 0] 

      acute_kidney = 1 [Mode: 0] => 0 

      acute_kidney = 0 [Mode: 1] 

       haemoglobin <= 12.300 [Mode: 1] => 1 

       haemoglobin > 12.300 [Mode: 0] => 0 

     to be continued for other features. 

C5.0, on the other hand, is more user-friendly. C4.5’s tools for producing decision trees and rule sets 

have been unified into a single program, simplifying and extending the available options. 

3.4. Hybrid C5.0 decision tree algorithm with boosting 

Boosting is a technique used by the C5.0 algorithm to improve its accuracy rate. It operates by 

sequentially constructing several different models. Construction of the first model proceeds as normal. The 

records incorrectly categorized by the first model are then used to build a second model. Once the second 

model’s problems have been discovered, a third model is constructed to focus on those errors. A weighted 

voting technique integrates individual forecasts into a single overall prediction before instances may be 
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categorized using all available models. Although a C5.0 model’s accuracy may be significantly improved by 

boosting, the training time required is higher. 

Boosting algorithms are unique algorithms that enhance the data model’s current results and correct 

faults. A weighted average and higher voting values anticipate the dialogue between weak and robust 

learners. A decision stamp and margin-maximizing classification are both used in these methods. Algorithms 

include AdaBoost or Adaptive boosting algorithm, Gradient, and XG boosting algorithm, just a few 

examples. These machine learning algorithms undertake a training phase to forecast and fine-tune the 

outcome. 

The boosting method generates many weak learners and combines their predictions into a single strong 

one. Machine learning algorithms are applied to the data set in various ways to develop these shaky rules. 

Each of the iteration of these algorithms generates a new set of weak regulations. Weak learners are merged 

to create a stronger learner, which can predict results more accurately. The working of the proposed 

algorithm is explained below (Algorithm 1). 

Step 1. The data is read in the first step, and the base algorithm gives each sample observation equal 

weight. 

Step 2. The primary learner’s incorrect predictions are recognized. The following iteration places 

considerable weight on these inaccurate predictions in the base learner. 

Step 3. Repeat step 2 until the algorithm can categorize the output appropriately. 

Algorithm 1 Hybrid C5.0 decision tree algorithm with boosting//Pseudo code for proposed method 

1. Initialize a set of CAD training data D 

2. Set the number of iterations T 

3. Initialize the weights for each instance in D to 1/n, where n is the number of the cases in D 

4. For t = 1 to T: 

       a. Train a C5.0 decision tree on D with instance weights 

       b. Calculate the error rate of the decision tree on D 

       c. Calculate the weight of the decision tree as ln ((1-error rate)/error rate) 

       d. Update the weights for each instance in D based on whether the decision tree correctly or incorrectly classified it 

5. Output the final Boosted C5.0 decision tree 

Mathematical modelling for the proposed model 

A mathematical model for the proposed hybrid model is created. Let CAD dataset D and a loss function 

L: R2→R, the proposed boosting algorithm iteratively constructs a model F: X→R to minimize the empirical 

risk ED [L(F(x), Y)] of CAD disease[40]. 

At each iteration t, the model is updated as: 

𝐹𝑡(𝑥) = 𝐹𝑡−1(𝑥) + 𝜀𝐻𝑡(𝑥) (2) 

where 𝐻𝑡(𝑥) is a weak learner. This weak learner is selected to approximate the negative gradient. 

−𝐺𝑡(𝑥, 𝑦) =
𝐿(𝑌, 𝑆)

(𝑆)
𝐹𝑡−1(𝑥) (3) 

Equations (2) and (3) are utilized to set each booster parameter in decision tree C5.0. 

4. Experimental results analysis and discussion 

This section presents the experimental details, setup requirements, comparison parameters, results 

analysis, and discussion. 

4.1. Experimental setup and comparison parameters 

The proposed hybrid C5.0 method and some well-known existing machine learning models, i.e., 

decision tree, AdaBoost, and random forest, were implemented using Python programming under Anaconda 
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distribution. Various machine learning libraries, i.e., Matplot, PyTorch and Tensor flow. The hardware 

details include RAM: 8 GB, HDD 50 GB, processor P5 and above. To compare the existing methods and the 

proposed method following performance measuring parameters were calculated[38–40]. 

Precision: The metric evaluates the precision of affirmative predictions generated by the model. The 

calculation involves determining the proportion of accurate positive forecasts concerning the combined 

number of accurate positive and inaccurate positive predictions. A high level of precision signifies that the 

model effectively generates correct positive predictions, whereas a low level of precision suggests that the 

model produces a significant number of false positive predictions. 

Precision =
TP

(TP + FP)
 (4) 

Recall: The metric assesses the model’s capacity to classify positive instances accurately. The 

calculation involves determining the proportion of accurate positive predictions concerning the combined 

number of accurate positive predictions and inaccurate negative predictions. 

Precision =
TP

(TP + FN)
 (5) 

F-measure/F1-score: The metric in question is a composite measure that integrates precision and recall, 

offering a unified evaluation of a model’s performance. The F-measure incorporates the consideration of 

both false positives and false negatives, thereby offering a balanced evaluation of a model’s precision and 

recall. A high F-measure signifies that the model exhibits elevated levels of precision and recall, whereas a 

low F-measure suggests that the model is deficient in either precision or recall. 

F– score = 2 ×
(precision × recall)

(precision + recall)
 (6) 

AUC: The metric known as AUC, which stands for “area under the receiver operating characteristic 

curve” (ROC), is commonly employed to assess the effectiveness of a binary classification model. The ROC 

curve is constructed by graphing the TPR concerning the FPR across various threshold values. The AUC 

metric quantifies the extent of the Area beneath the curve, which spans from 0 to 1. Higher values of AUC 

correspond to superior model performance. The AUC metric comprehensively evaluates a model’s capacity 

to classify instances, irrespective of the threshold value employed accurately. A ROC curve with an AUC 

value of 0.5 signifies that the model’s predictive ability is equivalent to random chance, whereas an AUC of 

1 signifies flawless classification performance. 

Gini value: It is referred to as the Gini coefficient or Gini index and is a metric employed in economics 

and machine learning to quantify levels of inequality. The Gini value is utilized in machine learning to assess 

the efficacy of a split within a decision tree. The metric quantifies the likelihood that a randomly selected 

instance from a dataset would be misclassified after being randomly assigned a label based on the label 

distribution within the dataset. A Gini coefficient of 0 signifies flawless classification, whereas a Gini 

coefficient of 1 suggests that the tags are distributed randomly, rendering the model incapable of making 

precise predictions. The split with the lowest Gini value is typically selected as the optimal split in decision 

trees. 

Where True Positive Rate: (TPR), False Positive Rate: (FPR), True Positive: (TP), False Positive: (FP), 

False Negative: (FN), True Negative (TN). 

4.2. Performance of C5.0 decision tree algorithm 

The C5.0 decision tree algorithm has been implemented in Python in this research work. First, the 

simple C5.0 decision tree algorithm has been executed with the CAD Kaggle dataset[31]. The 

training and testing partition is taken at 70:30 ratios during the execution of both decision tree 

models. 
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The performance of the C5.0 is evaluated in terms of accuracy, AUC and Gini values. Table 1 

represents the coincidence matrix for the current domain. This table shows the correlation between observed 

and predicted values generated by the C5.0 model. 

Table 1. Coincidence matrix for basic C5.0. model. 

‘Partition’ = 1_Training 0 1 

0 1049 367 

1 321 2871 

‘Partition’ = 2_Testing 0 1 

0 360 226 

1 185 1232 

Figure 3 highlights the performance of the C5.0 decision tree. The accuracy level achieved in the 

training and testing phase is 85.07% and 79.48%, respectively. The AUC value reached in the training and 

testing phase is 0.913 and 0.864, respectively. The Gini value achieved in the training and testing phase is 

0.827 and 0.727, respectively. This means that the C5.0 model learns concepts from the noise or random 

oscillations in the training data. 

 
Figure 3. Results of C5.0 decision tree. 

4.3. Performance of hybrid C5.0 decision tree algorithm with boosting 

Table 2 represents the coincidence matrix for Boosted C5.0 model applied for the current domain. This 

table shows the correlation between observed and predicted values generated by Boosted C5.0 model. 

Table 2. Coincidence matrix for Boosted C5.0. model. 

‘Partition’ = 1_Training 0 1 

0 1186 230 

1 156 3036 

‘Partition’ = 2_Testing 0 1 

0 367 219 

1 155 1262 

Figure 4 highlights the performance of the C5.0 decision tree. The accuracy level achieved in the 

training and testing phase is 91.62% and 81.33%, respectively. The AUC value gained in the training and 
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testing phase is 0.957 and 0.88, respectively. The Gini value achieved in the training and testing phase is 

0.914 and 0.759, respectively. 

 
Figure 4. Results of Boosted C5.0 decision tree. 

4.4. Comparison of the existing and proposed method 

The proposed method and some well-known existing machine learning models, i.e., decision tree, 

AdaBoost, and random forest, were implemented on the CAD dataset[31] with 10-fold cross-validation. Table 

3 and Figure 5 show an experimental results comparison of existing and proposed methods. 

Table 3. Results comparison of existing and proposed methods. 

Methods Precision Recall F-measure AUC Gini value 

Random forest[2] 81.45% 86.34% 85.86% 85.41% 84.62% 

AdaBoost[3] 78.96% 81.24% 80.12% 80.74% 79.89% 

C5.0 decision tree 85.07% 86.98% 88.78% 91.3% 89.32% 

Proposed model 91.62% 93.65% 95.65% 95.7% 91.4% 

 
Figure 5. Results comparison of existing and proposed methods. 
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In the above Figure 5, random forest[2] method achieved a precision of 81.45%, recall of 86.34%, F-

measure of 85.86%, AUC of 85.41% and Gini value of 84.62%. Another existing method, AdaBoost[3], 

achieved a precision of 78.96%, recall of 81.24%, F-measure of 80.12%, AUC of 80.74% and Gini value of 

79.89%. Like another method, the C5.0 decision tree achieved a precision of 85.07%, recall of 86.98%, 

F-measure of 88.78%, AUC of 91.3% and Gini value of 89.32%. The proposed C5.0 hybrid boosting method 

achieved a precision of 91.62%, recall of 93.65%, F-measure of 95.7%, AUC of 95.7%, and Gini value of 

91.4%. Based on the experimental analysis, the proposed method has achieved better results than all the 

existing methods. 

5. Conclusions and future scope 

Medical professionals have always benefited from clinical decision support systems when making 

diagnoses. Many deaths today are caused by coronary artery disease (CAD), prompting researchers to 

suggest more precise forecasting models. Standard C5.0 decision tree models are outperformed by machine 

learning algorithms when classifying and predicting illness accurately. Methodologies like this can be used 

to identify at-risk patients in cases where good risk prediction models do not exist or if they have been 

proven to have poor performance. 

In this research, we developed a Hybrid Boosted C5.0 model by combining the C5.0 decision tree and 

boosting methods. Boosting is a supervised machine learning method that leverages numerous inadequate 

models to construct a more robust and powerful model. The proposed model and some well-known existing 

machine learning models, i.e., decision tree, AdaBoost, and random forest, were implemented using an 

online coronary artery disease dataset of 6611 patients and compared based on various performance 

measuring parameters. Experimental analysis shows that the proposed model achieved an accuracy of 

91.62% at training and 81.33% at the testing phase. The AUC value achieved in the training and testing 

phase is 0.957 and 0.88, respectively. The Gini value achieved in the training and testing phase is 0.914 and 

0.759, respectively, far better than the proposed method. 

Aiming to reduce the frequency of undetected illnesses and the burden of unfavourable clinical 

outcomes due to delays in preventative measures, future studies should focus on testing, automating, and 

prospectively validating local models. An alternative strategy for enhancing the diagnosis of CAD disease on 

the data set being used, as well as other real datasets, involves the application of deep learning models. 

Integrating deep learning methodologies with distributed architectural and design data can further augment 

diagnostic capabilities. 

Author contributions 

Conceptualization, SD and UKL; methodology, SS and SA; software, VJ; validation, AM, VJ and PC; 

formal analysis, UKL; investigation, SD; resources, AA; data curation, SD; writing—original draft 

preparation, SA; writing—review and editing, AA and MM; visualization, PC; supervision, AM; project 

administration, MM; funding acquisition, UKL. All authors have read and agreed to the published version of 

the manuscript. 

Funding 

This research received no external funding. 

Conflict of interest 

The authors declare no conflict of interest. 

 



16 

Ethical approval and consent to participate 

No ethical approval is required, and the authors consent to participate in the paper. 

Consent for publication 

Authors provide support for publication. 

Data availability statement 

The datasets used and analyzed during the current study are available from the corresponding author 

upon reasonable request. 

References 

1. Wang G, Gao Y, Xu F, et al. GW28-e0388 A novel machine-learning model for identification of significant 

coronary artery disease. Journal of the American College of Cardiology 2017; 70(16): C113. doi: 

10.1016/j.jacc.2017.07.400 

2. Stuckey T, Singh N, Goswami R, et al. TCT-177 Assessing coronary artery disease by cardiac phase tomography 

using machine-learned algorithms in obese and elderly subjects. Journal of the American College of Cardiology 

2017; 70(18): B75–B76. doi: 10.1016/j.jacc.2017.09.245 

3. Griffin WF, Choi AD, Riess JS, et al. AI evaluation of stenosis on coronary CT angiography, comparison with 

quantitative coronary angiography and fractional flow reserve. JACC: Cardiovasc Imaging 2022; 16(2): 193–205. 

doi: 10.1016/j.jcmg.2021.10.020 

4. Rahman F, Finkelstein N, Alyakin A, et al. Using machine learning for early prediction of cardiogenic shock in 

patients with acute heart failure. Journal of the Society for Cardiovascular Angiography & Interventions 2022; 

1(3): 100308. doi: 10.1016/j.jscai.2022.100308 

5. Ross EG, Shah NH, Dalman RL, et al. The use of machine learning for the identification of peripheral artery 

disease and future mortality risk. Journal of Vascular Surgery 2016; 64(5): 1515–1522.e3. doi: 

10.1016/j.jvs.2016.04.026 

6. Park JY, Noh YK, Choi BG, et al. TCTAP A-010 A machine learning-based approach to prediction of acute 

coronary syndrome. Journal of the American College of Cardiology 2015; 65(17): S6. doi: 

10.1016/j.jacc.2015.03.057 

7. Stuckey T, Singh N, Goswami R, et al. TCT-154 Gender based assessment of coronary artery disease by cardiac 

phase tomography using machine-learned algorithms. Journal of the American College of Cardiology 2017; 

70(18): B66. doi: 10.1016/j.jacc.2017.09.218 

8. Betancur JA, Otaki Y, Fish M, et al. Rest scan does not improve automatic machine learning prediction of major 

adverse coronary events after high speed myocardial perfusion imaging. Journal of the American College of 

Cardiology 2017; 69(11): 1590. doi: 10.1016/s0735-1097(17)34979-3 

9. Ghosh P, Lilhore UK, Simaiya S, et al. Prediction of the risk of heart attack using machine learning techniques. In: 

Sharma S, Peng SL, Agrawal J, et al. (editors). Data, Engineering and Applications. Springer, Singapore; 2022. 

Volume 907. pp. 613–621. 

10. Goswami R, Stuckey T, Meine F, et al. Coronary artery disease learning and algorithm development study: Early 

analysis of ejection fraction evaluation. Journal of the American College of Cardiology 2017; 69(11): 953. doi: 

10.1016/s0735-1097(17)34342-5 

11. Nakanishi R, Dey D, Commandeur F, et al. Machine learning in predicting coronary heart disease and 

cardiovascular disease events: Results from the multi-ethnic study of atherosclerosis (Mesa). Journal of the 

American College of Cardiology2018; 71(11): A1483. doi: 10.1016/s0735-1097(18)32024-2 

12. Bom MJ, Levin E, Driessen RS, et al. Predictive value of targeted proteomics for coronary plaque morphology in 

patients with suspected coronary artery disease. eBioMedicine 2019; 39: 109–117. doi: 

10.1016/j.ebiom.2018.12.033 

13. Ramirez JL, Magaret CA, Khetani SA, et al. PC102. A novel machine learning-driven clinical and proteomic tool 

for the diagnosis of peripheral artery disease. Journal of Vascular Surgery 2019; 69(6): e233–e234. doi: 

10.1016/j.jvs.2019.04.344 

14. Collet JP, Zeitouni M, Procopi N, et al. Long-term evolution of premature coronary artery disease. Journal of the 

American College of Cardiology 2019; 74(15): 1868–1878. doi: 10.1016/j.jacc.2019.08.1002 

15. Howard JP, Cook CM, van de Hoef TP, et al. Artificial Intelligence for aortic pressure waveform analysis during 

coronary angiography: Machine learning for patient safety. JACC: Cardiovascular Interventions 2019; 12(20): 

2093–2101. doi: 10.1016/j.jcin.2019.06.036 



17 

16. Kim JT, Cho S, Lee SY, et al. The use of machine learning algorithms for the identification of stable obstructive 

coronary artery disease. Journal of the American College of Cardiology 2020; 75(11): 254. doi: 10.1016/S0735-

1097(20)30881-0 

17. Kawasaki T, Kidoh M, Kido T, et al. Evaluation of significant coronary artery disease based on CT fractional flow 

reserve and plaque characteristics using random forest analysis in machine learning. Academic Radiology 2020; 

27(12): 1700–1708. doi: 10.1016/j.acra.2019.12.013 

18. Vazquez B, Fuentes-Pineda G, Garcia F, et al. Risk markers by sex for in-hospital mortality in patients with acute 

coronary syndrome: A machine learning approach. Informatics in Medicine Unlocked 2021; 27: 100791. doi: 

10.1016/j.imu.2021.100791 

19. Sandhu JK, Lilhore UK, Poongodi M, et al. Predicting the risk of heart failure based on clinical data. Human-

centric Computing and Information Sciences 2022; 12: 57. doi: 10.22967/HCIS.2022.12.057 

20. Schwalm JD, Di S, Sheth T, et al. A machine learning-based clinical decision support algorithm for reducing 

unnecessary coronary angiograms. Cardiovascular Digital Health Journal 2022; 3(1): 21–30. doi: 

10.1016/j.cvdhj.2021.12.001 

21. Swathy M, Saruladha K. A comparative study of classification and prediction of Cardio-Vascular Diseases (CVD) 

using machine learning and deep learning techniques. ICT Express 2022; 8(1): 109–116. doi: 

10.1016/j.icte.2021.08.021 

22. Ahmad A, Corban MT, Moriarty JP, et al. Coronary reactivity assessment is associated with lower health care—

Associated costs in patients presenting with angina and nonobstructive coronary artery disease. Circulation: 

Cardiovascular Interventions 2023; 16(7): e012387. doi: 10.1161/CIRCINTERVENTIONS.122.012387 

23. Chang V, Bhavani VR, Xu AQ, Hossain MA. An artificial intelligence model for heart disease detection using 

machine learning algorithms. Healthcare Analytics 2022; 2: 100016. doi: 10.1016/j.health.2022.100016 

24. Hossain MM, Swarna RA, Mostafiz R. Analysis of the performance of feature optimization techniques for the 

diagnosis of machine learning-based chronic kidney disease. Machine Learning with Applications 2022; 9: 100330. 

doi: 10.1016/j.mlwa.2022.100330 

25. Liu Y, Ren H, Fanous H, et al. A machine learning model in predicting hemodynamically significant coronary 

artery disease: A prospective cohort study. Cardiovascular Digital Health Journal 2022; 3(3): 112–117. doi: 

10.1016/j.cvdhj.2022.02.002 

26. Li Q, Campan A, Ren A, Eid WE. Automating and improving cardiovascular disease prediction using machine 

learning and EMR data features from a regional healthcare system. International Journal of Medical Informatics 

2022; 163: 104786. doi: 10.1016/j.ijmedinf.2022.104786 

27. Huang Z, Xiao J, Wang X, et al. Clinical evaluation of the automatic coronary artery disease reporting and data 

system (CAD-RADS) in coronary computed tomography angiography using convolutional neural networks. 

Academic Radiology 2023; 30(4): 698–706. doi: 10.1016/j.acra.2022.05.015 

28. Gharleghi R, Adikari D, Ellenberger K, et al. Automated segmentation of normal and diseased coronary arteries—

The ASOCA challenge. Computerized Medical Imaging and Graphics 2022; 97: 102049. doi: 

10.1016/j.compmedimag.2022.102049 

29. Uma KV, Pudumalar S, Sharon blessie E. A combined classification algorithm based on C5.0 and NB to predict 

chronic obstructive pulmonary disease. In: Proceedings of the 2018 IEEE International Conference on 

Computational Intelligence and Computing Research (ICCIC); 13–15 December 2018; Madurai, India. pp. 1–4. 

30. Mehta S, Shukla D. Optimization of C5.0 classifier using Bayesian theory. In: Proceedings of the 2015 

International Conference on Computer, Communication and Control (IC4); 10–12 September 2015; Indore, India. 

pp. 1–6. 

31. Coronary artery disease analysis & prediction. Available online: 

https://www.kaggle.com/code/homelysmile/coronary-artery-disease-analysis-prediction/data?select=DataClean-

fullage.csv (accessed on 15 September 2022). 

32. Wang M, Gao K, Wang L, Miu X. A novel hyperspectral classification method based on C5.0 decision tree of 

multiple combined classifiers. In: Proceedings of the 2012 Fourth International Conference on Computational and 

Information Sciences; 17–19 August 2012; Chongqing, China. pp. 373–376. 

33. Jincheng Y, Ping J, Guangyu C, et al. Application of C5.0 algorithm in failure prediction of smart meters. In: 

Proceedings of the 2016 13th International Computer Conference on Wavelet Active Media Technology and 

Information Processing (ICCWAMTIP); 16–18 December 2016; Chengdu, China. pp. 328–333. 

34. Pashaei E, Ozen M, Aydin N. Improving medical diagnosis reliability using Boosted C5.0 decision tree 

empowered by Particle Swarm Optimization. In: Proceedings of the 2015 37th Annual International Conference of 

the IEEE Engineering in Medicine and Biology Society (EMBC); 25–29 August 2015; Milan, Italy. pp. 7230–

7233. 

35. Dalal S, Onyema EM, Kumar P, et al. A hybrid machine learning model for timely prediction of breast cancer. 

International Journal of Modeling, Simulation, and Scientific Computing 2023. doi: 10.1142/S1793962323410234 

36. Edeh MO, Dalal S, Dhaou IB, et al. Artificial intelligence-based ensemble learning model for prediction of 

hepatitis C disease. Frontiers in Public Health 2022; 10: 892371. doi: 10.3389/fpubh.2022.892371 

37. Onyema EM, Shukla PK, Dalal S, et al. Enhancement of patient facial recognition through deep learning algorithm: 

ConvNet. Journal of Healthcare Engineering 2021; 2021: 5196000. doi: 10.1155/2021/5196000 



18 

38. Ramesh TR, Lilhore UK, Poongodi M, et al. Predictive analysis of heart diseases with machine learning 

approaches. Malaysian Journal of Computer Science 2022; 2022: 132–148. doi: 10.22452/mjcs.sp2022no1.10 

39. Chauhan AS, Lilhore UK, Gupta AK, et al. Comparative analysis of supervised machine and deep learning 

algorithms for kyphosis disease detection. Applied Sciences 2023; 13(8): 5012. doi: 10.3390/app13085012 

40. Asif D, Bibi M, Arif MS, Mukheimer A. Enhancing heart disease prediction through ensemble learning techniques 

with hyperparameter optimization. Algorithms 2023; 16(6): 308. doi: 10.3390/a16060308 


