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ABSTRACT 

In today’s information society, the rapid growth of information technology has resulted in software products being 

integrated into every aspect of people’s lives. Consequently, the ability to accurately identify software modules that may 

cause problems within a specified time frame has become crucial for determining software development progress. This 

is because ensuring software dependability is a critical component of software development. In this paper, the enhanced 

abstract continuous generative adversarial network (AC-GAN) technique covers data processing and model construction. 

Three levels: (1) convert the code of the source project and the target project into the form of an abstract syntax tree 

(Unified Abstract Syntax Tree, UAST), then traverse the abstract syntax tree in a depth-first manner to obtain a node 

sequence, and then use continuous recursion to replace the nodes in the node sequence; (2) the processed numerical 

vectors are sent to the GAN-based model; (3) the GAN-based model generates the final word vectors. The network 

structure model is utilized for feature extraction and data transfer, and a binary classifier is then employed to determine 

if the target item code file is flawed. 15 sets of source-target item pairings are used to evaluate the AC-GAN approach. 

The experimental findings demonstrate the usefulness of the technique. 

Keywords: AC-GAN; UAST; GAN 

1. Introduction 

In today’s world, software advancements play an increasingly 

vital role in people’s everyday lives. However, software flaws can pose 

significant risks to the quality and dependability of software. 

Identifying and fixing potential software flaws becomes more 

expensive the later they are discovered, and in extreme cases, can result 

in significant economic losses for businesses, and even loss of life[1]. 

To improve software quality assurance, researchers have developed 

Software Defect Prediction (SDP) technology. SDP is a research area 

within the software engineering discipline of data mining, aimed at 

identifying and improving erroneous program modules at an early 

stage of project development[2]. By enabling developers to identify 

faulty codes more quickly and reduce development time, as well as 

enhance test efficiency, SDP technology aims to improve overall 

software quality and reliability. 

For defect prediction, traditional SDP research relies on manually 
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derived static measurements. The source code of a program module, as a formal language, has rich structural 

and semantic information. Since manually-extracted static metrics primarily focus on the statistical properties 

of the program[3], it is impossible to capture this complex information from the source code. This restriction 

impacts the precision of defect prediction. Some academics employ deep learning to acquire important 

semantic and contextual information from source code[4–6] to circumvent this constraint. To preserve the 

semantics and context of the code throughout the training and prediction procedure, then use deep learning 

methods for the feature extraction step. In order to conduct deep learning-based SDP research, sufficient 

historical data must be collected to train the prediction model. However, in the actual software development 

process, the software project that must be forecasted may be brand new or have limited historical data. 

Consequently, cross-project defect prediction (CPDP)[7] was developed to compensate for the absence of 

historical data by borrowing data from other mature projects, where mature projects are considered the source 

project (training set) and will be forecasted. considered to be objective objects (test set). Consequently, 

throughout most projects, project defect prediction performance is inferior to intra-project defect prediction 

performance. To overcome this issue, several researchers have used machine learning techniques[8,9], such as 

transfer learning and feature selection. Nevertheless, these conventional machines frequently have learning 

techniques that are incapable of learning complex characteristics, and the design of loss functions is also quite 

hard. Experiments have shown that the generative adversarial network (GAN)[10] in adversarial learning may 

be used to minimize domain disparities. It is widely used in natural language processing and image 

identification[11–15]. Compared to conventional approaches, GAN networks provide the following benefits: as 

a training criterion, the GAN network training method uses two adversarial neural networks. The back-

propagation approach is used for training, and the training does not depend on the inefficient Markov chain 

method or approximation inference, and there is no complicated variational lower limit, which substantially 

decreases the training difficulty and increases the training efficiency. GAN network instruction: the approach 

employs adversarial training, which generates clearer and more realistic samples, and the GAN network 

implements data transfer via the discriminator, so avoiding the challenge of loss function design in transfer 

learning. To improve the source project and target project solutions, this research employs the adversarial 

learning concept in a GAN network to train a neural network with domain adaptability, and it constantly 

modifies the distribution of target item attributes until they resemble the distribution of source item features. 

This study introduces an augmented generative adversarial network (AC-GAN) technique that uses 

adversarial learning to tackle the problem of cross-item defect prediction. The method is as follows: first, the 

code of each module in the source project and the target project is parsed into an abstract syntax tree, and the 

node sequence is traversed according to the principle of depth first; secondly, the word vector is generated by 

the word embedding technology CBOW + RNN algorithm, and the node sequence is sorted according to the 

word vector table. Convert to a numerical vector; use the labeled numerical vector corresponding to the source 

item as input again to train the source feature extractor and source classifier; from then on, use the source 

feature as the real data, and use the target feature extracted by the target feature extractor as the fake data input 

discriminator play the game. Through the adversarial training of the GAN network, the distribution difference 

between the source data and the target data is reduced; finally, the target features whose distribution changes 

are input into the target classifier for defect prediction. 

Specifically, the main contributions of this paper to cross-project defect prediction are as follows: code is 

represented in the form of an abstract syntax tree, word vectors are extracted using the CBOW + RNN 

algorithm, and features are extracted using a deep learning feature extractor, which greatly preserves the 

context and semantic information; according to the characteristics of the GAN network, an improved AC-GAN 

model with a similar structure to the GAN network is proposed. Data migration is performed through 

adversarial game training to solve the distribution difference between the source data and the target data, and 

the 15 pairs of the source-target project conducts comparative experiments to evaluate the performance of the 
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proposed model. Experiments demonstrate that the enhanced generative adversarial network technique 

proposed in this study performs well in the entire data processing and model building stages. 

2. Related work 

This study discusses three research categories with the greatest correlation: software defect prediction; 

cross-project defect prediction; and adversarial learning. 

2.1. Core concepts Software Error Forecasting (SDP) 

With an increase in people’s reliance on software, the significance of software health has grown, and 

associated software defect prediction technology has also garnered increased interest. Chang[16] reported that 

early research on software defect prediction included mathematical and statistical approaches to discover faults. 

Behavior modification ideas are utilized to build low-defect and high-defect behaviors, whereas negative 

association rule mining approaches are employed to build prediction algorithms. Based on the fraction of used 

features, Singh et al.[17] established fuzzy criteria for selecting valuable characteristics for prediction. With the 

growth of the artificial intelligence sector, several machine learning techniques have been attempted to tackle 

the software defect prediction issue. Laradji et al.[18] coupled feature selection with ensemble learning and 

suggested a multiple classifier-combined average probability ensemble learning approach. As a final outcome, 

the average output defect probability is used. He et al.[19] introduced a learning approach dubbed extRF that 

augments the supervised random forest algorithm with a self-training model to create a more accurate 

prediction model. Yang et al.[20] suggested a technique for two-layer ensemble learning. The inner layer of the 

technique constructs a random forest model based on decision trees, whilst the outer layer uses random 

sampling to train multiple random forests for defect prediction. In Wu et al.[21], software flaws are detected by 

using a semi-supervised structured dictionary learning technique through learning a generic dictionary and 

numerous sub-dictionaries. As machine learning often relies on manually derived characteristics for prediction, 

its accuracy is restricted. Therefore, some researchers have started to use deep learning techniques. In the field 

of software fault prediction research, Yang et al.[4] used a deep belief network (DBN)[22] to traverse the token 

vector from the U AST of the program’s source code and then extracted characteristics from the token vector 

to construct a software fault prediction model. Wang et al.[5] also assigned a unique integer identification to 

each token, transform the token vector to a numerical vector, and then input DBN to extract semantic 

characteristics. The survey of Qiao et al.[6] introduced a convolutional neural network (CNN)[23] software defect 

prediction framework based on neural networks. In this framework, they convert the label vector into a 

numerical vector using a word embedding app; roach and then use CNN to automatically discover semantic 

characteristics. The results of experiments indicate that these are retrieved using deep learning. All software 

fault prediction approaches based on program source code characteristics have excellent prediction 

performance. In order to improve the performance of defect prediction, this article uses deep learning for the 

feature extraction step. 

2.2. Cross-project defect prediction (CPDP) 

In actual software defect prediction applications, it is challenging to create an accurate prediction model 

for new projects owing to the absence of previous data. To circumvent this constraint of software defect 

prediction, researchers focus increasingly on using data from other mature projects to create predictions, CPDP 

method. Commonly used CPDP approaches may be categorized as supervised learning, semi-supervised 

learning, and unsupervised learning. The CPDP approach based on supervised learning is the most prevalent 

method among researchers. Nam et al.[24] employed transfer learning to improve the accuracy of the CPDP 

method. Transfer component analysis (TCA) transfers the training data under the assumption of conserving 

data properties, such that the distributions of the source data and target data are comparable. Long et al.[25] 

presented the joint distribution adaptation (JDA) technique, which jointly adjusts the marginal distribution and 
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the conditional distribution in a principled dimensionality reduction process and builds a new feature 

representation that removes disparities in the data distribution. Turhan et al.[26] recommended the use of closest 

neighbor filtering, the survey of Xu et al.[27] offered a technique that takes marginal distribution and conditional 

distribution into account, and adaptive filtering was also proposed. Based on transfer learning, the balanced 

distribution adaptation (BDA) approach distributes various weights to different weights to balance the data 

distribution. Based on various candidate sources, Xia et al.[28] built multiple-source items for the semi-

supervised learning-based CPDP approach. With the aid of genetic algorithms, a base classifier and an ideal 

combination (genetic algorithm, GA) classifier are generated. Using the Adaboost ensemble approach, the final 

model is created based on the GA classifier. Ryu et al.[29] proposed a transfer cost-sensitive improvement 

(transfer cost-sensitive boosting, TCSBooST) method, which combines the source item instances and a small 

number of labeled target item instances into a training set, iterates M times, builds M base classifiers, and then 

performs a weighted ensemble for the base classifiers. Wu et al.[30] introduced a cost-sensitive kernelized 

semisupervised dictionary learning (CKSDL) technique that employs a limited number of labels through 

semisupervised dictionary learning (SDL) technology. Source and target items are put in the same subspace to 

reduce distribution disparities between labeled and unlabeled data. For the CPDP technique based on 

unsupervised learning, Zhong et al.[31] chose typical modules by clustering and then used supplementary data 

and invited experts to annotate the document. Zhang et al.[32] separated all software modules into two groups 

using spectral clustering and then measured the total of the metric values in each category to determine if they 

were flawed. The acquired CPDP approach is expected to give a more objective look at how well the suggested 

method works. 

2.3. Competitive learning 

Presently, the concept of adversarial learning in GAN networks is commonly used in situations where 

data distribution disparities must be eliminated. Using the concept of adversarial learning, Choi et al.[14] 

presented a domain-adversarial neural network (DANN). Utilizing label prediction loss and domain 

discriminative loss, the network accomplishes feature selection across various domains. Engel et al.[15] created 

a cycle-consistent adversarial network (CycleGAN) with their CycleGAN proposal (CycleGAN). Consistency 

loss to ensure approximately the same mapping from domain X to domain Y, hence resolving the issue that 

unpaired training data cannot be used for image-to-image translation. Chang[16] developed a multi-content 

generative adversarial network (MC-GAN) model, which consists of Glyphnet for predicting rough glyphs and 

Ornanet for predicting final glyph color and texture. Using Glyphne to predict glyph masks and Ornanet for 

fine-tuning glyph color and decoration, they were able to transfer font. Singh et al.[17] developed the generative 

adversarial network in the form of a star and incorporated domain control information to enable style transfer 

across several picture domains. Laradji et al.[18] created an adversarial neural audio synthesis (GANsynth) model 

that produced high-fidelity audio by training a GAN network using a series of spectral samples. This research 

intends to apply the GAN network concept and structure to the CPDP field in order to address the source data 

and target data discrepancy issue. 

Through dense embedding coding, the original AC-GAN translates picture labels to the same dimension 

as random noise, and then multiplies the two before feeding them into the generator. Following layer-by-layer 

transposed convolution processing, the effect of picture labels will diminish progressively. The original AC-

GAN flattens the convolutional feature map of the last layer of the discriminator and then branches, which are 

completely linked to the output layer of distinguishing true from false and distinguishing categories, 

respectively. However, this approach has the following flaws: 1) the two-dimensional feature map must be 

expanded into one dimension from the convolution layer to the fully connected layer, which greatly increases 

the number of nodes in the fully connected layer and output layer, which is not conducive to model training; 

2) the feature map does not distinguish between true and false. Both the branch and the discriminative category 
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contain a single hidden layer, limiting the branch’s capacity for fitting. The network topology of the enhanced 

AC-GAN generator is shown in Figure 1, where noise is white Gaussian noise, which is a collection of random 

values with a standard normal distribution. Transposed Conv is a convolution process with a 44 kernel size 

that is transposed. The size of a set of feature maps is 44512, where 44 represents the width and height of the 

feature map and 512 represents the number of channels on the feature map. DCGAN may include deep 

convolution into GAN and use trials to select parameters such as the number of convolution channels. 

Therefore, the size and number of channels of the convolution feature map of the experiment’s generator and 

discriminator correspond to DCGAN. The strip defect picture utilized in the experiment is a grayscale image, 

with a channel count of 1. The picture labels are mapped to 128, 44, 88, 1616, 3232, and other dimensions 

using dense encoding embedding, and then multiplied with the feature map of the equivalent size for each 

layer of the generator network before being transposed. 

 

Figure 1. The structure of the generator network. 

 

Figure 2. The structure of the discriminator network. 

Figure 2 depicts the construction of the modified AC-GAN discriminator network, where Conv 44 

denotes the convolution operation with a convolution kernel size of 44. After the third convolution of the 

discriminator yields an 8 × 8 × 256-dimensional feature map, branches are executed, and each branch is 

subjected to three convolutions to produce the discrimination results. The 11 convolution may enhance network 

depth without altering the size of the feature map and without introducing an excessive amount of processing. 
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The experiment thus employs 11 convolution to create a hidden layer to each branch. The upgraded 

discriminator lacks a completely linked layer, which prevents the anomalous growth and reduction of nodes, 

but the number of hidden layers in each branch grows, which not only ensures the sharing of weights across 

branches but also improves the independence of each branch and fitting ability. 

3. Research methods 

3.1. The AC-GAN method 

Figure 3 shows the overall framework of the AC-GAN method proposed in this paper. Specifically, it consists 

of two stages: data processing and model building. 

 

Figure 3. The framework of the AC-GAN method. 

The data processing stage consists of three distinct phases. 

(1) Code parsing and sequence creation (shown in Figure 1, the item-to-marker sequence procedure); 

(2) Word vector extraction (in Figure 1, the process of tag sequence to word vector table); 

(3) Data dimension normalization (in Figure 1, the word vector table to numerical vector process). 

During the stage of model building, the construction of the prediction model and the forecast of the target 

project are performed primarily. During this phase, the target project’s code file may be classified as defect-

prone (DP) or non-defect-prone (NDP). 

In this part, we describe the design and implementation of our proposed UAST (Unified Abstract Syntax 

Tree) neural network model for classification of cross-project programs. 

As seen in Figure 1, this model accepts various programming source codes as input before parsing them 

into ASTs. Afterwards, it employs a uniform language to execute path embedding and graph embedding on 

ASTs. Then, the route embedded vector and the graph embedded vector are separately input into separate sub-

networks to capture code characteristics. The system then combines distinct learnt characteristics and performs 

the categorization job. 
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The cornerstone of cross-project program categorization is the understanding of the semantic and 

syntactic code characteristics of several programming projects. We propose a Sequence-based AST network 

for the extraction of syntactic structural information from code (SAST for short). The route sequence derived 

by a pre-order traversal of the unified AST may be considered a flattened representation of the AST. The route 

sequence provides the global information of the source code and also displays, to some degree, the syntactic 

structural features of the source code. We use the self-attention structure[33] to extract the relationships between 

nodes within a sequence. The self-attention mechanism is a potent mechanism in the transformer structure that 

is very successful at extracting internal linkages and may mitigate the issue of long-distance reliance. The 

formula for calculation is as follows: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘

)𝑉 (1) 

where the three matrices 𝑄 ∈ 𝑅𝑙×𝑑 , 𝐾 ∈ 𝑅𝑙×𝑑, and 𝑉 ∈ 𝑅𝑙×𝑑  are initialized and generated according to the 

embedded path sequence vector, and these three matrices are equal in the self-attention mechanism, which 

could reduce the parameters of the model and can train faster. 𝑑 is the embedding dimension of the path 

sequence. 𝑙 is the length of input path. Dot product is calculated between 𝑄 and 𝐾. 𝑑𝑘 ∈ 𝑅𝑑  is the dimension 

of input vector. And Attention (𝑄, 𝐾, 𝑉) is the calculated attention score. 

In writing code, the context of the code statement often reflects its intent. For example, it needs to declare 

a variable before using it in C++. The above-mentioned self-attention mechanism has captured the internal 

relationship of the code embedded vector. So, in addition to extracting the internal dependencies of the input 

source code, it also needs to capture the context dependency of the source code. Therefore, the Bidirectional 

Long Short-Term Memory (Bi-LSTM)[34] is introduced here. The Bi- LSTM could learn features of the input 

data from two directions, so it can infer the current information from the context of the code. In our proposed 

SAST network, Bi-LSTM is used to comprehensively consider all available input path information in the 

context to extract Semantic and logic features of the source code. Specifically, the hidden state of the LSTM 

at each position 𝑡 of the input path is computed as: 

𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (2) 

𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑓) (3) 

𝑜𝑡 = 𝜎(𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (4) 

�̃�𝑡 = 𝑡𝑎𝑛 ℎ(𝑊𝐶 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (5) 

𝑐𝑡 = 𝑓𝑡⨀𝑐𝑡−1 + 𝑖𝑡⨀�̃�𝑡 (6) 

ℎ𝑡 = 𝑜𝑡⨀ tanh (𝑐𝑡) (7) 

where 𝜎 is the sigmoid function, 𝑡𝑎𝑛 h is the hyperbolic function, 𝑋𝑡 ∈ 𝑅𝑑  presents the data at position 𝑡 of 

the input path sequence. 

After self-attention, 𝑐𝑡  presents the hidden unit state of 𝑥𝑡, and ℎ𝑡 ∈ 𝑅ℎ  represents the hidden unit state 

of the learning layer, which is the final extracted code features. 𝑊𝑖, 𝑊𝑓, 𝑊𝑜 ∈ 𝑅ℎ×𝑑 are the trainable weight 

matrices. ⨀ is the element-wise matrix multiplication operator. 

ℎ𝑆𝐴𝑆𝑇 = ℎ𝑡
⃗⃗  ⃗⨁ℎ𝑡

⃖⃗ ⃗⃗  (8) 

 

After that, we concatenate the hidden state ℎ𝑡
⃗⃗  ⃗ ∈ 𝑅ℎ  learned by the forward LSTM and the hidden 

state ℎ𝑡
⃖⃗ ⃗⃗ ∈ 𝑅ℎ  learned by the backward LSTM to obtain the ℎ𝑆𝐴𝑆𝑇 ∈ 𝑅2×ℎ, which contains the context features 
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of the code. 

Sequence-based AST network has learnt the global structure and syntactic aspects of the code from the 

path sequence, but because the path sequence is a flattened representation, certain tree-like structural 

information of the code is ignored. We observe that, with the exception of project-specific library files or 

package files, the logic of various programming projects when developing particular functions is often identical. 

The 1-hop aggregation can extract the direct relationship between code statements. As the number of hops 

increases, the “return statement” node can also indirectly aggregate the information of their second-order 

neighbors (“body, identifier1, identifier2”). Therefore, the “return statement” node could learn the local 

structural and semantic features of its neighbors. The right of Figure 3 is the adjacency matrix of the left AST, 

and it is worth noting that�̃� adds an identity matrix to its adjacency matrix, indicating that the node could also 

learn the feature of itself. The graph convolution operation is defined as follows: 

�̃� = 𝐴 + 𝐼 (9) 

𝐻𝑖
(𝑙+1) = 𝜎(∑ 𝐷−

1
2�̃�𝐷−

1
2𝐻𝑗

(𝑙)

𝑗∈𝑁

𝑊(𝑙)) (10) 

where 𝐻𝑖
(𝑙+1)

 is the feature of node 𝑖 in the layer (𝑙 + 1), 𝐻𝑗
(𝑙) is the feature of all neighbor nodes of node 𝑖 

(including itself) in the layer 𝑙; 𝑁 is the number of all neighbors of node 𝑖; �̃� ∈ 𝑅𝑁×𝑁  is the adjacency matrix 

𝐴 of node 𝑖 added with the identity matrix; 𝐷 ∈ 𝑅𝑁×𝑁 is the degree matrix of �̃�; 𝑊(𝑙) ∈ 𝑅𝑑𝑖𝑛×𝑑𝑜𝑢𝑡  is the 

trainable weight matrix in the layer 𝑙. 

The aforementioned SAST has captured the global structure and logical characteristics of the code, and 

GAST has extracted the local structural and semantic feature of the code. In order to comprehensively consider 

the global and local code semantic feature, a fusion mechanism is further needed. We realize the enhancement 

of dimensional features through vector concatenation, which can be described as: 

ℎ𝑐𝑜𝑑𝑒 = 𝑐𝑜𝑛𝑐𝑎𝑡(ℎ𝑆𝐴𝑆𝑇, ℎ𝐺𝐴𝑆𝑇) (11) 

where ℎ𝑐𝑜𝑑𝑒 =∈ 𝑅2×ℎ+𝑑𝑜𝑢𝑡  represents the feature vector after the unified AST feature fusion, ℎ𝑆𝐴𝑆𝑇 =∈ 𝑅2×ℎ 

represents the global structural feature learned from the flattened sequence, and ℎ𝐺𝐴𝑆𝑇 =∈ 𝑅𝑑𝑜𝑢𝑡  represents 

the local semantic feature learned from the graphlike AST. 

After that, we obtain the feature vector which includes the global and local semantic features of the input 

code, and then we perform a fully connected layer for linear dimensional transformation, and eventually the 

probability 𝑝𝑖 is the output through the SoftMax layer. We use the Cross Entropy[35] as our loss function and 

adopt Adam optimizer[36] to minimize it. The loss is calculated as follows: 

𝐽 = −∑𝑦𝑖𝑙𝑜𝑔(𝑝𝑖)

𝑘

𝑖=1

 (12) 

where 𝑘 is the number of program categories, and 𝑦 is the label of different programs, 𝑝𝑖  is the output after 

the SoftMax layer. 

3.2. Improved AC-GAN model 

During the data processing phase, the code files of the source project and the target project are transformed 

into numerical vectors of uniform length that can be fed into the feature extractor to extract features. This study 

investigates the original GAN network in light of cross-project defect prediction needs. The model’s 

architecture was altered, and an enhanced AC-GAN model was presented. The approach is to use the output 

source features from the trained source feature extractor as actual samples and the output target features from 

the target feature extractor as a generative model. To play the game, the source feature and target feature are 
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entered into the discriminator, or discriminant model, as a created false sample. When the discriminator is 

unable to discriminate between the source feature and the target feature, it demonstrates that the distribution 

of the two features is essentially same. Consequently, the difference in distribution between the source data 

and the target data is erased. 

In the realm of natural language processing, the recurrent neural network (RNN) has gained notable 

success. The long short-term memory (LSTM)[37] is an RNN network improvement that resolves the issue of 

the issue of gradient disappearance of RNN networks in lengthy sequences may gain information about long-

term dependencies. Since the code is a structure with logic and semantics and has a closely connected nature, 

the code fragments that causes faults are often associated with their respective contexts. The chosen 

characteristic extractor. The input sequence must be capable of being processed in both directions. This article 

employs a bidirectional long short-term memory (BLSTM)[38], i.e., a two-layer LSTM network, as the source 

feature extractor and target feature. Extractor is to produce a more accurate representation and higher resilience. 

The most often used binary classifier is the Logistic Regression Model (LR)[39]. In order to enable further 

comparisons with other classic CPDP algorithms, LR is chosen as the source and target classifier in this work. 

As seen in Figure 4, the enhanced AC-GAN model is constructed using the following methods. 

(1) Training source feature extraction and classification: before playing the game, the modified AC-GAN 

model underwent supervised training on the source feature extractor and source classifier, splitting the source 

item data into the training set and test set in a ratio of 8:2 to produce excellent results in defect prediction for 

the project; 

(2) Training the discriminator and target feature extractor: according to the design of the GAN network, 

adversarial game training is done on the discriminator and target feature extractor. Since the target feature must 

ultimately resemble the source feature, the target feature extractor’s parameters are originally set to. The source 

extractor for features is the same. If the output is not 0.5 after the discriminator determines the true and false, 

update the parameters using the gradient ascent technique, then update the target feature extractor parameters 

using the gradient descent method, change the output target features, and discriminate again. This cycle 

continues until the discriminator output reaches 0.5, at which point it cannot be evaluated as either true or false. 

When the discriminator output approaches 0.5, the target feature extractor’s parameters will stop changing and 

training will cease; 

 

Figure 4. AC-GAN model architecture. 
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(3) Prediction: input the features extracted by the trained target feature extractor into the target classifier 

in order to forecast the presence or absence of faults. Since the source classifier has been trained, the target 

classifier’s parameters should be identical to those of the learned source classifier. 

3.3. Experimental design 

The enhanced AC-GAN technique presented in this study adopts the GAN network structure, eliminates 

the disparity between the source item and the target item’s data distribution via an adversarial game, and 

employs the BLSTM network as the feature extractor for feature extraction. To verify the effectiveness of the 

AC-GAN approach, this report asks the following two research questions about effectiveness: 

RQ1: Are deep learning-based approaches more effective than conventional SDP methods? 

RQ2: Is the improved AC-GAN method proposed in this paper superior to the conventional CPDP 

technique? 

For RQ1, this study picks the conventional LR approach and the suggested AC-GAN method using a 

deep learning feature extractor for feature extraction in order to conduct comparative tests on the prediction of 

intra-item defects. Methods for defect categorization are based on metrics. 

For RQ2, this article chooses various classic CPDP techniques and the AC-GAN approach based on the 

GAN network topology to perform comparative cross-project defect prediction studies. Several classic 

techniques are compiled using MATLAB R2018b, and the following serves as an introduction. 

4. Results and discussion 

4.1. Data set 

As the experimental data set, this paper selects six commonly used CPDP projects from the open source 

database PROMISE[40]. According to Table 1, the magnitude and fault rate of these six projects are distinct, 

assuring the generalizability of the experimental findings. The Log4j project’s failure rate is too high to be 

used as a training set. 

Therefore, this paper selects the remaining five items as the training set and then randomly selects three 

items that are not included in the training set as the test set. 

Table 1. The specific information of the project selected in this article. 

Project name Version Number of files Defect rate (%) 

Camel _ 1.6 _ 9 35 2 0.1 

Poi _ 3.0 _ 4 38 6 4.1 

X erces 1.4 _ 5 08 7 6.8 

Lucene _ 2.4 _ 3 30 6 1.5 

X alan 2.6 _ 8 75 5 3.1 

Log4j _ 1.2 _ 1 94 9 5.9 

In addition to the source code, each item in the collection also includes static code metrics and defect 

annotations of the source code. Table 2 displays the particular measurements of static code metrics. These 

measures may be used to compare comparable software fault prediction techniques to AC-GAN techniques. 
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Table 2. Abbreviations and names of 20 static code metrics. 

Abbreviated name Full name 

LOC Lines of code 

DIT DIT Depth of inheritance tree 

NOC Number of children 

RFC Response for a class 

C BO Coupling between object classes 

L COM Lack of cohesion in methods 

L COM3 Lack of cohesion in methods 

N PM Number of public methods 

D AM Data access metric 

M OA Measure of aggregation 

MFA _ Measure of function abstraction 

IC _ Inheritance coupling 

C AM Cohesion among methods of class 

CBM _ Coupling between methods 

AMC _ Average method complexity 

Ca Afferent couplings 

C e Efferent couplings 

A vg(CC) Average McCabe 

Max (CC) Maximum McCabe 

W MC Weighted methods per class 

4.2. Experimental outcomes and discussion regarding RQ1 

In general software defect prediction research, twenty manually extracted static metrics are used as feature 

vectors that are fed into the classifier to predict whether defects exist. However, static metrics often represent 

just the structural characteristics of code files and do not include any semantic characteristics. If there are bugs 

in the code’s details, but they are not reflected in the structure, then the conventional method for predicting 

software defects cannot identify them. Consequently, this study utilizes the abstract syntax tree to explain the 

code structure while preserving semantic information. The CBOW algorithm is used to generate word vectors 

that reflect contextual information, while the BLSTM neural network-based feature extractor is utilized to 

extract semantic and contextual features and compare the outcomes of the experiments. 

Table 3. F1-measure of AC-GAN method and LR method. 

Title AC-GAN method LR method 

Camel _ 0.985 _ 0.314 

Poi _ 0.986 _ 0.715 _ 

X erces 0.986 _ 0.901 _ 

Lucene _ 0.991 _ 0.570 _ 

X alan 0.995 _ 0.560 _ 

Log4j _ 0.979 _ 0.949 _ 

Aver age 0.987 _ 0.673 _ 

p-value 0.01553 _ 

As seen in Table 3, the F1-measure of the AC-GAN technique is very near to 1, indicating that the method 
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presented in this research may significantly enhance the accuracy of software fault prediction. The AC-GAN 

approach yields a higher average F1-measure value than the LR method. The average F1-measure value is 

46.7% higher, indicating that the AC-GAN technique using an abstract syntax tree, CBOW algorithm, and 

BLSTM feature extractor is efficient and has a substantial increase in prediction performance. The p-value for 

the Wilcoxon signed-rank test is only 0.01553, which is significantly less than 0.05, showing that there is a 

statistically significant difference between the two approaches. 

4.3. Experimental outcomes and discussion regarding RQ2 

The AC-GAN approach uses the GAN network structure to constantly modify the target distribution to 

fit the source distribution until the issue of disparate data distributions is resolved. Unlike the conventional 

generative model, the training process of the GAN network employs two types of adversarial neural networks 

to play the game, which may be employed as a kind of reinforcement learning. The back-propagation strategy 

for training may minimize training difficulty and enhance training effectiveness. In contrast to classical transfer 

learning, the GAN network training approach employs adversarial training, which may yield more accurate 

and realistic samples, and the GAN network use a neural network. The discriminator is used to implement data 

transfer, which allows transfer learning to circumvent the problem of loss function construction. The 

experimental findings of comparing the AC-GAN approach to five classic CPDP methods are shown in Tables 

4 and 5. 

According to Tables 4 and 5, there are a total of fifteen sets of source-target item combinations. Overall, 

the AC-GAN technique has greater average F1-measure and average AUC than the other five methods. In the 

conventional technique, the BDA method’s prediction is more accurate based on the F1-measure, while the 

CKSDL method’s overall performance is superior based on the AUC. From the perspective of a single 

experiment, 86.7% of the experimental results for F1-measure indicate that the AC-GAN method outperforms 

the other 5 ways; similarly, 80.0% of the experimental data for AUC indicate that the AUC values of the AC-

GAN method are all better. The following explains why the AC-GAN approach works better. 

(1) The AC-GAN method preserves the semantic and contextual information of the code program during 

training and prediction, which can find bugs that cannot be identified by static metrics, resulting in more 

accurate predictions; 

(2) The AC-GAN method uses the GAN network structure for data migration, and the target feature 

samples after the migration are clearer and more realistic, and the representation power is stronger while the 

distribution is similar to the source feature; 

(3) The AC-GAN method preserves the semantic and contextual information of the code program during 

training and prediction, shown in Tables 4 and 5: in the Wilcoxon signed-rank test, the TCA, JDA, NNFilter, 

BDA and CKSDL’s p-values of F-measure are 6.009 × 10−4, 6.151 × 10−5, 1.272 × 10−4, 1.973 × 10−3 and 1.155 

× 10−3, which are far less than 0.05, which means that there is a significant difference between the AC-GAN 

method and other methods, proving that the AC-GAN method. The prediction results of the method are more 

accurate. The p-values of the AUCs of TCA, JDA, NNFilter, BDA and CKSDL are all less than 0.05, indicating 

that the overall performance of the AC-GAN method is better than other traditional methods. 

Table 4. F1-measure of AC-GAN, TCA, JDA, NNFilter, BDA and CKSDL. 

The source program The target project AC-GAN TCA JDA NNFilter BDA CKSDL 

Poi _ Camel _ 0.784 _ 0.496 _ 0.453 _ 0.449 _ 0.370 _ 0.303 _ 

Poi _ X erces 0.809 _ 0.699 _ 0.062 _ 0.656 _ 0.753 _ 0.590 _ 

Poi _ X alan 0.797 _ 0.755 _ 0.489 _ 0.573 _ 0.649 _ 0.450 _ 

Lucene _ Log4j _ 0.778 _ 0.626 _ 0.351 _ 0.594 _ 0.759 _ 0.579 _ 
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Table 4. (Continued). 

The source program The target project AC-GAN TCA JDA NNFilter BDA CKSDL 

Lucene _ X erces 0.762 _ 0.640 _ 0.344 _ 0.664 _ 0.736 _ 0.643 _ 

Lucene _ X alan 0.843 _ 0.598 _ 0.444 _ 0.579 _ 0.649 _ 0.628 _ 

X alan Log4j _ 0.686 _ 0.461 _ 0.405 _ 0.459 _ 0.625 _ 0.629 _ 

X alan Poi _ 0.738 _ 0.519 _ 0.470 _ 0.496 _ 0.657 _ 0.669 _ 

X alan Lucene _ 0.521 _ 0.524 _ 0.314 _ 0.526 _ 0.600 _ 0.670 _ 

Camel _ Log4j _ 0.797 _ 0.246 _ 0.125 _ 0.289 _ 0.722 _ 0.383 _ 

Camel _ X alan 0.548 _ 0.380 _ 0.116 _ 0.371 _ 0.564 _ 0.549 _ 

Camel _ Lucene _ 0.806 _ 0.324 0.201 _ 0.333 _ 0.615 _ 0.651 _ 

X erces Poi _ 0.756 _ 0.614 _ 0.345 _ 0.594 _ 0.675 _ 0.689 _ 

X erces X alan 0.642 _ 0.693 _ 0.423 _ 0.559 _ 0.493 _ 0.325 _ 

X erces Lucene _ 0.661 _ 0.635 _ 0.415 _ 0.644 _ 0.619 _ 0.689 _ 

A level 0.728 _ 0.547 _ 0.329 _ 0.520 _ 0.634 _ 0.545 _ 

p-value - 6.009 × 10−4 6.151 × 
10−5 

1.272 × 
10−4 

1.973 × 
10−3 

1.155 × 10−3 

Table 5. AUC of AC-GAN, TCA, JDA, NNFilter, BDA and CKSDL. 

The source 

program 

The target 

project 

AC-GAN TCA JDA NNFilter BDA CKSDL 

Poi _ Camel _ 0.882 _ 0.497 _ 0.542 _ 0.403 _ 0.615 _ 0.802 _ 

Poi _ X erces 0.839 _ 0.606 _ 0.435 _ 0.535 _ 0.665 _ 0.584 _ 

Poi _ X alan 0.756 _ 0.659 _ 0.579 _ 0.582 _ 0.664 _ 0.759 _ 

Lucene _ Log4j _ 0.796 _ 0.591 _ 0.565 _ 0.573 _ 0.529 _ 0.855 _ 

Lucene _ X erces 0.793 _ 0.612 _ 0.624 _ 0.685 _ 0.625 _ 0.749 _ 

Lucene _ X alan 0.829 _ 0.600 _ 0.655 _ 0.635 _ 0.748 _ 0.678 _ 

X alan Log4j _ 0.787 _ 0.469 _ 0.529 _ 0.452 _ 0.479 0.529 _ 

X alan Poi _ 0.711 _ 0.562 _ 0.655 _ 0.553 _ 0.569 _ 0.521 _ 

X alan Lucene _ 0.674 0.575 _ 0.655 _ 0.600 _ 0.569 _ 0.603 _ 

Camel _ Log4j _ 0.839 _ 0.516 _ 0.552 _ 0.579 _ 0.669 _ 0.769 _ 

Camel _ X alan 0.718 _ 0.674 _ 0.517 _ 0.669 _ 0.500 _ 0.915 _ 

Camel _ Lucene _ 0.840 _ 0.615 _ 0.668 _ 0.629 _ 0.629 _ 0.596 _ 

X erces Poi _ 0.573 _ 0.402 _ 0.459 _ 0.456 _ 0.596 _ 0.689 _ 

X erces X alan 0.812 _ 0.494 _ 0.252 _ 0.412 _ 0.356 _ 0.749 _ 

X erces Lucene _ 0.600 _ 0.465 _ 0.428 _ 0.485 _ 0.449 _ 0.603 _ 

A level 0.769 _ 0.552 _ 0.549 _ 0.539 _ 0.577 _ 0.699 _ 

p-value - 6.096 × 10−5 6.102 × 10−5 6.108 × 10−5 1.223 × 10−4 3.528 × 10−2 

Tables 6 and 7 display the ranking of F1-measure and AUC for the six approaches according to the Scott-

Knott test. Table 6 divides the F1-measure of the six approaches into four categories: AC-GAN method, the 

highest ranking; BDA method; CKSDL, TCA, and NNFilter techniques, which are grouped together; JDA 

method, the lowest rating. Table 7 classifies the AUCs of the six approaches into three categories: the best 

approach is still the AC-GAN method, followed by the CKSDL method and the other four ways. The AC-

GAN approach ranks top in both categories and has the greatest performance, whereas the F1-measure of BDA 

is superior. The AUC of the CKSDL approach is second only to the AUC of the AC-GAN method when 
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compared to other classic CPDP methods. 

Table 6. Ranking of F1-measure. 

A C-GAN B DA C KSDL T CA N NF ilter J DA 

0.719 _ 0.615 _ 0.573 _ 0.549 _ 0.525 _ 0.321 _ 

Table 7. Ranking of AUC. 

A C-GAN C KSDL B DA T CA N NF ilter J DA 

0.779 _ 0.706 0.586 _ 0.563 _ 0.551 _ 1.485 _ 

5. Conclusion 

This paper proposes a novel Cross-Item Defect Prediction (CIDP) method that leverages the power of 

adversarial learning. The proposed CIDP method aims to overcome the limitations of traditional defect 

prediction methods, which often suffer from poor performance due to the difficulty of accurately identifying 

defects in highly diverse software systems. This method offers two sets of comparison experiments utilizing 

F1-measure and AUC as assessment metrics to demonstrate the efficacy of the AC-GAN algorithm. The 

experimental findings demonstrate that the strategy presented in this study performs well throughout both the 

data processing and model construction phases. Not only can the AC-GAN approach collect semantic and 

contextual information, but it can also effectively reduce data disparities between distinct objects. Due to the 

paper’s exclusive usage of the LR classifier and the abstract syntax tree as the representation technique, the 

accuracy of predictions is limited. Using the data, this work will use the ensemble approach or a more 

appropriate classifier in the future. In order to gain better experimental findings, the approach presented in this 

research is confined to the one-to-one prediction of source project data pairs. However, the many-to-one 

prediction method will also be investigated in the future. 
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