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ABSTRACT 

It is of great interest for researchers to assess the COVID-19 pandemic in Europe. Grouping of COVID-19-affected 

regions is an effective way to monitor and optimize planning to combat the disease. This paper applied hierarchical 

clustering based on principal components analysis (HCPCA) to COVID-19 data from affected European countries. 

Considering several attribute indices, we obtained a new set of indicators using principal components analysis to 

aggregate and reduce the dimension of attribute indices of affected countries. Further, we obtained groups of affected 

countries subject to their similarity using hierarchical clustering to the reduced observations of new attributes indices of 

these countries. This study aims to group European countries with similar epidemic severity using some presumed 

attribute indices. The study is limited up to 24 May 2020, to assess if the outputs of the study could help governments, 

administrators, World Health Organization (WHO), healthcare service professionals, and other decision-makers to 

optimize their policies and plan their regulations in the country level requirements so that transmission of infections, 

deaths, critical conditions of patients could be minimized. For this purpose, we used hierarchical clustering using 

principal components analysis to obtain better clusters of countries with similar epidemic severity. 

Keywords: principal components analysis; dendrogram; hierarchical clustering; data science; data mining 

1. Introduction 

Coronavirus disease-2019 (COVID-19) is caused by a severe 

acute respiratory syndrome coronavirus 2 (SARS COV-2). It was first 

reported in December 2019 by the Municipal Health Commission in 

Wuhan, China. Further, it started spreading in other countries in the 

world. To date, millions of confirmed positive cases and deaths were 

reported. Liu et al.[1] studied the disease transmission pattern in China 

in various age-group populations. Based on the seriousness of the 

transmission of infections, and the occurrence of deaths, WHO 

declared it to be an outbreak in January 2020. As of 13 March 2020, 

many new cases were reported in European countries, so WHO 

considered Europe to be the epicenter of the COVID-19 pandemic, 

where the infection was aggressively spreading through Italy. 

Data science has become a leading field over the last few years, 

which covers almost every industry sector and is gradually growing. 

Tools related to data science play a vital role in assessing the status of 

pandemics in a specific region, such as COVID-19, and can be used 

to optimize policies and planning to stop the spreading of such 

infections and reduce deaths and critical cases. The COVID-19 

pandemic provides big data with different structures, which must be 
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analyzed quickly and effectively. Healthcare practitioners can access such big data of vital patients to 

optimize treatment facilities using data mining, machine learning, etc. Data science is very valuable in 

tracing hot spots and controlling the spread of COVID-19 infections by analyzing multi-parametric data 

through numerous methods like principal components analysis (PCA), hierarchical clustering (HC), and 

neural network analysis (NNA)[2–4]. 

When we deal with a multidimensional dataset with several variables, PCA is an appropriate technique 

that can be used to reduce the dimension of the dataset into a few important variables containing the most 

information in the dataset. Therefore, in this paper, we applied PCA to obtain new sets of indices having a 

linear combination of the original pieces of information. Further, we applied hierarchical clustering using the 

PCA approach to group 44 European countries affected by COVID-19 infections. Then, we applied the K-

means algorithm to have better groups of similar countries. Our analysis is limited up to 24 May 2020, to 

assess if such analysis could help control the severe situation in the first phase of COVID-19 in European 

countries. The major objective of this study is to help governments, administrators, and healthcare service 

professionals optimize their monitoring techniques, making appropriate policies and planning in these 

affected European countries according to their country-level regulations. These regulations will help reduce 

the transmission of COVID-19 infections, cases, and deaths. 

2. Materials and methods 

2.1. Study area 

We included 44 European countries in the study listed in Table 1. 

Table 1. A list of names of European countries and their assumed codes. 

Country Code Country Code Country Code Country Code 

Russia C1 Poland C12 Hungary C23 Latvia C34 

Spain C2 Ukraine C13 Greece C24 Albania C35 

Italy C3 Romania C14 Bulgaria C25 Andorra C36 

France C4 Austria C15 Bosnia and Herzegovina C26 San Marino C37 

Germany C5 Denmark C16 Croatia C27 Malta C38 

Belgium C6 Serbia C17 North Macedonia C28 Channel Islands C39 

Belarus C7 Czechia C18 Estonia C29 Isle of Man C40 

Sweden C8 Norway C19 Iceland C30 Montenegro C41 

Switzerland C9 Moldova C20 Lithuania C31 Faeroe Islands C42 

Portugal C10 Finland C21 Slovakia C32 Gibraltar C43 

Ireland C11 Luxembourg C22 Slovenia C33 Liechtenstein C44 

We did not include the United Kingdom, Netherlands, Monaco, and Vatican City in our study because 

information on a few of the indices used in this study was not available for these countries. 

2.2. Methodology 

We divided this sub-section into three stages (I–III). Collection of data, summary statistics, and 

graphical representations are given in Stage I; execution of data mining techniques to the data set is provided 

in Stage II, and interpretations on variations among clusters using box plots are given in Stage III. 

Stage I: Data collection and graphical representation of its characteristics 

The samples on COVID-19 cases from European countries were collected till 24 May 2020 (05:02 

GMT) via Worldometer (https://www.worldometers.info/coronavirus[5]). In our study, we included six 
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attribute indices: tested cases (𝑇𝑑), confirmed cases (𝐶𝑛), deaths (𝐷𝑡), recovered cases (𝑅𝑒), critical cases 

(𝐶𝑟), and the percentage of the population (𝑃𝑝) since the severity of situations of COVID-19 in the countries 

mostly depend upon these attribute indices. A summary of basic statistics, such as values of minimum, 

maximum, median, mean, first and third quartiles, and standard deviation (SD) for each of the indices, are 

given in Table 2. We also showed the nature of data points through graphical representations using box plots 

and histograms in Figure 1. We did not remove extreme observations from the data set because these 

observations may help administrators, healthcare service professionals, and others understand severe 

situations at the country level. 

Table 2. Summary statistics of COVID-19 status of European per one million (1 M) population. 

Summary Tests Confirmed Deaths Recovered Critical Percentage of population 

Min. 4563.0 275.0 0.0 116.0 0.00 0.005 

1st Qu. 19,575.0 678.0 22.5 498.0 1.75 0.154 

Median 42,682.0 1782.0 49.0 928.0 4.00 0.728 

Mean 52,927.0 2740.0 162.1 1836.0 9.50 2.014 

3rd Qu. 61,200.0 3746.0 185.5 2453.0 11.00 1.372 

Max. 187,393.0 19,603.0 1238.0 8453.0 71.00 19.520 

SD 45,969.86 3321.36 258.1 2056.1 13.47 3.728 

 

 
Figure 1. Box plots and histograms for the status of the four cases of COVID-19 in 44 affected countries in Europe (red, green, sky 
blue, purple, light red & orange colors represent the cases related to tests, confirmed, deaths, recovered, critical and population (%), 
respectively). 
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Stage II: Analysis using data mining techniques 

Data mining is the process of finding hidden features of big data. We executed some data mining 

techniques, such as Pearson’s correlation coefficient matrix, PCA and HCPCA, to get valuable information. 

1) Pearson correlation matrix 

A correlation matrix helps to understand the strength of a linear relationship. We obtained a correlation 

(𝜌) matrix of attribute indices to assess the relationships between them and to evaluate their significance; we 

obtained corresponding p-values for testing the hypothesis H0: 𝜌 = 0 against HA: 𝜌 ≠ 0  (Table 3). We 

followed Ratner[6], who has studied the nature of correlation and showed that values between 0 and 0.30 (0 

and −0.30), between 0.30 and 0.70 (−0.30 and −0.70), and between 0.70 and 1.0 (−0.70 and −1.0) indicate a 

weak positive (negative), moderately positive (negative) and strongly positive (negative) linear relationship, 

respectively. 

Table 3. Correlation matrix among variables and respective p-values. 

 𝝆 

Variables Tests Confirmed Death Recovered Critical Population (%) 

Tests 1.00 - - - - - 

Confirmed 0.45 1.00 - - - - 

Death 0.14 0.84 1.00 - - - 

Recovered 0.58 0.86 0.61 1.00 - - 

Critical –0.12 0.43 0.52 0.31 1.00 - 

Population (%) –0.14 –0.06 0.06 –0.14 0.14 1.00 

 p-values 

Variables Tests Confirmed Death Recovered Critical Population (%) 

Tests 0.0000 - - - - - 

Confirmed 0.0020 0.0000 - - - - 

Death 0.3718 0.0000 0.0000 - - - 

Recovered 0.0000 0.0000 0.0000 0.0000 - - 

Critical 0.4564 0.0039 0.0003 0.0393 0.0000 - 

Population (%) 0.3667 0.7072 0.6873 0.3519 0.3490 0.0000 

2) Principal components analysis (PCA) 

PCA[7–9] is used to process a data set for dimensionality reduction for further data mining. It is an 

important data mining technique for data reduction without substantial loss of information. It forms new sets 

of uncorrelated indices of linear combinations of the original correlated indices. These new uncorrelated 

indices are called principal components. 

Before execution of the PCA, we performed the Kaiser-Mayer-Olkin (KMO) test[10,11] and Bartlett 

test[11,12] to determine if the PCA is suitable for the data set. By performing the KMO and Bartlett’s tests in 

PCA, one can assess the suitability of the dataset and ensure that the variables exhibit sufficient inter-

correlation for meaningful extraction. If the tests indicate a good fit (high KMO value and significant 

Bartlett’s test), it provides confidence in proceeding with PCA. Otherwise, it may be necessary to reevaluate 

the dataset or consider alternative techniques for data analysis. 

When variables are measured in different scales (e.g., kilograms, kilometers, centimeters, …) or when 

the mean and/or the standard deviation of variables are largely different, scaling the dataset is recommended; 

otherwise, the dissimilarity measures obtained will be severely affected. Thus, we scaled the data set using R 
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software (version R i386 3.6.3) for further analysis. We obtained the desired number of principal 

components based on scree plots (Figure 2). 

Further, we extracted the principal components and provided the corresponding components scores and 

related explanation of PCA in Table 4. In Table 4, RC1 and RC2 represent rotating component loadings, h2 

represents common component variance. 

 
Figure 2. Scree plots for obtaining an optimum number of principal components. 

Table 4. Standardized loadings based on correlation matrix and related explanation of PCA. 

Indices RC1 RC2 h2 Aspects RC1 RC2 

𝑇𝑑 0.44 –0.72 0.70 

𝐶𝑛 0.96 –0.12 0.94 

𝐷𝑡 0.87 0.22 0.81 

𝑅𝑒 0.87 –0.34 0.87 SS loadings 2.99 1.41 

𝐶𝑟 0.60 0.58 0.69 Proportion var 0.50 0.23 

𝑃𝑝 0.00 0.62 0.38 Cumulative var 0.50 0.73 

3) Validation of clustering in the data set 

Cluster analysis (CA) is one of the important data mining techniques to discover hidden predictive 

knowledge from big data. It identifies clusters of similar observations within a data set of interest[7,13,14]. 

Before executing CA, we performed the Hopkins test for validation. We also supported this validation 

with the visual assessment of the cluster tendency (VAT) approach in Figure 3. 

 
Figure 3. Dissimilarity matrix image for VAT. 

One can perform hierarchical clustering (HC) using various methods such as average-linkage, single-

linkage, complete-linkage, and ward methods. It is very important to verify which method best fits the data 
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set, so we obtained agglomerative coefficients for average linkage, single-linkage, complete linkage, and 

ward methods. 

4) Hierarchical clustering based on principal components (HCPC) 

We observed from Table 3 that significant correlations exist among attribute indices. The results may 

not be very beneficial if we perform only CA for clustering or grouping the affected European countries. The 

mixed algorithms of PCA and CA can optimize the results of the clustering process. So, in this paper, using 

the R software, we performed hierarchical clustering using Ward’s method based on the principal 

components (HCPC). 

We obtained a dendrogram (Figure 4) for the HCPC using Ward’s algorithm to show the clustering of 

affected countries of Europe. Further, these clusters were used to obtain final and robust results (clusters) 

after consolidation of K-means. The final and robust result was represented on the factor map obtained from 

the first two principal components (Figure 5). We also showed a three-dimensional graphical representation 

of the dendrograms on the factor map obtained from the first two principal components in Figure 6. 

 
Figure 4. Hierarchical clustering based on principal components analysis (black, red, green & blue colors show cluster 1, 2, 3 & 4, 
respectively). 

 
Figure 5. Clusters on factor map (black, red, green & blue colors represent the clusters 1, 2, 3 & 4, respectively). 
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Figure 6. A dendrogram, clusters, and principal components map showing the clustering of countries for the status of COVID-19
(black, red, green & blue colors represent clusters 1, 2, 3 & 4, respectively).

Stage III: Analysis using box plot

Here, we made inferences regarding the variations among clusters using box plots. Here, we considered

the median to be the best appropriate measure of central tendency because the distributions of the indices

were skewed (Figure 1)[15]. Box plots are preferred in such cases for better visual comparisons between

clusters and to draw inferences. At this stage, all clusters (C-I, C-II, C-III, and C-IV) of the robust result

were compared for each of the indices (except 𝑃𝑝) (Figure 7). In Figure 7, a long red dotted horizontal line

shows the overall median, and a bold black horizontal line indicates the median of data points in each cluster

for each index. Our main focus was on the median values of clusters in each case for making inferences.

Here, we converted values of the indices related to tested, confirmed, death, recovered, and critical cases into

percentages using the formulas: 𝑇𝑑 =
𝑇𝑑

𝑇𝑜𝑡𝑎𝑙 𝑠𝑢𝑚 𝑜𝑓 𝑇𝑑 𝑐𝑎𝑠𝑒𝑠
× 100%, 𝐶𝑛 =

𝐶𝑛

𝑇𝑑
× 100%, 𝐷𝑡 = 𝐷𝑡 𝐶𝑛⁄ × 100%,

𝑅𝑒 = 𝑅𝑒 𝐶𝑛⁄ × 100%, and 𝐶𝑟 = 𝐶𝑟 𝐶𝑛⁄ × 100%.

Figure 7. (Continued).
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Figure 7. Box plots showing variation among clusters in all cases of COVID-19 (black, red, green & blue colors represent the 
clusters 1, 2, 3 & 4, respectively). 

3. Results 

From the 𝜌-matrix and corresponding p-values in Table 3, it was observed that the tested cases showed 

p-values tend to zero with confirmed and recovered cases which indicates that correlation coefficients are 

significant while it is much different from zero with critical cases and percentage of the population which 

indicates that the correlation coefficients are not significant. It suggests that if a country had a high number 

of tested cases, confirmed and recovered cases were also high. The confirmed cases showed the p-values 

tend to be zero with the death, recovered, and critical cases, which indicates that correlation coefficients are 

significant, while it was much different from zero with the percentage of the population, which suggests that 

the correlation coefficient is not significant. The deaths showed the p-values tend to be zero with the 

recovered and critical cases, which indicates that the correlation coefficients are significant, while it showed 

the p-value much different from zero with the population percentage, which indicates that the correlation 

coefficient is not significant. 

The KMO test showed that the overall measure of sampling adequacy (MSA) value was 0.7, and the 

individual MSA values for 𝑇𝑑 , 𝐶𝑛 , 𝐷𝑡 , 𝑅𝑒 , 𝐶𝑟  and 𝑃𝑝 were 0.6, 0.6, 0.6, 0.7, 0.8 and 0.6, respectively. Thus, 

the KMO test indicated sampling adequacy for the model and for each of the indices used in the analysis. 

Further, we performed the Bartlett test, which resulted in Chi − square = 151.93 with a p-value of 9.997 × 

10−25, indicating that the correlation coefficient matrix was not an identity matrix and hence the execution of 

PCA for the given data set is suitable. 

In Figure 2, we examined the elbow point where the proportion of variance explained (PVE) decreased 

significantly. The scree plots showed the PVE by each principal component, indicating that two principal 

components are sufficient for the analysis, which explained about 73% (Table 3) of the total variance. 

From Table 4, we observed that the first principal component (PC1) was mainly explained by the 

indices 𝐶𝑛 , 𝐷𝑡 , 𝑅𝑒 and 𝐶𝑟  which explained 50% of the total variance. The PC1 was also positively correlated 

with all the index variables. The second principal component (PC2) was mainly explained by the indices 𝑇𝑑  

and 𝑃𝑝 which explained 23% of the total variance. The PC2 was negatively correlated with indices 𝑇𝑑 , 𝐶𝑛, 𝑅𝑒 

and positively correlated with index variables 𝐷𝑡 , 𝐶𝑟  and 𝑃𝑝. 

The expressions of principal components are given below according to the results obtained in Table 4. 

PC1 = 0.44𝑇𝑑 + 0.96𝐶𝑛 + 0.87𝐷𝑡 + 0.87𝑅𝑒 + 0.60𝐶𝑟  

and 

PC2 = −0.72𝑇𝑑 − 0.12𝐶𝑛 + 0.22𝐷𝑡 − 0.34𝑅𝑒 + 0.58𝐶𝑟 + 0.62𝑃𝑝 
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For the validation of CA, the Hopkins test yielded a value of 0.22 of Hopkins statistic that was below 

the threshold value of 0.5. It showed that there exist meaningful clusters in the data set. Figure 3 confirmed 

high similarity in red color while low similarities in blue color and showed about four clusters for the data set. 

The agglomerative coefficients for average-linkage, single-linkage, complete-linkage, and Ward methods 

were 0.83, 0.77, 0.88, and 0.90, respectively. It can be seen that the Ward method provided the highest value 

of the agglomerative coefficient. Hence, it is best-fit relative to the average, single, and complete linkage. 

We summarize our findings from Figure 4 and Figure 5 in Table 5 given below: 

Table 5. Summarization of findings from Figure 4 and Figure 5. 

From Figure 5 From Figure 6 

Cluster I Cluster II Cluster III Cluster IV Cluster I Cluster II Cluster III Cluster IV 

Belarus Russia Iceland Andorra Belarus Russia Ireland Andorra 

Switzerland Spain Faeroe-Islands San-Marino Switzerland Spain Luxembourg San-Marino 

Portugal Italy Gibraltar - Portugal Italy Iceland - 

Poland France - - Poland France Faeroe-Islands - 

Ukraine Germany - - Ukraine Germany Gibraltar - 

Romania Belgium - - Romania Belgium - - 

Austria Sweden - - Austria Sweden - - 

Denmark Ireland - - Denmark Moldova - - 

Serbia Moldova - - Serbia Isle of Man - - 

Czechia Luxembourg - - Czechia - - - 

Norway Isle of Man - - Norway - - - 

Finland - - - Finland - - - 

Hungary - - - Hungary - - - 

Greece - - - Greece - - - 

Bulgaria - - - Bulgaria - - - 

Bosnia and 
Herzegovina 

- - - Bosnia and  
Herzegovina 

- - - 

Croatia - - - Croatia - - - 

North 
Macedonia 

- - - North  
Macedonia 

- - - 

Estonia - - - Estonia - - - 

Lithuania - - - Lithuania - - - 

Slovakia - - - Slovakia - - - 

Slovenia - - - Slovenia - - - 

Latvia - - - Latvia - - - 

Albania - - - Albania - - - 

Malta - - - Malta - - - 

Channel 
Islands 

- - - Channel  
Islands 

- - - 

Montenegro - - - Montenegro - - - 

Liechtenstein - - - Liechtenstein - - - 

As can be seen from Table 5, the countries Ireland and Luxembourg moved from cluster II (C-II) to 

cluster III (C-III). Here individuals were represented with different colors according to the cluster in which 

they lie. A square showed the centroid of each cluster. There was no change found in cluster I (C-I) and 

cluster IV (C-IV). From Figure 5, it can be seen that all four clusters are separated very well on the first two 

principal components. We found refined results of Ward’s method after the K-means consolidation process. 

However, only two (Ireland and Luxembourg) out of 44 countries moved from one cluster (C-II) to another 

cluster (C-III), and this proves the stability of our results. In Figure 6, the principal components map, 

dendrograms, and the clustering issue from these dendrograms yield different information that are 
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superimposed for better visualization of the data set. It shows Ireland and Luxembourg are oriented toward 

the other components of C-III. 

Figure 7a showed that the median value of tested cases of C-IV was greater than that of C-I, C-II, and 

C-III, while this value was least in C-II among all the clusters. Similarly, it can be seen that the median value 

of C-III was greater than that of C-I. The C-II was least dispersed, while C-III was more dispersed among all 

the clusters. That is, many countries in C-II and C-III had similar situations of testing percentages at certain 

parts of the scale, while in other parts of the scale, the values were more variable in percentage. The median 

value of tested cases was the lowest in C-II and the highest in C-IV than that of all the clusters’ overall 

median value. Further, Figure 7a showed Montenegro and Liechtenstein to be outliers in C-I and Moldova 

and Isle of Man in C-II, which means that these countries had a high percentage of tested cases. 

Figure 7b showed that the median value of confirmed cases of C-II was greater than that of C-I, C-III, 

and C-IV, while this value was least in C-III among all the clusters. Similarly, it can be seen that the median 

value of C-I was greater than that of C-III. The C-III and C-IV were approximately equally dispersed, while 

C-I and C-II were more but reasonably similar dispersed; however, the overall range in C-I was greater than 

C-II. Many countries in C-III and C-IV had similar situations of confirmed cases. The median value of 

confirmed cases was lower in C-II and C-IV while high in C-I and C-II than that of all the clusters’ overall 

median value. Further, Figure 7b showed Ukraine, Bosnia, and Herzegovina as outliers in C-I and Italy and 

Isle of Man in C-II, meaning that these countries had a high percentage of confirmed cases. 

Figure 7c showed that the median value of death cases in C-I and C-IV were at the same level, but the 

distribution of the values differed in these two clusters. Similarly, the median value of death cases in C-II 

and C-III were at the same level, but the distribution of the values differed in these two clusters. The C-IV 

was least dispersed, while C-I and C-III were more dispersed among all the clusters. That is, countries in C-

IV had similar situations of deaths, while in C-I and C-III, these values were variable in percentage. The 

median value of death cases was approximately equal in C-I and C-IV compared to the overall median value 

of all the clusters, while it was less in C-II and C-III. Further, Figure 7c showed that Albania is an outlier in 

C-I, which means that this country had a high percentage of deaths. 

Figure 7d showed that the median value of recovered cases of C-III was greater than that of C-I, C-II, 

and C-III, while this value was least in C-II among all the clusters. Similarly, it can be seen that the median 

value of C-III was greater than that of C-IV. The C-III was least dispersed, while C-IV was more dispersed 

among all the clusters. Many countries in C-II had similar situations of recovery percentage while it was 

more variable in C-IV. The value of recovery cases in C-I and C-II was approximately equally distributed; 

however, it was more in C-I than in C-II. The median values of recovered cases in C-II and C-IV were less 

than that of the overall median value of all the clusters; however, it was approximately the same in C-I as the 

overall median and more in C-III than the overall median of all the clusters. Further, Figure 7d showed 

Ireland to be an outlier in C-III, meaning that this country had a low percentage of recovered cases. 

Figure 7e showed that the median value of critical cases of C-II was greater than that of C-I, C-II, and 

C-IV, while this value was least in C-III among all the clusters. The median value of C-I was equal to the 

overall median of all the clusters. The C-III and C-IV were least dispersed, while C-I and C-II were more 

dispersed. Countries in C-II and C-IV had similar situations of critical cases, while it was more variable in C-

I and C-II. Further, Figure 7e showed Italy to be an outlier in C-II and Ireland in C-III, meaning that these 

countries had a high percentage of critical cases. 

4. Discussion 

Our findings provide valuable insights into the diverse impact of the first phase of the COVID-19 

epidemic in European countries. For this study, we defined a set of six attribute indices. We obtained 
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Pearson’s correlation coefficients among attribute indices which showed that all of them were positively 

correlated. We identified clusters of countries based on their similarity using HCPC. This technique uses 

mixed algorithms of clustering and principal components methods. Since the results from the application of 

CA alone might not be very good, the application of clustering based on PCA can overcome the analysis-

related complications due to the presence of a large number of indices as well as due to the presence of 

highly correlated attribute indices in the clustering process and thus HCPC provided improved clusters. Here, 

the mixed algorithms of the Ward’s and the K-means methods provided final robust results. The 

consolidation of K-means clustering validated the stability of our results in C-I and C-IV, while only 2 out of 

44 countries moved from C-II to C-III. 

Based on the robust results obtained from HCPC, we grouped 44 affected countries into four clusters 

(C-I, C-II, C-III & C-IV). All countries under C-II and a few under C-I had very low testing that needs to be 

increased. The countries under C-I and C-II were highly affected by confirmed cases. So, these countries 

need screening, lockdown, and legal action optimization. It is also required to optimize treatment facilities so 

that deaths which were very high in some C-I countries, could be reduced. There was a large variation in the 

distribution of recovery cases in C-I, C-II, and C-IV countries. The critical cases were very high in countries 

under C-II and a few under C-I, which suggested management optimization for the timely admission of 

patients in hospitals and their proper treatments. Such actions could help governments, doctors, healthcare 

service providers, etc., in controlling the cases in all aspects, and in turn, it would reduce the seriousness of 

COVID-19. 

Our study has some limitations. First, this study is limited up to 24 May 2020, to assess if such analysis 

could help controlling the severe situation in the first phase of COVID-19 in European countries. Further, 

this study considers only endogenous variables. Exogenous variables are not included here. For example, do 

countries with strict lockdown orders tend to fall in a given cluster? Do countries with substantial 

international travel tend to do worse? Does the country’s Gross Domestic Product (GDP) affect which cluster 

a country is in? So, the study could further be modified with such exogenous variables and some other 

undocumented factors. 

5. Conclusions 

Our study focused on identifying clusters of similar epidemic patterns across European countries. We 

utilized a combined hierarchical clustering approach on principal components to achieve satisfactory 

clustering based on a set of epidemic indicators. This approach integrated three data mining methods: PCA, 

hierarchical clustering, and the K-means algorithm. A defined set of attribute indices guided the clustering 

process. Our study’s findings help understand the severity of the epidemic in European countries, which 

might help related officials to adopt appropriate management in accordance with the severity at the country 

level. This study illustrates the use of HCPC to identify better clusters of affected countries for potential 

targeted care management like increasing testing, optimization of screening, lockdown, legal actions, 

optimization of management for timely admission of patients in hospitals and their proper treatments, etc. 

However, our study has some limitations. First, this study is limited up to 24 May 2020, to assess if 

such analysis could help control severe situations in the first phase of COVID-19 in European countries. 

Further, the study could be modified with some exogenous variables and some other undocumented factors. 
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