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ABSTRACT
To enhance the smart Cloud Service System for diverse user requirements in 5G and other service networks, this

study leverages resource utilization and multi-tenancy network slicing operation costs. Specifically, we propose a multi-
tenancy network resource allocation strategy based on the Chaos Particle Swarm Optimization (CPSO) algorithm. In a
multi-tenancy network (MTN), we lease the wireless spectrum resources of the infrastructure provider’s base station,
construct access service slices as network slice services, and offer network access services to users. Introduce detailed
formulation of the relationship between MTN and users, represented as a multi-master and multi-slave construct that
defines the strategy space and profit function after MTN decision-making. Reverse induction is used to analyze the
proposed model, and a distributed iterative algorithm is proposed to obtain the optimal throughput demand of users and
the optimal slice cost of MTN. Simulation results demonstrate that the proposed strategy can effectively enhance resource
utilization and user satisfaction while reducing energy consumption.
Keywords: multi-tenancy network; Particle Swarm Optimization; resource allocation; Cloud Service System

1. Introduction
With the increasing demand for cloud services and the advent of

5G networks, there is a growing need to develop efficient resource
scheduling and allocation strategies to ensure optimal performance of
smart Cloud Service Systems. Traditional network architectures are
limited in their ability to cater to the diverse service demands of
different vertical industries and users, leading to low resource
utilization and significant service response delays[1,2]. To address these
issues, the concept of network slicing was introduced in 5G networks,
allowing for more effective infrastructure use and individualized
service delivery without compromising service quality. The 5G
network was to cater to the diverse service demands of various vertical
industries and users. In traditional networks, a dedicated network can
be designed for specific services and requirements, which is simple to
deploy and has strong isolation. However, it suffers from issues such
as low resource utilization and significant service response delays. To
address these issues, the solution for 5G networks is network slicing,
which enables more efficient infrastructure utilization and personalized
service delivery without compromising service quality[1–3].
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Furthermore, it provides dedicated networks for different requests, which can further optimize the waste of 
resources and network deployment costs caused by request differentiation and service diversification. In the 
paper of Han et al.[4], the successful deployment of flexible network slicing hinges on efficient slicing resource 
allocation and orchestration management is described. A well-designed resource allocation plan can 
significantly reduce network deployment costs, while simultaneously improving resource utilization and user 
satisfaction. To this end, many researchers have focused on optimizing resource allocation and plan 
deployment in network slicing. Typically, such plans begin by addressing two key areas: enhancing resource 
utilization and reducing network energy consumption. On the other hand, the paper[5] introduces slice as a 
service and develop a content distribution network as a service platform based on a multi-cloud domain, 
improving the deployment cost and service quality of content distribution network slice. Then, Dong et al.[6] 
investigate bandwidth resource allocation in wireless virtualized environments and achieves efficient resource 
scheduling through a greedy search, dynamically allocating bandwidth resources for users while optimizing 
system performance. Resource allocation in multi-service wireless networks jointly considers resource 
allocation between slices and resource scheduling within slices[4]. This scheme can balance allocation 
efficiency and service delay while ensuring slice isolation. Spectrum resource allocation in heterogeneous 
cellular networks optimizes the spectrum allocation and user access, increasing the network terminal rate[6]. 
The computational algorithms provide a systematic theoretical tool for analysing and predicting the strategic 
interaction behaviour of the group and are widely used to solve the problem of network slicing resource 
allocation and optimization. However, this work mainly focuses on optimizing the cost of network slicing and 
service delay but does not consider network energy consumption. An automated mechanism based on a genetic 
algorithm to assist tenants in making decisions is proposed[7] for the dynamic resource allocation problem of 
wireless access network slices. Halabian[8] modeled the resource allocation problem of end-to-end network 
slicing as a means to maximize system revenue using the ANT algorithm. While the mechanism mentioned 
can promote fairness in resource allocation, it may not adequately address the issue of competition between 
slices. However, Zheng et al.[9] proposed an optimization strategy for allocating 5G network cache resources 
that aimed to jointly optimize the revenue of network providers and network energy consumption. This 
approach led to improved cache hit rate and system energy consumption, although it did not consider cache 
resource allocation specifically. Finally, Raveendran et al.[10] tackled the resource allocation problem through 
efficient three-party matching between wireless spectrum resources, wireless network infrastructure, and 
mobile users using matching games. This approach reduced response delay and system cost, while enhancing 
user satisfaction. It does not consider the key indicators of service slicing in actual network deployments, such 
as network energy consumption and resource utilization. Realizing the reasonable allocation of spectrum 
resources in a multi-tenancy network through a parallel computational algorithm can improve the utilization 
of spectrum resources, reduce the cost of slice deployment, increase network revenue, and improve user 
satisfaction. 

The aim of this paper is to present a multi-tenancy network resource allocation strategy that utilizes the 
Chaos Particle Swarm Optimization algorithm. In this approach, the infrastructure provider allocates the base 
station spectrum resources required to construct access service slices for MTN. The relationship between MTN 
and users is modelled using a multi-master and multi-slave model. By introducing slicing popularity and 
service hit rate indicators, a profit function is constructed for both parties involved in the game. Based on this 
model, the reverse induction method is applied. The CPSO algorithm is used to determine the user’s optimal 
throughput demand, followed by a distributed iterative algorithm to determine the optimal access service slice 
cost of MTN. After two iterations, the system converges to the only Nash equilibrium point. The proposed 
strategy’s effectiveness and feasibility are compared with other optimization strategies that consider the 
allocation of slicing resources to validate its performance. 
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2. Multi-tenancy network model 
2.1. Wireless access network 

The wireless access network structure of the multi-tenancy network is illustrated in Figure 1, comprising 
four modules: physical infrastructure layer, virtual network resource layer, network slice instance layer, and 
network service instance layer[11]. To address the reasonable allocation of spectrum resources in the access 
service slice communication resources, this paper proposes a game optimization strategy for multi-tenancy 
network resource allocation. This strategy is utilized in the network slice management and orchestration 
module to ensure the proper allocation of access service slice instance resources, which provide access service 
instances to users. 

 
Figure 1. The structure of wireless access network. 

The specific functions of each module are as follows: 

1) The physical network infrastructure includes access facilities such as base stations, computing servers, 
and storage units, which different providers manage. 

2) Virtual network resources include three major network resources: resource blocks integrated by 
physical network infrastructure through virtualization technology and provided to MTN. 

3) MTN analyses service demand mapping, leases virtual network resources, and builds network-slicing 
instances. 

4) The network service instance layer provides user and business services. Each service includes different 
use cases, and a service slice instance represents each use case. 

Spectrum sharing relies on multiple access technology. The network model consists of an infrastructure 
provider, Μ, 𝑀𝑀𝑀𝑀𝑀𝑀[1, 2, . . ., 𝑀𝑀] , and Ν  users. Among them, the users include Κ  internal access users 
[1, 2, . . . ,𝐾𝐾] and L external access user’s [1, 2, . . ., L]. All users can access all MTN. 
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2.2. The specific process of service model construction 
Due to the limited physical resources in the network, MTN will dynamically adjust the slice pricing 

according to the user’s needs and service capabilities to maximize their revenue and thus maximize the network 
revenue. 

1) To provide an infrastructure of base station spectrum resources to use physical facilities reasonably 
and efficiently and increase their revenue, they lease virtual network resources to MTN. 

2) MTN constructs access service slices according to user needs and slice’s popularity to provide network 
access services. 

3) The user purchases access service slices and access the network to obtain the required content. 

2.3. The spectrum resource model 
Virtual spectrum resources are leased from infrastructure providers to allocate a certain percentage of 

spectrum bandwidth MTNm, [1, 2, ..., M] ∈ m. The spectrum resource of the base station of the infrastructure 
provider is abstracted as the maximum bandwidth spectrum resource is 𝐵𝐵, the downlink transmission power is 
𝑝𝑝, and it is assumed that 𝐵𝐵 and 𝑝𝑝 are constants. By assuming the access service slices are physically isolated, 
there is no interference between MTN. The network access throughput 𝑅𝑅𝑖𝑖  that can be directly obtained is 
related to the subscribed slice type for internal users. It is related to the spectrum resources reallocated by 
MTNm in the access service as Equation (1). 

𝑅𝑅𝑖𝑖 = 𝑥𝑥𝑖𝑖,𝑚𝑚𝑊𝑊𝑚𝑚 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙2 �1 +
𝑝𝑝.ℎ𝑖𝑖2

𝑀𝑀0
� (1) 

where 𝑥𝑥𝑖𝑖,𝑚𝑚 is the allocation Proportion; 𝑊𝑊𝑚𝑚 is the maximum spectral bandwidth of MTNm; ℎ𝑖𝑖2 is the channel 
gain, and; 𝑀𝑀0 is the noise power. Assume that the user requests a total of 𝐶𝐶 types of access service slices 𝐶𝐶 =
[𝑆𝑆1,  𝑆𝑆2, . . . ,  𝑆𝑆𝐶𝐶]. The relationship between the access service slice ranking and its access probability[12]. To 
determine the access probability 𝐷𝐷𝑐𝑐 as Equation (2). 

𝐷𝐷𝑐𝑐 =
(𝑐𝑐 + 𝜔𝜔)−𝑣𝑣

∑ (𝑐𝑐 +𝜔𝜔)−𝑣𝑣𝐶𝐶
𝑖𝑖=1

,∀𝐶𝐶 (2) 

where ω is the flatness factor, and when ω = 0, it satisfies the general power-law distribution; υ  >  0 is the 
skewness factor, also known as the popularity index. The larger υ, the higher the probability of the slice being 
accessed. The higher the slice popularity, the more popular 𝑆𝑆1, and a small number of slice types have a higher 
request probability. 

2.4. Service rate 
Assuming that the user’s request for network access service satisfies the Poisson distribution, 𝑐𝑐 can be 

expressed as 

𝐻𝐻𝑚𝑚,𝑐𝑐 = 1 − 𝑒𝑒−∑ 𝜆𝜆𝑛𝑛,𝑐𝑐𝑇𝑇𝑚𝑚𝑛𝑛∈𝑁𝑁  (3) 

where λ is the average request rate, λ𝑛𝑛𝑐𝑐  = λ⋅𝐷𝐷𝑐𝑐 represents the user’s request rate for c, and 𝑀𝑀𝑚𝑚 represents the 
characteristic time of the MTN access service slice. According to the equivalent infinitesimal theorem, 
𝑒𝑒−𝑥𝑥~𝑥𝑥(𝑥𝑥 → 0), it can be approximated as 

𝐻𝐻𝑚𝑚,𝑐𝑐 = �𝜆𝜆𝑛𝑛,𝑐𝑐𝑀𝑀𝑚𝑚
𝑛𝑛∈𝑁𝑁

 (4) 
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3. Proposed method 
3.1. Resource allocation 

The multi-master and multi-slave model has used the spectrum resource allocation problem of multi-
tenancy network access service slicing. Furthermore, the essential elements include: 

1) Set of decision-making individuals: The multi-tenancy network, MTN =  [1, 2, . . ., 𝑀𝑀] lease the base 
station resources of the infrastructure provider. It has a first-hand advantage. Firstly, it determines the access 
service slice pricing and influences the decision-making of the subordinates. The subordinates include internal 
users [1, 2, . . . ,𝐾𝐾] and external users [1, 2, . . ., 𝐿𝐿]. The users consider the slice pricing of MTN and their 
throughput requirements and adjust the slice ordering strategy to maximize Self-benefit. 

2) MTN instantiates and resells slices of resources. Its strategy is to set the price of slices P = [P1, P2, …, 
Pm]. Strategy set: the user’s strategy is the service slice ratio 𝑥𝑥𝑖𝑖,𝑚𝑚, 𝑥𝑥𝑗𝑗,𝑚𝑚, ordered at each MTN, and its needs 
can be met by multiple MTNs. 

3) Income function: the user’s income function is represented by 𝑈𝑈𝑛𝑛, and the income function of MTNm 
is represented by 𝑈𝑈𝑚𝑚, where ∈ [1, 2, . . . ,𝐾𝐾, 1, 2, . . . , 𝐿𝐿], 𝑀𝑀 ∈ [1, 2, . . ., 𝑚𝑚]. 

Suppose there are two types of users in a multi-tenancy network, internal users and external users. This 
assumption is reasonable. For example, when accessing the school network through the access service slice, 
internal users, including students, faculty, and staff, can be directly accessed through the campus network, 
while external personnel needs to access indirectly through the virtual private network. The user’s revenue 𝑈𝑈𝑛𝑛 
consists of two parts: the income of accessing service slices, expressed as the logarithmic form of access 
throughput 𝑅𝑅𝑛𝑛[13], and the other part is the expenditure of purchasing service slices. For internal access users, 
𝑖𝑖 ∈ [1, 2, . . . ,  𝐾𝐾𝑖𝑖], Equation (5) represents 𝑅𝑅𝑖𝑖 revenue related to the access throughput. 

𝑈𝑈𝑖𝑖(𝑅𝑅𝑖𝑖) = 𝑙𝑙𝑙𝑙�1 + 𝑅𝑅𝑖𝑖 − 𝑏𝑏𝑖𝑖0� (5) 

where 𝑅𝑅𝑖𝑖 is the access throughput, 𝑏𝑏𝑖𝑖0 represents the basic throughput provided by MTN to user 𝑖𝑖. Then the 
final benefit is when the user gets access to the service slice as Equation (6). 

𝑈𝑈𝑖𝑖
𝑄𝑄𝑄𝑄𝑄𝑄 = 𝛿𝛿𝑖𝑖 � �𝜆𝜆𝐻𝐻𝑚𝑚,𝑐𝑐𝑈𝑈𝑖𝑖(𝑅𝑅𝑖𝑖)

𝐶𝐶

𝑐𝑐=1

𝑀𝑀

𝑚𝑚=1

 (6) 

where δ𝑖𝑖  is the profit coefficient, and λ  is the average request rate. The price of the slice should be in 
accordance with market regulations. That is, the slice price is proportional to the number of visits to MTNm. 
This relationship is represented by 𝑛𝑛𝑚𝑚

𝑁𝑁𝑚𝑚
, which is the number of users currently existing in MTNm divided by 

its maximum service capacity. The cost for users to purchase access service slices is shown in Equation (7), 
and the net income of internal access users. 

𝑈𝑈𝑖𝑖𝑐𝑐𝑄𝑄𝑐𝑐𝑐𝑐 = 𝜂𝜂𝑚𝑚 � 𝑥𝑥𝑖𝑖,𝑚𝑚
𝑙𝑙𝑚𝑚
𝑀𝑀𝑚𝑚

𝑃𝑃𝑚𝑚

𝑀𝑀

𝑚𝑚=1

 (7) 

𝑈𝑈𝑖𝑖 = 𝑈𝑈𝑖𝑖
𝑄𝑄𝑄𝑄𝑄𝑄 − 𝑈𝑈𝑖𝑖𝑐𝑐𝑄𝑄𝑐𝑐𝑐𝑐 (8) 

where η𝑚𝑚 is the cost coefficient, and 𝑛𝑛𝑚𝑚
𝑁𝑁𝑚𝑚

𝑃𝑃𝑚𝑚 indicates that it is affected by market laws. 

Equations (9) and (10) are the benefits of external access users related to access throughput and the cost 
of purchasing access service slices. The game modelling and solution of external access users and MTN are 
similar to internal access users. For external access users, j ∈ [1, 2, ..., L], the difference from internal access 
users is that it is cost, and the slice price is quadratic. That is, the external access users are charged higher, and 
the basic throughput 𝑏𝑏𝑖𝑖0 is not guaranteed. 
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Therefore, only internal user access is considered in the subsequent game-solving. 

𝑈𝑈𝑗𝑗�𝑅𝑅𝑗𝑗� = 𝑙𝑙𝑙𝑙�1 + 𝑅𝑅𝑗𝑗� (9) 

𝑈𝑈𝑗𝑗𝑐𝑐𝑄𝑄𝑐𝑐𝑐𝑐 = 𝜂𝜂𝑚𝑚 � 𝑥𝑥𝑗𝑗,𝑚𝑚 �
𝑙𝑙𝑚𝑚
𝑀𝑀𝑚𝑚

𝑃𝑃𝑚𝑚�
2𝑀𝑀

𝑚𝑚=1

 (10) 

where 𝑡𝑡 is the adjustment coefficient, which controls the change of the cost function of external user’s, the 
benefits of MTN include the benefits of access service slice cost 𝑃𝑃𝑚𝑚 and the cost of constructing slice instances 
𝐸𝐸𝑚𝑚. 

The revenue function of MTNm is shown in Equation (11). 

𝑈𝑈𝑚𝑚 = �(𝑃𝑃𝑚𝑚 − 𝐸𝐸𝑚𝑚)𝑥𝑥𝑖𝑖,𝑚𝑚𝜂𝜂𝑚𝑚

𝐾𝐾

𝑖𝑖=1

 (11) 

In the resource allocation system, users access the network by subscribing to access slices and obtaining 
the required services after paying the slice cost. At the same time, MTN obtains revenue by setting the resale 
price of resources and creating network slices. The resource allocation optimization problem for each MTN 
can be mapped to its profit maximization function, as. 

𝑚𝑚𝑚𝑚𝑥𝑥𝑈𝑈𝑚𝑚(𝑝𝑝, 𝑥𝑥) (12) 
where the slice cost is a non-negative value, by substitution Equations (6) and (7) into Equation (8), the user’s 
network revenue of internal access as the optimization objective function is also mapped to maximizing 
revenue for the two types of users as Equation (13). 

𝑈𝑈𝑖𝑖 = 𝛿𝛿𝑖𝑖 � �𝜆𝜆𝐻𝐻𝑚𝑚,𝑐𝑐ln [1 + 𝑥𝑥𝑖𝑖,𝑚𝑚𝑊𝑊𝑚𝑚 ∙ 𝑟𝑟𝑖𝑖,𝑚𝑚 − 𝑏𝑏𝑖𝑖0]
𝐶𝐶

𝑐𝑐=1

− 𝜂𝜂𝑚𝑚 � 𝑥𝑥𝑖𝑖,𝑚𝑚
𝑙𝑙𝑚𝑚
𝑀𝑀𝑚𝑚

𝑃𝑃𝑚𝑚

𝑀𝑀

𝑚𝑚=1

𝑀𝑀

𝑚𝑚=1

 (13) 

where 0  ≤  𝑥𝑥  ≤  1 is the value of the proportion of slices ordered by the user. Moreover, the MTN user decision 
making as follows:  

First, calculate the user profit function 𝑈𝑈𝑖𝑖 is a concave function in its strategy space 𝑥𝑥 as. 

𝜕𝜕𝑈𝑈𝑚𝑚
𝜕𝜕𝑥𝑥𝑖𝑖,𝑚𝑚

=
𝛿𝛿𝑖𝑖 ∑ 𝜆𝜆𝐻𝐻𝑚𝑚,𝑐𝑐𝑊𝑊𝑚𝑚 ∙ 𝑟𝑟𝑖𝑖,𝑚𝑚𝐶𝐶

𝑐𝑐=1

1 + 𝑥𝑥𝑖𝑖,𝑚𝑚𝑊𝑊𝑚𝑚 ∙ 𝑟𝑟𝑖𝑖,𝑚𝑚 − 𝑏𝑏𝑖𝑖0
− 𝜂𝜂𝑚𝑚

𝑙𝑙𝑚𝑚
𝑀𝑀𝑚𝑚

𝑃𝑃𝑚𝑚 (14) 

Then calculate the user’s profit function concerning the strategy space 𝑥𝑥𝑖𝑖,𝑚𝑚 as. 

𝜕𝜕2𝑈𝑈𝑗𝑗
𝜕𝜕2𝑘𝑘𝑖𝑖,𝑗𝑗

=
−𝛿𝛿𝑖𝑖 ∑ 𝜆𝜆𝐻𝐻𝑚𝑚,𝑐𝑐�𝑊𝑊𝑚𝑚 ∙ 𝑟𝑟𝑖𝑖,𝑚𝑚�

2𝐶𝐶
𝑐𝑐=1

�1 + 𝑥𝑥𝑖𝑖,𝑚𝑚𝑊𝑊𝑚𝑚 ∙ 𝑟𝑟𝑖𝑖,𝑚𝑚 − 𝑏𝑏𝑖𝑖0�
2  (15) 

The spectrum resources of the base station of the infrastructure provider are limited, and user’s also have 
budget constraints, so the optimal user’s throughput 𝑥𝑥∗ is expressed as Equation (16). 

𝑥𝑥∗ = 𝛿𝛿𝑖𝑖 � �𝜆𝜆𝐻𝐻𝑚𝑚,𝑐𝑐𝑈𝑈𝑖𝑖(𝐵𝐵𝑖𝑖)
𝐶𝐶

𝑐𝑐=1

− 𝜂𝜂𝑚𝑚 � 𝑥𝑥𝑖𝑖,𝑚𝑚
𝑙𝑙𝑚𝑚
𝑀𝑀𝑚𝑚

𝑃𝑃𝑚𝑚

𝑀𝑀

𝑚𝑚=1

𝑀𝑀

𝑚𝑚=1

 (16) 

where the denoted  𝐵𝐵𝑖𝑖 is the user’s maximum spectrum bandwidth budget. After obtaining the user’s optimal 
throughput requirement 𝑥𝑥∗, we use optimal access service slice pricing 𝑝𝑝∗ of MTN concerning 𝑃𝑃𝑚𝑚 as. 

𝜕𝜕𝑈𝑈𝑚𝑚
𝜕𝜕𝑃𝑃𝑚𝑚

= 𝑥𝑥∗𝜂𝜂𝑚𝑚 + 𝜂𝜂𝑚𝑚(𝑃𝑃𝑚𝑚 − 𝐸𝐸𝑚𝑚)𝜕𝜕𝑥𝑥∗/𝜕𝜕𝑃𝑃𝑚𝑚𝑐𝑐  (17) 

The optimal slice cost of MTN needs to be solved iteratively as. 
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𝑃𝑃𝑚𝑚𝑐𝑐+1 = 𝐸𝐸𝑚𝑚 −
𝜆𝜆𝑘𝑘𝜕𝜕𝑥𝑥

𝜕𝜕𝑥𝑥∗/𝜕𝜕𝑃𝑃𝑚𝑚𝑐𝑐
 (18) 

𝑃𝑃𝑚𝑚𝑐𝑐  is the slice pricing of MTNm at the 𝑡𝑡 iteration, and λ𝑘𝑘 is the iteration step length, which is inversely 
proportional to the total number of iterations. 

3.2. Chaos Particle Swarm Optimization algorithm 
This algorithm makes full use of the group search characteristics of the PSO algorithm and the intelligent 

search characteristics of the particles to strengthen the internal search of the algorithm. The local search 
strategy improves the intelligence of the particles and global searchability. Assuming that the controllable 
resource allocation 𝑖𝑖  is located at the point (𝑚𝑚,𝑙𝑙)  of the lattice point expansion map, 𝐴𝐴𝑚𝑚,𝑛𝑛 =
(𝑥𝑥𝐴𝐴1𝑐𝑐 , 𝑥𝑥𝐴𝐴2𝑐𝑐 , … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑐𝑐 ) represents the point (𝑚𝑚,𝑙𝑙). Where is the vector in the search space, which represents the 
output power of the controllable unit in a specific time, where 𝑖𝑖 = [1, 2, … ,𝑚𝑚];  𝑙𝑙 = [1, 2, … , 𝑗𝑗] , the 
controllable unit with 8 neighbours of i in the lattice point expansion graph can be expressed as Equation (19). 

Nm,n = �Am1,n1, Am1,n, Am1,n2, Am,n1, Am,n2, Am2,n1, Am2,n, Am2,n2� (19) 

The optimal vector of the eight neighbours of vector 𝐴𝐴𝑚𝑚,𝑛𝑛, as determined by Equation (20). 

𝐹𝐹�𝐴𝐴𝑚𝑚,𝑛𝑛� ≤ 𝐹𝐹�𝑉𝑉𝑚𝑚,𝑛𝑛� (20) 

Then the position of the controllable unit intelligent particles in the solution space will be retained. 
Otherwise, the position of the controllable unit intelligent particles will change according to the change of the 
service request, and the controllable unit in Equation (21) can be updated according to Li et al.[14]. 

𝑥𝑥𝐴𝐴𝐴𝐴𝑐𝑐+1 = 𝑥𝑥𝑁𝑁𝐴𝐴𝑐𝑐 + (2𝑟𝑟 − 1)(𝑥𝑥𝑁𝑁𝐴𝐴𝑐𝑐 − 𝑥𝑥𝐴𝐴𝐴𝐴𝑐𝑐 ) (21) 

where 𝑑𝑑 = [1,2, … ,𝐷𝐷,𝐷𝐷] represents the dimension of the problem to be solved; 𝑟𝑟 is a random number between 
[0, 1]. Each controllable unit in the algorithm updates its speed and position through the speed and position 
update formula of the PSO algorithm. It is assumed that the particles speed information can be expressed as 
𝑉𝑉𝑘𝑘𝑐𝑐  =  (𝑣𝑣𝑘𝑘1𝑐𝑐 ,𝑣𝑣𝑘𝑘2𝑐𝑐 , … , 𝑣𝑣𝑘𝑘𝐴𝐴𝑐𝑐 ), in the optimization process. each particle can record the optimal position 𝑃𝑃𝑔𝑔  =
 (𝑝𝑝𝑘𝑘1𝑐𝑐 ,𝑝𝑝𝑘𝑘2𝑐𝑐 , … ,𝑝𝑝𝑘𝑘𝐴𝐴𝑐𝑐 ), in the entire group. The optimal global position of the particles can be expressed as 𝑃𝑃𝑔𝑔  =
 [𝑝𝑝𝑔𝑔1,𝑝𝑝𝑔𝑔2, … , 𝑝𝑝𝑔𝑔𝐴𝐴] to update the speed and position information[13–16], as in Equation (22). 

𝑉𝑉𝑘𝑘𝐴𝐴𝑐𝑐+1 = 𝜔𝜔𝑉𝑉𝑘𝑘𝐴𝐴𝑐𝑐+1 + 𝑐𝑐1𝑟𝑟1(𝑃𝑃𝑘𝑘𝐴𝐴𝑐𝑐 − 𝑥𝑥𝑘𝑘𝐴𝐴𝑐𝑐 ) + 𝑐𝑐2𝑟𝑟2�𝑃𝑃𝑔𝑔𝐴𝐴 − 𝑥𝑥𝑘𝑘𝐴𝐴𝑐𝑐 � 
(22) 

𝑥𝑥𝑘𝑘𝐴𝐴𝑐𝑐+1 = 𝑥𝑥𝑘𝑘𝐴𝐴𝑐𝑐 + 𝑣𝑣𝑘𝑘𝐴𝐴𝑐𝑐+1 

Assuming that the corresponding vector 𝑃𝑃𝑔𝑔  =  �𝑥𝑥𝑝𝑝1𝑐𝑐 ,𝑥𝑥𝑝𝑝2𝑐𝑐 , … , 𝑥𝑥𝑝𝑝𝐴𝐴𝑐𝑐 � of the optimal controllable unit 
particles position as Equation (23). Where 𝑘𝑘 = [1, 2, … ,  𝑃𝑃𝑙𝑙𝑝𝑝𝑚𝑚𝑚𝑚𝑥𝑥,  𝑃𝑃𝑙𝑙𝑝𝑝𝑚𝑚𝑚𝑚𝑥𝑥]  represent the total number of 
particle swarms; 𝑟𝑟1  and 𝑟𝑟2  are random numbers between [0, 1]; 𝑐𝑐1and 𝑐𝑐2are learning factors; ω is inertia 
Weight. 

The chaotic local search algorithm improves the algorithm’s search performance and optimization 
accuracy. 

𝑦𝑦𝐴𝐴𝑐𝑐 =
𝑥𝑥𝑝𝑝𝐴𝐴𝑐𝑐 − 𝑥𝑥𝑚𝑚𝑖𝑖𝑛𝑛

𝑐𝑐

𝑥𝑥𝑚𝑚𝑚𝑚𝑥𝑥
𝑐𝑐 − 𝑥𝑥𝑚𝑚𝑖𝑖𝑛𝑛

𝑐𝑐  (23) 

where 𝑥𝑥𝑝𝑝𝐴𝐴𝑐𝑐  is the element in the vector 𝑃𝑃𝑔𝑔, 𝑥𝑥𝑚𝑚𝑖𝑖𝑛𝑛
𝑐𝑐 , 𝑥𝑥𝑚𝑚𝑚𝑚𝑥𝑥

𝑐𝑐  represents the minimum and maximum range of the 
solution space position of the optimal global particles. The elements in the vector are converted into chaotic 
variables between [0, 1], and the logistic equation 𝑦𝑦𝑛𝑛+1𝑐𝑐 , =  𝜇𝜇𝑦𝑦𝑛𝑛𝑐𝑐 , (1 − 𝑦𝑦𝑛𝑛𝑐𝑐) is used to obtain the value after n 
iterations. The chaotic sequence 𝑦𝑦𝑐𝑐 = (𝑦𝑦1𝑐𝑐 ,𝑦𝑦2𝑐𝑐 , … ,𝑦𝑦𝑛𝑛𝑐𝑐 , ) where 𝑙𝑙 = 1,2, … ,  𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥. According to the following 
calculation expression, the chaotic sequence is inversely mapped back to the original solution space as. 
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𝑥𝑥𝑝𝑝𝐴𝐴𝑐𝑐′ = 𝑥𝑥𝑚𝑚𝑖𝑖𝑛𝑛
𝑐𝑐 + �𝑥𝑥𝑚𝑚𝑖𝑖𝑛𝑛

𝑐𝑐 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑥𝑥
𝑐𝑐 �𝑦𝑦𝐴𝐴𝑐𝑐  (24) 

where 𝑥𝑥𝑝𝑝𝐴𝐴𝑐𝑐′  is a global solution sequence of chaotic variables. 

4. Experimental verification 
A multi-tenancy network environment and access service are constructed and analysed using MATLAB 

tools. The performance of the proposed resource allocation optimization strategy is simulated and analysed to 
validate the strategy. The proposed strategy is compared with other algorithms in terms of maximum and 
minimum fairness strategy[16]. The priority-based dynamic resource allocation strategy[17]. Furthermore, delay 
minimization resource allocation strategy[18] regarding resource utilization, network revenue, and energy 
consumption reduction rate. 

At the same time, the first maximum and minimum fairness algorithm meets the minimum needs of all 
users[14]. And then, the remaining resources are evenly distributed; the priority-based dynamic resource 
allocation algorithm considers the needs and priorities of users[19,20] and dynamically for resource allocation. 
The time delay minimization resource allocation algorithm takes the priority of the slice into account and 
minimizes the slice delay[16]. The network simulation environment includes 100 internal access users, the 
largest bandwidth spectrum resource in the network B = 500, and each MTN charges 𝑊𝑊𝑚𝑚 = 250, and other 
parameters are shown in Table 1. 

Table 1. Simulation parameters and values. 

Simulation parameter Value 

Spectral efficiency 𝑟𝑟𝑖𝑖,𝑚𝑚 70 

Popularity factor α 0.6 

Flatness factor β 1.0 

Average request arrival rate λ 0.8 

Slice feature time 𝑀𝑀𝑚𝑚 5 

Iteration step λ𝑘𝑘 0.01 

4.1. MTN-based resource scheduling verification 
Figure 2 shows the relationship between network slicing providers MTN1 and MTN2 slice pricing. The 

points on the two curves represent the current MTN best response pricing strategy to another MTN. It can be 
seen that the cost equilibrium point is at (2.09, 2.32) for both cases. At this point, MTN1 and MTN2 are not 
interested in changing their pricing strategies to reduce their revenue, which is the best pricing combination 
that maximizes the revenue of both parties. 

Figure 3 shows the relationship between MTN revenue and its slice popularity. It can be seen that the 
slice popularity is related to the popularity index, υ and the flatness factor ω. It can be seen from the figure 
that when υ is constant, the more oversised ω, the more popular the slice, the greater the access probability, 
and the higher the corresponding MTN revenue. When ω is constant, the minor ω is, the higher the access 
probability of famous slices is, and the higher the profit of the corresponding MTN is. When υ and ω are 
constant, the MTN revenue value gradually increases as the number of iterations increases. When the number 
of iterations is about 70, the MTN revenue converges to the maximum value, and the larger υ, the minor ω, 
the faster the convergence. 
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Figure 2. The slice pricing relationship between MTN1 and MTN2. 

 
Figure 3. The relationship between MTN revenue and the number of iterations. 

Figure 4 shows the relationship between the revenue of access service users and the number of iterations 
under different strategies. It can be seen from the figure that when the number of iterations is the same, the 
game-based resource allocation strategy proposed in this paper has the most significant revenue value for 
access service users. As the number of iterations increases, the revenue value of access service users gradually 
increases. The priority-based dynamic allocation strategy only considers maximum slicing service quality and 
fails effectively guarantee user benefits. In contrast, the time delay minimization resource allocation strategy 
considers the slicing service delay and sets the slicing preference, and the user benefits are relatively higher. 

The resource allocation strategy speeds up the convergence through the CPSO algorithm. When the 
number of iterations is about 70, the convergence speed is second only to the maximum and minimum fairness 
strategy. 
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Figure 4. The relationship between user revenue and the number of iterations. 

Figure 5 shows the network’s spectrum bandwidth utilization rate and the user access service slice request 
arrival rate under different strategies. The initial conditions for user access are the same, and the resource 
utilization rates of the four strategies are the same. It can be seen that the arrival rate of user slice requests 
increases and the utilization rate gradually increases. The proposed resource allocation strategy can converge 
to the maximum resource utilization rate. The priority-based dynamic resource allocation strategy dynamically 
allocates resources to the slice by maintaining the priority and demand of the slice. Compared with the time 
delay minimization resource allocation strategy, only the on-demand allocation strategy of computing and 
communication resources is considered, achieving greater resource utilization. Based on the game-based 
resource allocation strategy, the revenue value of access service users reached a convergence of about 70 
iterations. The maximum and minimum fairness algorithms converged the fastest, but the resource utilization 
was the lowest. 

 
Figure 5. The relationship between resource utilization and request arrival rate. 
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Figure 6 shows the relationship between the system’s network energy consumption reduction rate and 
the user request rate under different strategies. For comparison purposes, it is assumed that the user request 
patterns under different strategies are the same. They are all positioned on distributions to reflect the energy 
under different consumption situations. It can be seen from the figure that as the request arrival rate increases, 
the network energy consumption reduction rate continues to increase. The optimal resource allocation strategy 
proposed can achieve the highest network energy consumption reduction rate. The resource allocation strategy 
realizes a more reasonable allocation of spectrum resources in a multi-tenancy network through the CPSO 
algorithm between users and MTN. It can better respond to green communications to achieve a high network 
energy consumption reduction rate. Compared with the other three strategies, the cost of slice deployment is 
lower, and the utilization rate of resources is extremely high. 

 
Figure 6. The relationship between network energy consumption reduction rate and request arrival rate. 

5. Conclusion 
In this paper, proposed a multi-tenancy network resource allocation strategy based on a Hybrid Chaos 

Particle Swarm Optimization algorithm for smart Cloud Service Systems. The main objective of this strategy 
is to solve the problem of reasonable allocation of spectrum resources in the access service slice 
communication resources of MTN. To achieve this objective, we first modeled the relationship between MTN 
and users as a multi-master and multi-slave model, and introduced slicing popularity and service hit rate 
indicators to construct the profit function of both parties in the game. We then applied the reverse induction 
method to solve the user’s optimal throughput demand and used a distributed iterative algorithm to solve the 
optimal access service slice cost of MTN. The simulation results showed that the proposed strategy effectively 
improved resource utilization and user satisfaction while reducing energy consumption. The proposed strategy 
has significant implications for the deployment and implementation of 5G network slicing. To optimizing the 
allocation of network resources, it can achieve individualized service delivery without compromising service 
quality, ultimately benefiting both the infrastructure provider and end-users. In future work, to extend our 
approach to consider the resource allocation optimization plan of end-to-end network slicing and reinforcement 
learning to realize the active deployment. Overall, the Hybrid Chaos Particle Swarm Optimization algorithm 
has great potential for improving the efficiency and effectiveness of smart Cloud Service Systems in the 5G 
and other service networks. 
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