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ABSTRACT 

The dementia with the highest prevalence is Alzheimer’s Disease (AD), which can cause a nervous brain syndrome 

that impairs daily functioning as well as causes gradual remembrance loss by harming brain cells. This fatal condition is 

exceptional in its field. Early identification of AD is important due to the disease’s global prevalence and evolving threat. 

Early detection holds promise because it can help predict the health of many people who may be encountered in the future. 

Therefore, by evaluating the disease’s effects using Magnetic Resonance Imaging (MRI) scans, we may use Artificial 

Intelligence (AI) technology to categorize AD patients and determine whether or not they will eventually develop the 

fatal condition. In the area of deep learning methods and analysis, this paper presents essential knowledge and cutting-

edge deep learning techniques. The goals of the paper are to advance the knowledge and implementation of medical image 

processing methods for AD. The paper aims to advance the body of knowledge and promote the creation of efficient and 

standardised ways in the field by discussing the pertinent techniques and putting recognised recommendations into 

practise. 
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1. Introduction 

Alzheimer’s Disease (AD) is a degenerative nervous condition 

which results in brain shrinkage as well as the loss of brain cells. The 

most prevalent kind of dementia, which is characterised by a steady 

decline in mental, behavioural, and social abilities and impairs a 

person’s capacity for independent functioning, is Alzheimer’s 

disease[1]. The degenerative condition that is most well-known and 

advances slowly is AD. Age-specific prevalence rates and global 

interest in dementia-related research have grown over time. There were 

about 26.6 million AD individuals recorded in 2006[2]. By 2050, it has 

been expected that 0.1 billion individuals would be influenced by this. 

Depending on the stage of the ailment, Alzheimer’s disease (AD) has 

different signs and symptoms[3]. Memory loss and other Alzheimer’s 

symptoms might make it difficult for people to recognise their mental 

condition. Figure 1 shows the different signs of Alzheimer’s Disease. 
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Figure 1. Signs of Alzheimer’s disease. 

For family members, these symptoms could be more visible. Anyone showing signs of dementia should 

consult a doctor as soon as possible[4]. People affected by Mild Cognitive Impairment (MCI) include 

individuals those are having early-stage Alzheimer’s Disease. However, not all MCI influenced people will 

experience AD[5]. A stage between healthy and AD is Mild Cognitive Impairment in which a person 

experiences subtle deviations in their psychological abilities that are only noticeable to themselves as well as 

their immediate relatives[6,7]. MCI is a phase from normal to AD, if any person has indirect intellectual 

abnormalities that are visible to them and to their loved ones but who are capable to carry out daily tasks[8]. 

MCI affects about 15–20% of adults over the age of 65, and 30–40% of those people go on to acquire AD 

within five years. The conversion period might be between 6 and 36 months, however it is usually around or 

MCI non-convertors (MCInc), that the patient may or may not transformed within one and half years. In less 

than 18 months, MCI victims shall be classified into MCI converters (MCIc) to AD. The correct treatment of 

AD patients requires early detection before the onset of advanced symptoms, which is still a difficult medical 

task. Early AD diagnosis may be possible with progression detection, and treatment can be given to stop the 

disease’s progression. The existence of a person’s genome contains linked genes and family histories are the 

two biggest risk factors for AD. The Alzheimer’s association society reports that it has been the sixth most 

prevalent reason of death in the USA. According to a study, there may be 131.5 million dementia sufferers 

globally, the majority of them will be older than 65 and at a higher risk of developing the condition. The 

patient’s hippocampus section of the brain shrinks and wrinkles, affecting thinking, memory, and reasoning. 

This is the leading factor causing AD[9]. A thorough clinical evaluation based on the patient's health history, 

as well as specific neuropsychological examinations such as the Mini-Mental State Examination (MMSE), the 

neuropsychiatric inventory questionnaire, the clinical dementia rating, and other neurotic surveys, is required 

for early identification of this syndrome[9]. 

The diagnosis of AD is made after a thorough medical assessment of the patient and their family members. 

Only an autopsy can diagnose AD, which is not clinically beneficial. The study uses a subset of an AD 

individuals with an autopsy-confirmed diagnosis. Patients require supplementary conditions to authenticate 

AD in advance. Such condition could further help for our understanding of AD and enable its analysis in 

patients who are still alive. In recent years, numerous research and contests have presented various methods to 

address this issue utilising a mixture of markers and biomarkers, for example, using PET or MRI data as load 

to machine learning (ML) systems[10]. Along with these medical procedures, there are numerous alternate ways 

that identifies AD, including biomarkers, Cerebrospinal Fluid (CSF) analysis, brain imaging with MRI and 

PET scans, and blood protein analysis[11]. 

The disease progresses through seven phases, three of which are the pre-clinical stage of Alzheimer’s 

disease, mild cognitive impairment (MCI), and Alzheimer’s disease (AD). Patients at AD stage have noticeable 

symptoms, and it is challenging for them to go about their regular lives normally accepted manuscript[12]. 

Recently, an amount of approaches for detecting AD using Magnetic Resonance Imaging (MRI) has been 
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presented, and we categorised them into three groups. This objective suggests a focus on developing and 

improving techniques that utilize medical imaging data to aid in the diagnosis, progression monitoring, and 

understanding of AD. Medical image processing methods can provide valuable insights into the structural and 

functional changes in the brain associated with AD, allowing for more accurate and early detection of the 

disease. Figure 2 represents various AD diagnosis methods using 3D brain MRIs[13]. 

 
Figure 2. AD Diagnosis methods using 3D brain MRIs. 

1.1. Traditional methods 

Voxel-based Morphometry (VBM) is a well-known method. VBM compares tissue densities voxel-by-voxel. 

VBM segments in brain MRI provide data to a variety of tissues, consisting CSF, Grey Matter (GM), White 

Matter (WM)[14]. Additionally, there are additional techniques in this classification for AD disease diagnosis, 

like those depending on cortical thickness as a biomarker, measurement or deformation evaluation. On the 

volume of the MRI, the cortical thickness was assessed. 

A normalised viscosity index had been calculated with the help of the subgroup of sections that separated 

steady MCI from progressive MCI from the resultant cortical width map, which was distributed in the direction 

of 22 sections[15]. The structural MRI volume of a subject will be nonlinearly registered to a reference template. 

The registration’s deformation field’s scalar measurements are then calculated, and cross-volume statistical 

group operations are carried out. Scalar measures are analysed to look for effects. Asymmetric differomorphic 

registration was used to measure the space between each pair of matters, and then an embedding procedure 

and learning strategy for grouping were applied. 

1.2. Feature-based methods 

To find local features in the input photos, people frequently utilise the scale-invariant feature transform 

(sift) technique. Since they are linked to important structural points in the loaded picture, they are constant to 

changes to the translation, rotation, and image’s scale[16]. Hence, sift is widely employed as an article filter to 

diagnose AD[17]. The histogram of oriented gradient (hog) is another local thing that is frequently utilised to 

diagnose AD. A picture is divided into small, squares cells by hog, which then calculates a graph representing 

the leaning slope in each cell, normalises the outcome, and then proceeds a description as a result for every 

cell[18]. The physician typically looks at the brain nerves to learn additional regarding the location, size, and 

other properties of the brain’s modules in addition to the disease’s state. To enable doctors to visually diagnose 

brain-related illnesses, tissue segmentation is performed prior to categorization[19]. 

1.3. Machine learning methods 

An effective classifier for diagnosing the disease from extracted features is the Support Vector Machine 

(SVM). To detect Alzheimer’s disease (AD) from MRI scans, numerous DL-based methods are recently 

presented[20]. The doctor typically looks at the brain nerves to learn more regarding the location, size, and other 

properties of the brain’s modules in addition to the disease’s state. To enable doctors to visually diagnose 

brain-related illnesses, tissue segmentation is performed prior to classification. The typical approaches for 
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achieving such a goal typically involve four key steps[21]. Figure 3 shows the various steps available in machine 

learning. 

 
Figure 3. Steps in machine learning. 

Particularly in the initial stage of skull stripping or brain segmentation, pre-processing is essential for 3D 

brain MRI tissue segmentation. By eliminating the non-brain tissues from the MRI scans, the target brain areas 

may currently be perceived obviously. The division of the brain pictures into various tissues or areas, such as 

Cerebrospinal Fluid (CSF), Grey Matter (GM), White Matter (WM), or particular structures like the 

hippocampus, is known as segmentation[22]. Researchers can examine and predict the state or characteristics 

of the brain by locating and isolating these unique regions. 

Several strategies are utilised for feature extraction after the brain tissues have been segmented. Principal 

Component Analysis (PCA)[23] is a widely used method that minimises the dimension of the data by finding 

the primary components that best represent the differences between the segmented tissues. This aids in the 

removal of valuable characters that may be useful to additional analysis. Machine learning (ML) techniques 

can be used for classification after feature extraction. Support Vector Machine (SVM) is one popular ML 

algorithm[24]. A supervised learning model called SVM can evaluate and categorise extracted features 

according to their patterns and correlations. The organisation or classification of the brain tissues can be 

accomplished by training the SVM with labelled data. 

Brain segmentation or skull stripping is used in the 3D brain MRI tissue segmentation pre-processing 

stage to remove non-brain tissues. The next step is segmentation, which identifies certain brain regions or 

tissues. To extract useful traits from the segmented tissues, feature extraction methods like PCA and Gray-Level 

Invariant Feature Modules are applied. Finally, classification based on the collected features can be achieved 

using ML techniques like SVM. In terms of medical study and diagnosis, these activities aid in the general 

analysis and comprehension of the architecture and conditions of the brain[25]. 

Contemporary techniques are used to increase sensitivity and specificity in diagnosing cognitive loss 

caused by Alzheimer’s disease, newer cognitive tests have been created, such as the Alzheimer’s Disease 

Assessment Scale-Cognitive (ADAS-Cog). These modern evaluations seek to diagnose patients more precisely 

by capturing tiny changes in cognition. Traditional approaches for brain imaging include two most popular 

imaging methods for detecting structural abnormalities in the brain are Magnetic Resonance Imaging (MRI) 

and computed tomography (CT) scans[26]. They can aid in excluding other probable reasons for cognitive 

decline and assist spot patterns connected to more advanced Alzheimer’s disease, like brain atrophy. 

The use of radiotracers like F-FDG and C-PiB in Positron Emission Tomography (PET) scans can provide 

important information about the metabolism of the brain and the buildup of amyloid plaques, which are a 

hallmark of Alzheimer’s disease[27]. Additionally, more recent PET tracers, including flutemetamol and 

florbetapir, selectively target amyloid-beta, making it possible to detect amyloid plaques with greater accuracy. 

The cerebrospinal fluid that surrounds the brain and spinal cord is collected using a lumbar puncture. The 

quantities of amyloid-beta, tau proteins, and other indicators linked to Alzheimer’s disease can be determined 
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by analysing the CSF. The lumbar puncture method is invasive, so it might not be appropriate for regular 

diagnostic needs. 

2. Deep learning 

In a rather short period of time, clinical data, all DL presentations, associated artificial intelligence (AI) 

simulations and image analysis might possess greatest ability to have a positive, long-lasting impact on 

people’s lives[28]. Image generation, image analysis, image retrieval and image-based visualisation are all part 

of the system handling and study of clinical pictures. Vision mining, computer image, pattern appreciation, 

and machine learning had all become increasingly common in medical image processing[29]. 

Deep learning uses neural networks made up of several convolutional nodes of artificial neurons to learn 

patterns in data structures[30]. A sort of functional cell called an artificial neuron that functions similarly to a 

biological neuron in that it accepts multiple inputs, essentially performs a calculation, and outputs the outcome. 

Deep learning’s growth roots can be found in the work of Walter Pitts and Warren McCulloch (1943). Along 

with the development of AlexNet (2010), ImageNet (2008), the back propagation model (1961), the long short-

term memory (LSTM) (1978) and Convolutional Neural Network (CNN) framework (1996)[31]. 

In 2014, Google launched GoogleNet, a search engine that won the ILSVRC 2013 issue and had start-up 

modules, which significantly decreased CNN’s computing requirements. The concept of start-up modules was 

incorporated into GoogleNet, which was released in 2014 and won the ILSVRC 2014 challenge. This 

significantly reduced CNN’s processing complexity. The CNN architecture has multiple layers and changes 

the input volume into the output volume using a differentiable function (for example, holding the class 

scores)[32]. 

2.1. Deep learning architectures 

In the past 20 years, DL models have been developed, greatly expanding the types and quantities of issues 

that may be tackled by networks of neurons[33]. Deep learning is not a single technique but a group of 

computations and geographic patterns that can be used to solve a variety of problems. Structures with 

connections have been around for more than 70 years, but contemporary architectures and GPUs have moved 

them to the forefront of Artificial Intelligence (AI)[34]. Using DL is not an innovative concept, however, they 

are advancing exponentially due to of the combination of extensively Convolutional Neural Networks (CNN) 

with layers as well as usage of GPUs to speed up their carrying out. In this article, various deep learning model 

architectures are compared[35]. 

The hidden layer is the network’s secret weapons. They are capable of modelling intricate information 

due to their nodes and neurons. They are unknown since the training dataset doesn’t contain information about 

their nodes’ true values[36]. In actuality, all we can see are the input and output. Any neural network has at least 

one unknown level. Law does not mandate that the quantity of input images be divided by N. 

The appropriate hidden layer count could very well be lower than the input layer count[37]. Layers of 

coupled neurons make up a neural network. It has three hidden layers: an input layer for data intake, an output 

layer for prediction-making, and hidden layers for processing and feature extraction. The connections, weights, 

and activation factors that let information flow and non-linear transformations determine the network’s 

topology. The over-all structure of neural networks is represented in Figure 4. 
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Figure 4. Overall structure of neural network. 

2.1.1. Deep neural network (DNN) 

As a minimum two of the layers in this architecture support nonlinear complexity. Here, regression and 

classification are both possible. Because of its excellent accuracy, this model has a tendency to be employed. 

The disadvantage is the working out procedure would be challenging because the fault is sent to the preceding 

level and furthermore diminishes. Aside from that, the model’s learning act comes too late[38]. 

2.1.2. Convolutional neural network (CNN) 

Convolutional Neural Networks (CNN) are the subset of Deep Neural Networks (DNN) that take their 

cues from the brain’s visual cortex. They have been developed to utilise the spatial information by using input 

from pictures in 2D and 3D and getting structures by arranging numerous convolutional layers. The end 

outcome is an arrangement of ever additional intellectual structures. The most effective deep model for image 

analysis is them[39]. The fundamental principle of CNNs is the integration of feature extraction and 

classification, which is also a key advantage. According to their reasoning, training a classifier without first 

going through the feature derivation step can result in subpar learning performance, probably because the 

retrieved features and the classifier are heterogeneous[40]. 

For pictures, the operational data among adjacent voxels or pixels is moreover crucial[41]. Although most 

of the inputs to the deep frameworks that we are investigating are trajectory, vectorization necessarily removes 

structural information from images. Additionally, compared to DNNs, the number of factors is considerably 

lower with CNNs because of pooling layers and shared weights[42]. 

LeCun and colleagues first introduced CNNs in 1989. Regardless of the first victory, they were not 

generally used till lately, while a variety of new techniques for effectively training Deep Neural Networks 

(DNN) appeared, and computer schemes advanced. CNNs expected a great deal of focus following deep in the 

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) contests, CNNs excelled when intended for 

recognizing 1000 different classes of images in a data collection of around a million images[43]. 

2.1.3. Recurrent neural network (RNN) 

RNNs are capable to identify the sequences. The neuron weights are distributed across all measurements. 

There are numerous versions, including such LSTM, BLSTM (Bi-directional LSTM), MDLSTM (Multi-

dimensional LSTM), and HLSTM (Heterogeneous LSTM). This includes contemporary accuracy issues with 

Speech recognition, character recognition, and a few other problems with NLP (Natural Language 

Processing)[44]. The drawback of this strategy is that gradient vanishing causes more problems, and this design 

requires large datasets[45]. RNNs incorporate a temporal dependency known as “memory to model” when 
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solving problems in time series, such as those in video uses. This approach computes the outcome of the 

recently input sequentially by taking into account both the recent input data and all prior loaded data. Former 

data is purposely kept in unknown units known as state vectors[46]. 

RNNs may struggle to remember long-term input data because they neither as intense as DNNs nor CNNs 

according to the measure of levels[47]. It continues to want bigger datasets. Fortunately, the memory issue can 

be greatly reduced by replacing the straightforward perceptron hidden units with more intricate ones that serve 

as memory cells, like LSTM (Long Short-Term Memory) or GRU (Gated Recurrent Unit)[48]. Compared to 

conventional RNN, the LSTM has a more complex configuration with a memory cell unit and three gate units, 

but it is still capable of efficiently capturing important data in an order. GRU is a less complex LSTM variant 

with marginally improved performance[49]. 

2.1.4. Deep convolutional extreme learning machine (DC-ELM) 

DC-ELM, also known as Deep Convolutional Extreme Learning Machine, merges the ELM training’s 

speed with the power of CNN. To successfully obtain high level characteristics based on input images, it makes 

use of numerous alternative convolution layers and pooling layers[50]. An ELM classifier is then given the 

abstracted features, improving generalisation performance and speeding up learning. Additionally, DC-ELM 

adds randomised pooling to the final covert layer to drastically decrease feature dimensionality and conserve 

practise period and computational resources. We carefully assessed DC-performance ELMs on the MNIST 

and USPS data sets with handwritten digits. Investigational outcomes show that our approach performed 

improved in terms of analysis precision than DL methods and other ELM approaches while requiring 

significantly less training time[51]. 

In contrast to LRFELM, it uses a variety of different convolution stratums and pooling levels to produce 

additional theoretical as well as significant representation of features[52]. In contrast to CNN, the regionally 

relevant weights are created at random deprived of tweaking, and the resulting weights are determined 

critically. So as to lower the feature vector’s dimension and conserve computer memory and training 

complexity, the last hidden layer uses stochastic pooling[53]. 

2.1.5. Deep Boltzmann Machine (DBM) 

A deep generative model with three levels is known as a DBM (Deep Boltzmann Machine). A deep belief 

network-like layout of DBM, but with bottom layers that provide bidirectional connections[54]. Equation (1) 

illustrates its energetic extensional characteristics of the RBM’s function of energy. 

𝐸 = (∑𝑊𝑖𝑗𝑆𝑖𝑆𝑗
𝑖<𝑗

+∑𝜃𝑖𝑠𝑖
𝑖

) (1) 

DBM has N hidden layers. All hidden levels are connected in a single direction. Ambiguous outcomes 

are integrated through top-down input for more precise inference. For a large dataset, parameter optimization 

is challenging[55]. 

2.1.6. Deep Belief Network (DBN) 

Deep Belief Networks are nothing but a fundamentally generative visual representation which may 

construct all the possible attributes for the given situation. With neural networks and AI, it combines 

measurements and likelihood[56]. Deep belief networks are made up of a few layers containing values. The 

layers are related, but the qualities are not. The main objective is to help the machine classify the input into 

many categories. The disadvantage of this architecture is that the initialization step increases the cost of 

training[57]. 

2.1.7. Deep autoencoder (DAN) 

This could be useful for feature mining and bulk depletion in the unsupervised learning process. Here, a 
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measure of the inputs and outputs are equal[58]. The model’s benefit is that it doesn’t require tagged data. For 

robustness, many auto encoder types, including denoising, sparse, and conventional auto encoders, are required. 

Here, it must provide a previously training step, but the preparation may not be effective[59]. 

2.1.8. Deep Stacking Networks (DSN) 

The fundamental architecture is a Deep Stacking Network (DSN), often known as a Deep Convex 

Network. Despite having a deep network, a Deep Stacking Network (DSN) is distinct than traditional Deep 

Learning (DL) methods due to it was actually a complex gathering of different linkages, every by using their 

own secret levels[60]. 

This architecture approach addresses one of the problems with deep learning[61]. Every layer in a DL 

design greatly increases the complexity of preparation, hence the DSN views preparation as a series of distinct 

preparation challenges rather than as a single problem[62]. 

2.1.9. Long short-term memory/gated recurrent unit networks (LSTM/GRU) 

Hoch Reiter and Schimdhuber created the unit network of gated recurrent in 1997. Nonetheless, it has 

rapidly increased acceptance as a Recurrent Neural Network (RNN) model for a diverse application. The Long 

Short-Term Memory abandoned conventional neural association models based on neurons in favour of 

including the potential of a memory cell[63]. 

For some applications, the GRU executes similarly to the LSTM, but because it uses simpler approaches, 

it executes more quickly and with less loads[64–66]. An updated doorway and new entryway are joined by the 

GRU. The updated entrance displays the amount of previous cell substance that needs to be maintained[67]. 

Simply setting the update doorway to 0 and the reset entryway to 1, a GRU can display a regular Recurrent 

Neural Network (RNN)[68]. 

2.2. Development methodologies 

It has been easy for creating these Deep Learning (DL) structures, but then doing so from scratch and 

allowing them to refine and mature would take some time[69]. Fortunately, deep learning algorithms may be 

implemented more quickly using a variety of open-source platforms. These frameworks support the Python, 

C/C++, Java and other programming languages[70]. 

Deeplearning4j—A popular deep learning system called Deeplearning4j emphasises Java programming 

yet also has relevance encoding boundaries for Python, Scala, and Clojure. The stage, which is provided based 

on the Apache licence, provides assistance for RNN, RBMs, CNNs, and DBNs[71]. 

Additionally, Deeplearning4j offers distributed the same variations (massively preparing frameworks for 

information) that function with Apache Hadoop and Spark. The financial sector fraud detection, 

recommendation systems, cyber security, and picture recognition (finding network intrusions) are only a few 

of the problems it has been used for. The solution combines CUDA for GPU optimization and might be spread 

using Hadoop and OpenMP[72–74]. 

Distributed Deep Learning—The Deep learning’s jet engine is Tensor Flow, and IBM Distributed Deep 

Learning (DDL) is a collection which that communicates by it. DDL can be used to speed up deep learning 

calculations over a large number of workers and GPUs[75]. 

3. Related works 

AD recognition has been extensively explored and is fraught with problems. Payan et al.[76] utilized 3D 

convolutional neural networks in addition to a sparse auto encoder. They created an algorithm that is used to 

determine a person’s illness state by using Magnetic Resonance Imaging (MRI) of the cerebrum. The usage of 

Three-Dimensional convolutions, that performed superior than 2D convolutions, was the main innovation[77]. 
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The convolutional layer had not remained fine-tuned, but it had previous training using an auto-encoder. With 

fine-tuning, performance is anticipated to increase. 

In the study by Sarraf et al.[78], the researchers used brain pictures to identify between people with 

Alzheimer’s disease (AD) and healthy control participants using the LeNet-5 architecture, a well-known 

convolutional neural network (CNN) model. The goal was to conduct a binary classification test using a CNN 

that has been trained to distinguish between AD patients and healthy people. It was demonstrated that an 

equivalent performance was possible by Korolev et al.[79] When the simple 3D CNN designs and residual 

network were used on 3D operational MRI brain scans, the outputs revealed but the complexity and viscosity 

of the two networks were extremely high. They did not perform as well as they should have. 

Khagi et al.[80] proposed a narrow adjustment of a previously accomplished structure like Alex net, Google 

Net, and ResNet50. The primary goal is to obtain the effect of each layer part on the classification of natural 

and medical images. Wang et al.[81] published a unique CNN model depending on a multimodal MRI 

systematic technique by utilizing DTI or fMRI (functional Magnetic Resonance Imaging) data. Patients with 

AD, NC, and amnestic mild cognitive impairment (aMCI) were categorised by the framework. Although it had 

a high degree of grouping accurateness, it was predicted that 3D convolution would perform better than 2D 

convolution. 

The goal of Liu et al.’s study[82] was to develop a method for using voice data to identify Alzheimer’s 

disease (AD). They deliberately collected voice data from elderly people and used the spectrogram—A visual 

representation of the frequencies and intensities contained in the voice signal—To extract pertinent parameters. 

Machine learning techniques were used to analyse the gathered data and categorise the individuals. In order to 

create predictions or categorise data, machine learning algorithms are able to extract patterns and relationships 

from the data. The researchers in this study probably trained a machine learning model on the extracted 

spectrogram data to discover the patterns connected to AD. 

Impedovo et al.[83] included a methodology that sought to develop a “cognitive model” by analysing the 

connection between cognitive functions and handwriting. Both healthy volunteers and those with cognitive 

impairment, including those suffering from neurodegenerative dementia, participated in the study (Table 1). 

Table 1. An overview of earlier studies on identifying and classifying Alzheimer’s disease. 

Literature 

author 

Year of 

publication 

Technology used Training 

model 

Dataset Image classes Accuracy 

rate 

Francisco J. 

Martinez-Murcia 

2020 Deep learning Deep 

convolutional 

autoencoders 

(CAE) 

2182 T1-

weighted MRI 

images from 479 

subjects from the 

Alzheimer’s 

disease 

neuroimaging 

initiative (ADNI) 

Standard TPM 

template using 

the SPM12 

software 

84% 

Wei Feng 2020 Deep learning 3D-CNN-

support vector 

machine 

(SVM) 

3127 MRI 

samples contains 

3T T1-weighted 

images 

Grey matter 

(GM), white 

matter (WM) 

and Cerebro 

spinal fluid 

(CSF) 

95.74% 

M. Raza 2019 Deep learning AlexNet 1259 MRI scans 

of AD patients 

from (ADNI 1 

1.5T) and 

OASIS 

Longitudinal 

and cross-

sectional 

images 

95% 
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Table 1. (Continued). 

Literature 

author 

Year of 

publication 

Technology used Training 

model 

Dataset Image classes Accuracy 

rate 

Garam Lee 2019 Deep learning Gated recurrent 

unit(GRU) 

1618 MRI scans 

of AD patients 

from 

Alzheimer’s 

disease 

neuroimaging 

initiative 

baseline, single 

modal image 

classes 

81% 

Huanhuan J 2019 Convolutinal neural 

network (CNN) 

ConvNets 615 MRI scans 

of AD patients 

from ADNI 

AD, MCI, NC 

in NifTI format 

97.65% 

Jyoti Islam 2017 Deep convolutinal 

neural network 

(CNN) 

Inception-v4 

model pre-

trained with 

imagenet 

database 

516 subjects and 

for each of them, 

3 or 4 T1-

weighted MRI 

scans taken from 

OASIS 

Sagittal view 

and top view of 

MRI scan 

images 

73.75% 

Saman Sarraf 2016 Convolutinal neural 

network (CNN) 

LeNet-5 fMRI scans of 43 

AD patients from 

Alzheimer’s 

disease 

neuroimaging 

initiative (ADNI) 

fMRI 4D data 

in NifTI format 

96.85% 

4. Brain imaging methods for Alzheimer’s disease (AD) 

Techniques for non-invasively observing the architecture, function, or pharmacology of the brain. The 

two primary categories of imaging methods are structural imaging and functional imaging. Structural imaging 

provides details about the structure of the brain, including its neurons, synapses, glial cells, etc. Functional 

imaging is used to learn more about how the brain works[84]. The brain visioning techniques for Alzheimer’s 

disease (AD) are shown in Figure 5. 

 
Figure 5. Brain imaging techniques for AD. 

4.1. Magnetic resonance image (MRI) 

These visualizing method uses radio frequencies and magnetic fields for creating high-quality, high-

tenacity 2D/3D descriptions of the brain’s structural components. MCI-related brain abnormalities can be seen 

with MRI, which can also be used to identify MCI patients who may eventually acquire Alzheimer’s disease[85]. 

No radioactive tracers or hazardous X-ray radiation is produced. The structural MRI, that analyses brain 

capacities internally to sense brain deterioration, is the type of MRI most frequently utilised for AD cases (loss 

of neurons, cells, tissue, etc.). Alzheimer’s disease (AD) is accompanied by gradual brain deterioration. Figure 

6 shows a sample of Structural Magnetic Resonance Imaging (sMRI)[86]. 
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Figure 6. Sample of structural magnetic resonance imaging (sMRI). 

The primary visual cortex of humans is measured using the Functional magnetic resonance imaging 

(fMRI), which are also used for determining the topography of the brain. fMRI offers valuable information 

and statistics on the activity of the human brain, or functioning of the brain[80]. fMRI methods, like brain 

visioning depending on major Blood Oxygenation Level Dependent (BOLD) differences and Arterial spin-

labelling (ASL), are complex to cerebral metabolic ratio of oxygen ingestion and brainy blood flow[87]. Figure 

7 shows an example of Functional Magnetic Resonance Imaging (fMRI). 

 
Figure 7. Illustration of functional magnetic resonance imaging (fMRI). 

Single-Photon Emission Computed Tomography (SPECT) is extra affordable unlike other methods, but 

this is more delicate when used to check for changes in cerebral blood flow for the first time[88]. However, 

when it comes to analysing cerebral functions, this method continues to be one of the most widely employed 

methods. Numerous experiments have demonstrated that SPECT can accurately assess patients’ cerebral 

perfusion while performing AD examinations[89]. 

4.2. Positron emission tomography (PET) 

In this technique, radiotracers are used to analyse the brain’s activity as radiation emitting spheres. Figure 

8 displays the application of amyloid and fluorodeoxyglucose, the most commonly used trackers, for AD 

detection[90]. 

 
Figure 8. PET scan of a brain in systematic situation. 

This study suggests that the temporal lobes of the AD affected individuals have shrunk. Patients with 

MCI experienced the same decrease, which finally led to AD[91]. Further classifications were made for the AD 
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and neurodegenerative dementia patients. Because the subjects with AD demonstrated developments in 

comparison to the issues with frontotemporal lobar degeneration (FTLD) and Parkinson’s disease Pittsburgh 

substance C-PIB, which is an A-beta amyloid-specific ligand, was used (PD). 

Most AD participants had a temporoparietal hypo perfusion impression on the PET scan. The usage of 

and FP-CIT SPECT are further beneficial and suitable since they allow scholars to view disparities in the 

nigrostriatal dopaminergic nerves[92]. False-positive results, which have no significance for MRI, make SPECT 

inconvenient for clinical purposes. An imaging technique used in water diffusion studies is called FP-CIT 

SPECT. The location, orientation, and symmetry of the brain’s White Matter (WM) can be determined using 

this technique. With this strategy, the differences in the micro-structural structure of water particles are the 

main subject. Although a lot of study has been done to determine amyloid levels and CSF-tau biomarkers, 

diffusion tensor imaging (DTI) has excluded as a credible approach for examining CSF biomarkers due to the 

absence of a consensus[87]. 

4.3. MRI biomarkers of AD 

The clinical signals (i.e., the outward appearances of patients’ health conditions) which may be carefully 

assessed are known as biomarkers. There are numerous definitions for biomarkers[93]. For instance, the 

International Program on Chemical Safety (IPCS) describes a biomarker as a body part, a structure, or a process 

that may be quantified and used to infer the presence of a problem. Figure 9 shows an example of MRI 

Biomarkers of AD. 

 
Figure 9. MRI biomarkers of AD. 

AD biomarkers have the following properties: 

⚫ Ability to recognise the fundamental neuropathology of AD 

⚫ Possible to certify AD cases with neuropathological confirmation 

⚫ Effective, able to recognise the initial phases of AD, and able to differentiate AD from other types of 

dementias 

⚫ Dependable, non-intrusive, simple to use, and inexpensive[94–96]. 

Due to their huge potential in the identification of AD, MRI biomarkers are taken into consideration. 

Atrophic changes that impact the entorhinal cortex and the hippocampus at the beginning of MCI, that might 

progress to the temporal and parietal lobes in AD, and which may affect the frontal lobes at the end stages of 

AD, can be seen in structural pictures from MRI. Using functional MRI and DTI, it is possible to identify AD 

and neurons that are still functionally intact[97]. These two techniques can establish structural and functional 

connection, and they give biomarkers for AD additional power and resources. However, they still need 

regulation and authorization to confirm their medical value. These facts suggest that structural MRI, 

particularly when the hippocampal bulk is involved, is the most effective and often utilized MRI biomarker 

for AD[98]. 
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5. Results and discussion 

Identifying MCI patients at an early stage and foreseeing the changeover from MCI to AD are more 

important for AD diagnosis. Traditional machine learning is less effective than deep learning[99,100]. The 

effectiveness of the AD detection technology is highly hooked on the neuroimaging’s quality[101–103]. The 

human visual system serves as the basis for convolutional neural networks (CNN)[104]. A small amount of 

neurons in the visual system are sensitive to a certain field, meaning that some of these neurons in the brain 

only responded when edges with a specific orientation were present[105]. Such CNN explains how the surgery 

is done[103]. Convolution layer functions by employing multiplication of elements with a mesh along the whole 

picture to take features maps by design from the loaded images as an input[106]. With the aim of avoiding over-fitting, 

or when the network memorises the data instead of generalising, the pooling layer is typically used. Neurons 

are triggered via Rectified Linear Unit (ReLU) activation, which is also utilized to control the output of neural 

networks[107,108]. Combining several of these ConvReLU-Pool processes yields the ultimate only or several 

completely interlinked layers, which are feature maps[109]. 

6. Conclusion 

The task of early AD detection has always been difficult, and relevant computer experts are continually 

investigating. This work primarily introduces the AD-linked biomarkers, the article abstraction approach, the 

pre-processing methodology, and the use of complexity models in AD detection. When it comes to 

classification techniques, CNN is often utilised and performs improved than other deep models in this area. 

The over fitting issue with the data set still has to be resolved, though. Unsupervised and self-monitoring 

methodologies are developing study arenas in medicinal imagery as a result of the dearth of medical data. 

Initiating an effective treatment for Alzheimer’s disease (AD) requires a thorough and precise diagnosis. Early 

AD diagnosis in particular is crucial for the development of successful treatments and, ultimately, for the care 

of patients. In this analysis, we conducted a thorough detection of DL methods based on data of brain images 

for the detection of Alzheimer’s disease (AD). We examined 13 publications from 2016 to 2022 and 

categorised them using deep learning algorithms and several forms of neuroimaging. Additionally, it was 

discovered that Rectified Linear Unit has the best performance. For the grouping of AD, deep learning 

techniques have produced efficiency levels of up to 98.57%. 
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