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ABSTRACT 

In this paper, the innovative approach to sound classification by exploiting the potential of image processing 

techniques applied to spectrogram representations of audio signals is reviewed. This study shows the effectiveness of 

incorporating well-established image processing methodologies, such as filtering, segmentation, and pattern recognition, 

to enhance the feature extraction and classification performance of audio signals when transformed into spectrograms. 

An overview is provided of the mathematical methods shared by both image and spectrogram-based audio processing, 

focusing on the commonalities between the two domains in terms of the underlying principles, techniques, and algorithms. 

The proposed methodology leverages in particular the power of convolutional neural networks (CNNs) to extract and 

classify time-frequency features from spectrograms, capitalizing on the advantages of their hierarchical feature learning 

and robustness to translation and scale variations. Other deep-learning networks and advanced techniques are suggested 

during the analysis. We discuss the benefits and limitations of transforming audio signals into spectrograms, including 

human interpretability, compatibility with image processing techniques, and flexibility in time-frequency resolution. By 

bridging the gap between image processing and audio processing, spectrogram-based audio deep learning gives a deeper 

perspective on sound classification, offering fundamental insights that serve as a foundation for interdisciplinary research 

and applications in both domains. 

Keywords: audio processing; time-frequency representation; feature extraction; convolutional neural networks; 

segmentation; pattern recognition; filtering; spectrogram analysis; interdisciplinary research 

1. Introduction 

Convolutional neural networks (CNNs)[1–3] often achieve better 

performance on spectrograms compared to other deep learning 

methods applied directly to raw audio data. In fact, CNN-based deep 

learning can benefit from a large corpus of research, to set up and fine-

tune the network for the scope of image analysis, which does not 

happen for every other deep neural network technique. Moreover, we 

can both exploit traditional machine-learning algorithms on numerical 

data extracted from spectrograms both CNN-based learning using 

advanced techniques, e.g., transfer learning. Transfer learning is a 

method for reusing a pre-trained neural network model for a new task 

by transferring knowledge from the original task to the new one. This 

is especially helpful when working with small datasets because it 

enables the model to draw on knowledge learned from larger datasets. 

Transfer learning can be used in the setting of CNN-based deep 

learning of spectrograms by using a pre-trained CNN model as a 
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feature extractor[4]. The pre-trained CNN, using the information of a huge number of sample images for training, 

will have the capability to well recognize basic low-level features of images. This model is used to extract 

relevant features from the spectrograms, which are then fed into a newly trained classifier to accomplish the 

desired task[5]. Using this method, we can significantly reduce the amount of training data needed while 

improving model performance. There are several stages involved in applying transfer learning to CNN-based 

deep learning of spectrograms. To begin, a pre-trained CNN model is chosen (e.g., ImageNet[6], Inception 

Resnet[7], GoogleNet[8]), and its convolutional layers are frozen, which means that their weights are not changed 

during training. The original CNN model’s completely connected layers are then removed and replaced with 

new fully connected layers tailored to the new task. Intermediate layers before the last one can be also added 

for specific reasons. Backpropagation is then used to train the new completely connected layers on the new 

task while the weights of the frozen convolutional layers remain constant. 

Overall, transfer learning can be a potent tool for improving the performance of CNN-based deep learning 

models when applied to small datasets (e.g., spectrograms for a particular task or event) which, as images, will 

share similar low-level features to those used to train the pre-trained model. In this way, image-based deep 

learning can reach with relative ease good performance. Apart from the benefits provided by pre-trained 

models, other advantages of transforming audio signals into spectrograms include the interpretability of the 

data by humans, and the possibility to build hybrid models combining the output from deep neural networks 

and traditional machine learning applied on numerical data extracted from the spectrogram. In the following 

subsections, some of these benefits are provided with explanations. 

1.1. Localized feature detection 

Convolutional neural networks are designed to exploit the local structure and spatial relationships in data, 

making them well-suited for analyzing spectrograms, which are essentially two-dimensional visual 

representations of audio signals. In a spectrogram, local patterns correspond to specific audio events or 

properties, such as harmonic structures, transients, or spectral shapes. CNNs can effectively learn these 

localized features through convolutional layers, pooling layers, and hierarchical feature extraction, even better 

if transfer learning is used with models pre-trained on large image datasets. 

1.2. Reduced data complexity 

Converting raw audio data into spectrograms reduces the complexity of the data by representing it in a 

more compact and structured format. Spectrograms emphasize the time-frequency characteristics of audio 

signals, making it easier for CNNs to identify and learn relevant features. This transformation also helps 

mitigate the challenges posed by the high dimensionality and variability of raw audio data, which can make 

learning difficult for other deep learning methods. 

1.3. Invariance to translation and scale 

CNNs are inherently robust to translation and scale variations in the input data due to the shared weights 

and pooling operations in the convolutional layers[9]. This property is advantageous when working with 

spectrograms, as it allows the model to recognize patterns and features regardless of their position or scale in 

the time-frequency representation. 

1.4. Transfer learning 

As introduced, many pre-trained CNN models are available for image classification tasks, and these 

models can be fine-tuned for spectrogram-based audio classification tasks by leveraging transfer learning. This 

approach can lead to significant improvements in performance and reduce training time compared to training 

a model from scratch. 
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1.5. Compatibility with image processing techniques 

By representing audio signals as spectrograms, we can leverage a wide range of image processing 

techniques for tasks such as noise reduction, filtering, segmentation, and feature extraction[4]. These techniques 

can help enhance the quality of the spectrograms and improve the performance of the subsequent pattern 

recognition or classification tasks. 

1.6. Flexibility in time-frequency resolution 

Spectrograms offer flexibility in adjusting the time-frequency resolution, which can be tailored to specific 

applications or requirements. For example, short-time Fourier transform (STFT) spectrograms[10] provide a 

balance between time and frequency resolution, while Constant-Q transform (CQT) spectrograms[11] offer 

better frequency resolution at lower frequencies and better time resolution at higher frequencies. This 

flexibility allows for better analysis and representation of the audio signals depending on the task at hand, 

choosing each time the more suitable spectrogram representation. 

1.7. Human interpretability 

Spectrograms provide a visually intuitive representation of audio signals, making it easier to identify and 

understand patterns, structures, and features in the data[12]. This interpretability can be useful for debugging, 

feature engineering, and model evaluation. For instance, a practical method to use audio for classification is to 

extract it from videos which meaning in terms of class labeling is clearly given by the video images. Using 

long sequences of video and audio frames could lead to including in our data some noise or outlier audio 

overlapping from other sources, as well as parts where audio is absent: identifying such frames would need a 

significant human effort, listening every single audio section and editing the audio files. Transforming the 

audio sections in images with a proper spectrogram model allows to quickly identify by sight silence, white 

noise, and other outliers that should be discarded from the data set. In some cases, also the different classes 

can be identified by sight, and a human analysis of eventual classification errors can be exploited for a deeper 

comprehension of the mistakes induced by each step of the implementation of a classification algorithm. 

2. Processing techniques shared between image and audio data analysis 

Besides the use of spectrograms, image and audio processing share some processing techniques. 

In this section, a comprehensive description is given of the main parallels between image and audio 

processing techniques, with a focus on spectrograms. In the following section 3, each of these techniques will 

be seen in more depth with a parallel between the analysis of images and audio data as spectrograms. 

2.1. Feature extraction 

In both image and audio processing, extracting meaningful features is crucial. For images, this might 

include edge detection, texture analysis, or shape descriptors[4]. For spectrograms, features such as spectral 

peaks, energy distribution, and local patterns can be extracted. In both cases, mathematical techniques like 

Fourier analysis[10], wavelets[13], and Gabor filters[14] can be employed. In fact, both image processing and audio 

processing involve extracting meaningful features from data, and some mathematical techniques are applicable 

to both domains. For instance, Fourier analysis can be used to analyze the frequency content of images or 

spectrograms, while wavelets and Gabor filters can be employed for texture analysis in images or to analyze 

the time-frequency content of spectrograms. 

2.2. Dimensionality reduction 

Both image and audio processing often involve reducing the dimensionality of the data for more efficient 

processing and analysis. Techniques such as principal component analysis (PCA)[15], independent component 
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analysis (ICA)[16], and non-negative matrix factorization (NMF)[17] can be applied to both image data and 

spectrogram data. 

2.3. Noise reduction and filtering 

Images and spectrograms both suffer from the presence of noise, which can interfere with the analysis 

and understanding of the data. Common mathematical techniques like gaussian filters[18], median filters[19], and 

adaptive filters[20] can be applied to both types of data to reduce noise and enhance signal quality. 

2.4. Segmentation 

In image processing, segmentation refers to the partitioning of an image into meaningful regions or 

objects. Similarly, in audio processing, segmentation can involve dividing a spectrogram into time-frequency 

regions representing distinct audio events or sources. Techniques like thresholding[21], region growing[22], and 

graph-based[23] methods can be applied to both image and spectrogram segmentation tasks. 

2.5. Pattern recognition and machine learning 

Both image and audio processing often involve the use of machine learning algorithms besides CNNs, 

e.g., to learn and recognize patterns in the data. As introduced, CNNs have been proven effective in tasks like 

image classification, object detection, and semantic segmentation, as well as in spectrogram-based audio 

classification and source separation. 

3. Application of processing techniques to image processing and audio 

processing through spectrograms 

In this section, we are going to examine each processing technique presented in the previous section 2 in 

greater detail, with a comparison to the analysis of images and audio data as spectrograms. The particularities 

of general image analysis and spectrogram analysis are described, providing some example techniques to apply 

to each different case, and highlighting commonalities or differences in each processing technique. 

3.1. Feature extraction 

Feature extraction in image processing: Feature extraction involves identifying and describing 

significant attributes in an image that can be used for further processing, such as classification, segmentation, 

or object recognition. Some common feature extraction methods used in image processing include: 

a. Edge detection: Identifying sharp changes in intensity or color that correspond to object boundaries. 

Techniques include Sobel, Canny, Prewitt, and Laplacian of Gaussian (LoG) filters. 

b. Texture analysis: Describing the spatial distribution of intensity or color values, which can help 

differentiate between different materials or surface properties. Methods include Gray-Level Co-occurrence 

Matrix (GLCM), Local Binary Patterns (LBP), and Gabor filters. 

c. Shape descriptors: Quantifying the geometric properties of objects or regions in an image, such as the 

size, perimeter, or compactness. Examples include Hu moments, Zernike moments, and Fourier shape 

descriptors. 

Feature extraction in audio processing with spectrograms: In the context of audio processing, feature 

extraction involves extracting meaningful attributes from the time-frequency representation of audio signals 

(i.e., spectrograms). Some common feature extraction methods used with spectrograms include: 

a. Spectral features: Quantifying the distribution of energy across different frequency bands. Examples 

include spectral centroid, spectral bandwidth, spectral rolloff, and spectral contrast. 

b. Temporal features: Capturing the variation of audio properties overtime, such as energy, zero-crossing 

rate, or spectral flux. 
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c. Harmonic/percussive features: Separating harmonic (tonal) and percussive (rhythmic) components in 

the spectrogram. Techniques include median filtering and non-negative matrix factorization (NMF). 

d. Mel-frequency cepstral coefficients (MFCCs): Describing the shape of the power spectrum of a sound 

signal using a compact set of coefficients, often used in speech and music processing. 

e. Chroma features: Representing the distribution of energy across different musical pitches or chroma 

values, useful for tasks such as chord recognition or music genre classification. 

3.2. Dimensionality reduction 

Dimensionality reduction applies a process of reducing the number of variables or features while retaining 

most of the original data’s structure and information. This is important for reducing computational complexity, 

removing noise, and improving the performance of machine learning algorithms. 

Dimensionality reduction techniques can be used to project the data into a lower-dimensional space that 

captures the most significant patterns or structures. In both image processing and audio processing, 

dimensionality reduction can be used for visualization, feature extraction, or pattern recognition tasks by 

revealing relationships and structures in the data. 

Some common dimensionality reduction techniques applicable to both image data and spectrogram data 

include the following. 

a. Principal component analysis (PCA): PCA is a linear dimensionality reduction technique that 

transforms the original data into a new coordinate system such that the greatest variance lies on the first 

coordinate (called the first principal component), the second greatest variance on the second coordinate, and 

so on. 

In image processing, PCA can be used for tasks such as face recognition, where it’s known as Eigenfaces. 

In audio processing, PCA can be applied to spectrograms to capture the most significant time-frequency 

patterns and reduce data dimensionality for efficient processing. 

b. Independent component analysis (ICA): ICA is another linear dimensionality reduction method that 

aims to find statistically independent components in the data. Unlike PCA, which focuses on the variance, ICA 

considers higher-order statistics to find independent sources in the data. 

In image processing, ICA can be used for tasks like blind source separation or feature extraction. 

In audio processing, ICA can be applied to spectrograms for tasks such as audio source separation or 

denoising, by finding independent audio sources within the spectrogram data. 

c. Non-negative matrix factorization (NMF): NMF is a dimensionality reduction technique that 

decomposes a non-negative data matrix into the product of two lower-dimensional non-negative matrices. This 

results in a parts-based, sparse representation of the original data. 

In image processing, NMF can be used for tasks like object recognition or image segmentation, where it 

can help identify meaningful patterns or structures in the data. 

In audio processing, NMF can be applied to spectrograms for tasks such as source separation, 

transcription, or feature extraction, by finding meaningful time-frequency components that represent the 

underlying audio sources. 

d. t-distributed stochastic neighbor embedding (t-SNE): t-SNE is a non-linear dimensionality reduction 

technique that is particularly well-suited for visualizing high-dimensional data in two or three dimensions. It 

works by minimizing the divergence between two probability distributions: one in the high-dimensional space 

and one in the low-dimensional space. 
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In image processing, t-SNE can be used for visualizing clusters or structures in image data, such as in 

image retrieval or classification tasks. 

In audio processing, t-SNE can be applied to spectrogram data for visualizing relationships between 

different audio samples, aiding in tasks like clustering, classification, or similarity analysis. 

3.3. Noise-reduction and filtering techniques 

Noise-reduction and filtering techniques are essential for enhancing the quality of images and 

spectrograms, as noise can interfere with the analysis, understanding, and interpretation of the data. In both 

image processing and audio processing, the primary goal of noise reduction and filtering techniques is to 

improve the quality of the data by removing noise and unwanted artifacts while preserving important features 

and structures. This enhances the performance of subsequent processing steps, such as segmentation, feature 

extraction, and pattern recognition. 

Many noise-reduction and filtering techniques used in both image processing and audio processing share 

similar mathematical foundations. For example, linear filters like gaussian filters and adaptive filters such as 

wiener filters rely on convolution operations and statistical properties of the data. Wavelet-based denoising 

techniques involve the use of wavelet transforms and thresholding operations in both domains. 

Both image processing and audio processing employ linear and non-linear filters, as well as adaptive 

filters that adjust their behavior based on the local characteristics of the data. This highlights the versatility and 

adaptability of filtering techniques to handle various types of noise and artifacts in different situations. 

The application of noise reduction and filtering techniques to both images and spectrograms also 

highlights the similarities in how the signal is represented and processed in both domains. Images and 

spectrograms can both be thought of as two-dimensional grids of pixel values or time-frequency bins, and 

filtering techniques can be applied to these grids to enhance the quality of the data. 

Finally, both image processing and audio processing face similar challenges when it comes to noise 

reduction and filtering, such as preserving important features and structures while removing noise, adapting to 

varying noise properties across the data, and balancing the trade-off between noise removal and distortion of 

the original signal. 

Some common noise reduction and filtering techniques that can be applied to both image data and 

spectrogram data include the following. 

a. Gaussian filters: Gaussian filters are linear filters that smooth an image or spectrogram by convolving 

it with a gaussian function. The gaussian function is characterized by its standard deviation (σ), which 

determines the amount of smoothing. 

In image processing, gaussian filters can be used to reduce noise or blur images. 

In audio processing, gaussian filters can be applied to spectrograms to smooth time-frequency patterns, 

which can help reduce noise and enhance signal quality. 

b. Median filters: Median filters are non-linear filters that replace each pixel in an image or each time-

frequency bin in a spectrogram with the median value of its neighboring pixels or bins. Median filters are 

particularly effective at removing salt-and-pepper noise or impulsive noise while preserving edges and sharp 

features. 

In image processing, median filters can be used to remove noise while retaining important details in the 

image. 

In audio processing, median filters can be applied to spectrograms to remove isolated noisy time-

frequency bins, improving the overall quality of the spectrogram. 
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c. Adaptive filters: Adaptive filters are filters that change their behavior based on the local characteristics 

of the data, making them better suited for situations where the noise properties vary across the image or 

spectrogram. Examples of adaptive filters include the wiener filter, which adjusts its smoothing based on the 

local signal-to-noise ratio, and the bilateral filter, which combines domain and range filtering to preserve edges 

while smoothing homogeneous regions. 

In image processing, adaptive filters can be used to remove noise while preserving important details and 

structures in the image. 

In audio processing, adaptive filters can be applied to spectrograms to remove noise and enhance signal 

quality in a context-dependent manner. 

d. Wavelet-based denoising: Wavelet-based denoising involves decomposing an image or spectrogram 

into a set of wavelet coefficients, which represent the data at different scales and resolutions. Noise can be 

reduced by thresholding or shrinking the wavelet coefficients, followed by reconstructing the denoised image 

or spectrogram using the inverse wavelet transform. Wavelet-based denoising can be applied to both image 

data and spectrogram data for noise reduction while preserving important features and structures in the data. 

3.4. Segmentation 

Segmentation refers to the process of dividing data into meaningful regions, objects, or components. In 

both image processing and audio processing, segmentation techniques can help identify and separate important 

structures or elements for further analysis. 

Many shared mathematical methods and underlying principles between image processing and 

spectrogram-based audio processing segmentation techniques can be detected. 

Segmentation techniques, such as region growing and clustering, rely on similarity measures to compare 

pixels or time-frequency bins based on their properties (e.g., intensity, color, spectral content). These measures 

can include Euclidean distance, cosine similarity, or correlation coefficients. Both image and audio processing 

use similarity measures to group data points and identify meaningful segments. 

Graph-based segmentation methods represent the data as a graph, where nodes correspond to pixels in an 

image or time-frequency bins in a spectrogram, and edges represent relationships or similarities between them. 

The use of graph theory in both domains allows for the application of similar algorithms, such as normalized 

cuts or minimum spanning trees, to identify segments or connected components based on connectivity or 

similarity. 

Segmentation techniques often involve the use of statistical methods to analyze the data and determine 

optimal thresholds or cluster centroids. For example, thresholding techniques like Otsu’s method rely on 

maximizing the between-class variance, while clustering algorithms like k-means involve minimizing the 

within-cluster sum of squared distances. Both image and audio processing use these statistical methods to 

segment data into meaningful regions. 

Morphological operations, such as erosion, dilation, opening, and closing, can be used to refine 

segmentation results in both image and audio processing. These operations involve the use of structuring 

elements to modify the shape and connectivity of segmented regions. In both domains, morphological 

operations can help remove noise, fill gaps, and smooth the boundaries of segmented regions. 

In this subsection, some shared segmentation techniques and their applications in both image processing 

and audio processing are analyzed. 

a. Thresholding: Thresholding is a simple and widely-used segmentation technique that involves setting 

a threshold value to separate the data into two or more classes. 
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In image processing, thresholding can be used to separate objects from the background or to identify 

regions of interest in an image. 

In audio processing, thresholding can be applied to spectrograms to separate time-frequency regions 

corresponding to different audio events or sources. 

b. Region growing: Region growing is a segmentation technique that starts with a seed point (or multiple 

seed points) and iteratively expands the region(s) by adding neighboring pixels or time-frequency bins that 

meet a certain similarity criterion. 

In image processing, region growing can be used to segment connected objects or homogeneous regions. 

In audio processing, region growing can be applied to spectrograms to identify contiguous time-

frequency regions representing distinct audio events or sources. 

c. Clustering: Clustering is a segmentation technique that groups data points based on their similarity or 

proximity in feature space. Common clustering algorithms include k-means, hierarchical clustering, and 

DBSCAN. 

In image processing, clustering can be used to segment images into regions with similar color, texture, 

or other features. 

In audio processing, clustering can be applied to spectrograms to group time-frequency regions or 

components based on their spectral or temporal properties, which can help separate different audio events or 

sources. 

d. Graph-based methods: Graph-based segmentation techniques represent the data as a graph, where 

nodes correspond to pixels or time-frequency bins, and edges represent the relationships or similarities between 

them. Examples of graph-based segmentation methods include normalized cuts, minimum spanning tree-based 

algorithms, and Markov random fields. 

In image processing, graph-based methods can be used to segment images into regions or objects based 

on their connectivity or similarity in feature space. 

In audio processing, graph-based methods can be applied to spectrograms to identify connected 

components or clusters that represent different audio events or sources. 

e. Deep learning-based methods: Deep learning algorithms, such as convolutional neural networks 

(CNNs) and recurrent neural networks (RNNs), have been widely used for segmentation tasks in both image 

and audio processing. These algorithms learn hierarchical feature representations from the data and can be 

trained to segment and classify data points based on their features. In both domains, deep learning methods 

have demonstrated significant success in segmentation tasks, such as semantic segmentation in image 

processing and source separation or onset detection in audio processing. 

In image processing, deep learning-based methods like U-Net or Mask RCNN can be used for semantic 

segmentation or instance segmentation tasks. 

In audio processing, deep learning-based methods can be applied to spectrograms for tasks like source 

separation, onset detection, or instrument recognition by learning to segment and classify time-frequency 

regions or components. 

3.5. Pattern recognition and its applications 

Pattern recognition involves the identification and classification of patterns, structures, or features in data. 

In both image processing and audio processing, pattern recognition techniques can help extract meaningful 

information from the data for various applications. Common pattern recognition techniques and their 

applications in both image processing and audio processing include the following. 
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a. Template matching: Template matching is a pattern recognition technique that involves comparing a 

template or pattern with regions of the data to find matches. 

In image processing, template matching can be used for object detection or feature extraction, such as 

detecting specific shapes or patterns within an image. 

In audio processing, template matching can be applied to spectrograms for tasks like onset detection, 

pitch estimation, or chord recognition by comparing time-frequency patterns with predefined templates. 

b. Feature extraction and classification: Feature extraction involves transforming the data into a lower-

dimensional feature space, which can be used to classify or recognize patterns. 

In image processing, features such as edges, corners, or texture can be extracted and used to classify 

objects or scenes. 

In audio processing, features, e.g., as spectral flux, chroma, or mel-frequency cepstral coefficients 

(MFCCs) can be extracted from spectrograms and used for tasks like instrument recognition, genre 

classification, or speaker identification. 

c. Machine learning algorithms: Machine learning algorithms, such as support vector machines (SVMs), 

decision trees, or k-nearest neighbors (k-NN), can be used for pattern recognition tasks in both image and 

audio processing. These algorithms can be trained on features extracted from the data to learn relationships 

and classify patterns. 

In image processing, machine learning algorithms can be used for tasks like object recognition or scene 

classification. 

In audio processing, machine learning algorithms can be applied to features extracted from spectrograms 

for tasks like audio event detection, emotion recognition, or music classification. 

d. Deep learning algorithms: Deep learning algorithms, such as CNNs and RNNs, have been widely used 

for pattern recognition tasks in both image and audio processing. These algorithms learn hierarchical feature 

representations from the data and can be trained to recognize complex patterns. 

In image processing, deep learning algorithms like CNNs have demonstrated significant success in tasks 

like object recognition, image classification, and semantic segmentation. 

In audio processing, deep learning algorithms can be applied to spectrograms for tasks like audio tagging, 

source separation, or speech recognition by learning to recognize time-frequency patterns. 

4. Limitations of the use of spectrograms and solutions 

The use of spectrograms for audio recognition based on deep learning using CNNs has for sure some 

limitations. In this section we highlight the limits with their drawback and propose possible mitigations, 

solutions or alternative techniques. 

4.1. Simultaneous sounds 

In spectrograms, multiple sound events can sum together, leading to overlapping frequency components 

that are challenging to separate[24]. The magnitude of a particular observed frequency could be produced by 

any number of accumulated sounds or complex interactions between sound waves, such as phase cancellation. 

The trivial drawback is that overlapping sound events eventually represented in the same spectrogram 

could cause confusion in the classification process, leading to inaccurate recognition results and reduced 

performance. Advanced source separation techniques, such as Blind Source Separation (BSS) algorithms[25] or 

deep learning-based methods specific for the task, could be used to isolate individual sound events from the 

spectrogram or to recognize their patterns in the mixed representation, making the classification task more 
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manageable and improving the accuracy of CNN-based sound recognition. For instance, if a CNN is trained 

to recognize two different sound patterns specific for two classes, its capabilities may still be kept even giving 

as input the two classes together in the same spectrogram, given that one of them is prevalent and can be 

recognized as the main predicted label (or both can be recognized if the problem is multiclass). However, the 

success of recognition in such scenarios depends on the nature of the sounds and the degree of overlap between 

their spectrogram representations. 

4.2. Spatial invariance 

Spectrograms have two dimensions representing different units: time and frequency. While horizontal 

shifts in spectrograms correspond to time offsets, vertical shifts change the meaning of the sound by altering 

its frequency. This challenges the spatial invariance property of 2D CNNs, which are better suited for tasks 

where shifts in the spatial domain do not change the semantics. Spatial invariance limitations may result in 

suboptimal performance of CNNs when classifying sound events represented in spectrograms. 

The solution could be to implement 1D CNNs or combining 2D and 1D CNN architectures to effectively 

capture both temporal and frequency characteristics, allowing the model to recognize patterns over time and 

frequency without being hindered by spatial invariance issues. Alternatively, wavelet transform[26], which 

provides localized time-frequency representations, can be explored as an alternative to spectrograms. In a 

single data set, normalizing the sounds can also partially mitigate this issue, when the particular sound event 

does not greatly vary across the time. 

4.3. Non-locally distributed frequencies 

Frequencies in spectrograms, especially for periodic sounds with harmonics, are non-locally distributed. 

Harmonics are spaced apart based on relationships dictated by the sound source, making their identification 

challenging for standard local feature extraction methods. The drawback is that non-local frequency 

distributions pose difficulties in accurately identifying individual harmonics, impacting the CNN’s ability to 

discern sound characteristics effectively. 

Incorporating attention mechanisms[27] or long short-term memory (LSTM) layers[28] into the CNN 

architecture can allow the model to capture temporal dependencies and learn to recognize non-locally 

distributed frequency patterns, improving the performance of sound recognition from spectrograms. 

Alternatively, wavelet transform’s multi-resolution analysis can provide localized frequency information and 

enhance harmonic analysis. 

4.4. Temporal nature of sound and lack of parallel information 

Sound is highly serial, experienced moment by moment, and lacks the parallel information found in 

images. Sound events unfold over time, and understanding their meaning requires considering the temporal 

relationships between spectral developments. CNNs are designed to process static images with parallel 

information and may struggle to effectively handle the temporal nature of sound events represented in 

spectrograms. Incorporating recurrent neural networks (RNNs)[28] or attention mechanisms[27] that capture 

temporal dependencies and sequential patterns can enhance the CNN’s capability to recognize sound events 

from spectrograms and leverage their temporal characteristics for more accurate classification, even including 

sound direction for specific cases[29]. Also in this case, wavelet transform’s analysis can provide time-domain 

information, complementing CNNs in capturing temporal dependencies and enhancing audio classification. 

4.5. Phase information 

Spectrograms, as commonly used in audio processing, typically discard phase information and retain only 

the magnitude information. While this simplification enhances feature clarity and facilitates certain analysis 

tasks, it may result in the loss of valuable phase-related details, which can be essential for specific audio 
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processing applications. Thus, in scenarios where phase information plays a crucial role, such as sound source 

localization, phase-sensitive audio effects, or high-quality audio synthesis, the omission of phase data in 

spectrograms can limit the model’s ability to accurately reconstruct and manipulate the audio signal. 

To address this limitation, alternative representations that incorporate phase information can be explored, 

such as complex spectrograms or short-time Fourier transform (STFT)[30] with phase preservation. Additionally, 

advanced algorithms like the Griffin-Lim algorithm[31] can be utilized to reconstruct the phase from magnitude 

spectrograms when necessary, providing a more complete representation for certain audio processing tasks. 

5. Practical applications 

In this section, some practical applications of audio deep learning based on spectrograms are provided, 

based on the state of the art and selected to gain high accuracy and F1. For each study, we will describe the 

authors’ perspective on a specific problem and describe their solution using spectrograms. 

5.1. Randomized learning-based classification of sound quality using spectrogram image and 

time-series data 

In the article titled “Randomized learning-based classification of sound quality using spectrogram image 

and time-series data: A practical perspective[32]”, the authors discuss the use of randomized learning techniques 

to classify sound quality using spectrogram images and time-series data. The authors propose a method that 

involves obtaining data recorded from vehicle indoor noise and classifying them into three types of datasets 

through three preprocessing processes: spectrogram, variable-length time-series data, and up-sampling and 

interpolation scheme (USIS) data. To classify the sound quality of each dataset, they used CNN and LSTM 

networks for deep learning. 

5.2. Multi-channel spectrograms for speech processing applications 

In a research paper titled “Multi-channel spectrograms for speech processing applications using deep 

learning methods[33]”, the authors propose a methodology to combine three different time/frequency 

representations of speech signals by computing multi-channel spectrograms continuous wavelet transform, 

Mel-spectrograms, and gammatone spectrograms and combining them into 3D-channel spectrograms to 

analyze speech in two different applications: automatic detection of speech deficits in cochlear implant users, 

and phoneme class recognition to extract phone-attribute features. To this aim, two different deep learning-

based models are considered: convolutional neural networks and recurrent neural networks with convolution 

layers. 

5.3. Applying image neural style transfer networks to audio spectrograms 

In the research paper[34] titled “Sound transformation: Applying image neural style transfer networks to 

audio spectrograms”, the authors purpose is to investigate whether audio spectrogram inputs can be used with 

image neural transfer networks to produce new sounds. Using musical instrument sounds as source sounds, 

the authors apply and compare three existing image neural style transfer networks for the task of sound mixing. 

5.4. Environmental sound classification 

In an article titled “Environmental sound classification using temporal-frequency attention based 

convolutional neural network[12]”, the authors discuss the use of temporal-frequency attention-based 

convolutional neural network model (TFCNN) to classify environmental sounds. A method is proposed that 

involves obtaining data recorded from environmental sounds and classifying them into three types of datasets 

through three preprocessing processes: spectrogram, variable-length time-series data, and up-sampling and 

interpolation scheme (USIS) data. To classify the sound quality of each dataset, authors used CNN and LSTM 

networks for deep learning. 



12 

5.5. Speech-based emotion classification 

In the paper titled “Deep learning techniques for speech emotion recognition: A review[35]”, the authors 

present an introduction to various deep learning techniques with the aim of capturing and classifying emotional 

states from speech utterances. The authors tested the emotion-capturing capability of architectures such as 

convolutional neural networks (CNN) and long short-term memory (LSTM) using various standard speech 

representations such as mel spectrogram, magnitude spectrogram, and mel-frequency cepstral coefficients 

(MFCCs) on two popular datasets EMO-DB and IEMOCAP. The authors present experimental findings along 

with reasoning as to which architecture and feature combination is better suited for the purpose of speech 

emotion recognition. 

5.6. Crowd-based emotional classification 

In the paper “Emotional sounds of crowds: Spectrogram-based analysis using deep learning[5]”, the 

authors propose a technique based on the generation of sound spectrograms from fragments of fixed length, 

extracted from original audio clips recorded in high-attendance events, where the crowd acts as a collective 

individual. Transfer learning techniques are used on a convolutional neural network, pre-trained on low-level 

features using the well-known ImageNet extensive dataset of visual knowledge. The original sound clips are 

filtered and normalized in amplitude for a correct spectrogram generation, on which they fine-tune the domain-

specific features. Experiments held on the finally trained convolutional neural network show promising 

performances of the proposed model to classify the emotions of the crowd and compare results on different 

frequency/amplitude techniques (i.e., Mel, Bark, Log, Erb). 

5.7. Edge emotion recognition 

In a research paper titled “Edge emotion recognition: Applying fast Fourier transform on speech Mel 

spectrograms to classify emotion on a Raspberry Pi for near real-time analytics[36]”, the authors examine audio 

files from five important emotional speech databases and visualize them in situ with dB-scaled Mel 

spectrograms using TensorFlow and Matplotlib. Audio files are transformed using a fast Fourier transform and 

fed into a convolutional neural network for classification. 

5.8. Automated emotion recognition for groups 

The article titled “Automatic emotion recognition for groups: A review[37]” aims to summarize and 

describe research on the topic of automatic group emotion recognition. In recent years, the topic of emotion 

analysis of groups or crowds has gained interest, with studies performing emotion detection in different 

contexts, using different datasets and modalities (such as images, video, audio, and social media messages), 

and taking different approaches. The authors suggest that research should test on multiple, common datasets 

and report on multiple metrics, when possible, to ensure clear, replicable, and comparative studies. They also 

suggest that an area of interest for future work is to build systems with more real-world application possibilities 

while having higher robustness and working with datasets with reduced biases. The previous work on crowd-

sound emotions is cited in this review as the only reliable study on emotions from the sound of the crowd: this 

work uses spectrogram CNN-based classification. 

6. Conclusion 

We present a method for sound categorization that makes use of image-processing methods applied to 

audio spectrogram representations. The research shows how to improve feature extraction and categorization 

performance by integrating known image processing methods such as filtering, segmentation, and pattern 

recognition. Convolutional neural networks (CNNs) are used in the suggested approach to extract and 

categorize time/frequency features from spectrograms, taking advantage of their hierarchical feature learning 

and resilience to translation and scale changes, and of the possibility to apply transfer learning. The conversion 
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of auditory data to spectrograms has several advantages, including human interpretability, interoperability with 

image processing methods, and time/frequency resolution freedom. This method crosses the divide between 

image and audio processing. Through spectrograms, the article examines many similarities and various uses 

of shared methods between image processing and audio processing. 
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