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ABSTRACT 
Optical character recognition (OCR) converts text images into machine-readable text. Due to the non-availability 

of several standard datasets of Devanagari characters, researchers have used many techniques for developing an OCR 
system with varying recognition rates using their own created datasets. The main objective of our proposed study is to 
improve the recognition rate by analyzing the effect of using batch normalization (BN) instead of dropout in 
convolutional neural network (CNN) architecture. So, a CNN-based model HDevChaRNet (Handwritten Devanagari 
Character Recognition Network) is proposed in this study for same to recognize offline handwritten Devanagari 
characters using a dataset named Devanagari handwritten character dataset (DHCD). DHCD comprises a total of 46 
classes of characters, out of which 36 are consonants, and 10 are numerals. The proposed models based on 
convolutional neural network (CNN) with BN for recognizing the Devanagari characters showed an improved accuracy 
of 98.75%, 99.70%, and 99.17% for 36, 10, and 46 classes, respectively. 
Keywords: character recognition; DHCD; deep learning; CNN; batch normalization; dropout 

1. Introduction to offline handwritten 
Devanagari character recognition (OHDCR) 

The scientific community has been researching handwritten text 
recognition (HTR) systems for the past two decades. The conversion 
process of handwritten text or documents into digital text is termed 
HTR[1]. Online HTR and offline HTR are the two basic types into 
which HTR has been divided[2]. The writer’s choice of stroke 
sequence when writing the text is the key distinction between the two. 
In an online HTR, the recognition process has access to the order, 
which aids the recognizer in producing better results. 

In contrast, an offline HTR has only a scanned copy of the 
handwritten documents, which presents numerous challenges in 
correctly extracting text from images[2,3]. There is still a need to 
develop more robust methods for extracting and recognizing 
handwritten text on images, even though offline HTR has been 
discussed for many years. The major causes are variations in 
handwriting style and unconstrained handwriting. 

As mentioned in the study of Puri and Singh[4], the Brahmi 
script, the mother script of several Indian languages, is where 
Devanagari started. The writing and reading script Devanagari is 
widely used in a broad region of India. Devanagari developed and 
advanced gradually from Brahmi, going through the following stages: 
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Brahmi, Bharati (Bhagwat Gita), Gupta, Nagari, and Devanagari scripts. Many Indian languages, including 
Hindi, Konkani, Marathi, Prakrit, Sanskrit, and Sindhi, are written in Devanagari. Additionally, it serves as 
the additional script for the languages of Punjabi and Kashmiri. Many distinctive characteristics of 
Devanagari may be seen, such as the fact that there are no capital or small letters and the letters are not 
spelled out in any particular order; it is written left to right, top to bottom, and read in the order of sequence; 
the use of a long, continuous horizontal top line (shirorekha) on the characters is a particularly distinctive 
aspect of Devanagari; and each character’s top lines are connected one by one when characters are combined 
to make a word, resulting in a single, lengthy shirorekha. 

Recently, numerous techniques have been developed for offline Devanagari optical character 
recognition (OCR). The processing of its documents still needs to be improved as it includes shirorekha, vast 
character sets, complicated conjuncts, characteristic geometric structure of characters, and linguistic 
complexities (top line)[4]. The Devanagari handwritten character dataset (DHCD) is a new publicly available 
dataset comprised of character images segmented from documents written by hand that explores the 
problems associated with Devanagari character recognition[5]. 

1.1. Introduction to the problem 
The recognition rate is not very high for Devanagari characters. Non-availability of a standard dataset 

for all characters of the Devanagari script; similarly, the dataset used in our proposed work does not 
comprise vowels and modifier characters. 

Existing challenges in the problem: need to improve the recognition rate of Devanagari characters. 
Prepare a dataset of all characters (consonants, vowels, and numerals in one place) as well as of modifier 
characters of the Devanagari script. 

Contribution proposed study: the DHCD is utilized in the proposed work. A brief study of the existing 
systems for Devanagari character recognition is specified in related work section. An attempt to improve the 
recognition rate of existing systems by analyzing the effect of batch normalization (BN) at the different 
levels of CNN architecture compared to dropout for recognizing the Devanagari characters efficiently. A 
Devanagari character recognition system based on deep learning is proposed. 

1.2. The general framework of character recognition task 
As mentioned in the study of Indian and Bhatia[6], the framework of any character recognition task, in 

general, consists of several phases, which are briefly described in Figure 1. 

 
Figure 1. Phases of character recognition framework. 
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1) Image acquiring phase: this is the phase where a handwritten text or character on paper is turned into 
a digital image. For this, handwritten text or characters on paper documents are scanned. The next phase is 
then applied to these digital images. 

2) Pre-processing phase: pre-processing aims to remove noise from an image so that the recognition 
system can work well and give accurate results. The main goal is eliminating noise, normalizing the data, 
and compressing it without losing important information. 

3) Segmentation phase: in this phase, the text or character that has already been processed is broken up 
into parts, such as paragraphs, sentences, words, and characters. It is a very important phase because being 
able to separate lines into words and words into characters is directly related to how well one can read 
handwritten characters. These images can also be turned into binary to be analyzed further. 

4) Feature extraction phase: as feature sets are one of the most important parts of a recognition system, 
a good feature set shows the characteristics of a class in a way that helps it stand out from other classes. The 
main goal of this phase is to extract the best set of features, which reduces mistakes in recognition and as a 
result, increases the rate of correct recognition. 

5) Classification phase: in this phase, the features extracted in the feature extraction are used to decide 
which class an input character belongs to. To make a classification model is done using different 
classification methods, such as CNN, SVM, ANN, KNN, etc. 

6) Recognition phase: This is the last phase, and it is responsible for using the classification model 
made in the classification phase to recognize handwritten characters. 

The paper is further organized into six sections. Some of the major studies done on offline character 
recognition are reviewed in Section 2. Section 3 elaborates on the proposed methodology, covering a brief 
overview of the dataset along with samples of consonants and numerals from the Devanagari script; an 
introduction to the convolutional neural network; batch normalization and dropout; and lastly, the proposed 
model architecture. In Section 4, the proposed models’ performances are discussed and compared with other 
states of the art. Section 5 presents the future direction. At last, Section 6 concludes the present study. 

2. Related work 
Many researchers with different approaches have attempted offline handwritten character recognition as 

a task. Much work has been reported to recognize characters written in Indic and non-indic scripts. This 
section reviews several handwritten character recognition methods that have been used. 

Bhalerao et al.[7] achieved an overall recognition accuracy of 95.81% by combining quadratic and SVM 
classifiers with 3-fold cross-validation. The overall accuracy was computed by averaging the accuracy of 
each character. A dataset of 29,440 samples collected from different individuals was used for the study. 

Singh and Puri[4] proposed an offline Devanagari character classification system utilizing SVM for 
recognizing the Shirorekha-Less (SL) character from scanned monolingual handwritten and printed Hindi, 
Marathi, and Sanskrit document images. Features are extracted from SL characters and SL-modified 
characters. For training, the SVM (gaussian kernel) classifier was employed, then tested using various 
unidentified scanned text document images, and performance was examined. Both handwritten and printed 
document images had an average SL classification accuracy of 99.54% and 98.35%, respectively. 

For Indian bank cheques, the BCHWTR (bank cheque hand written text recognition) method is 
proposed by Ghosh et al.[8]. A dataset of 100 individual people’s handwritten text on 100 separate bank 
cheques is created using Latin script. The feature values from the grey level co-occurrence matrix and 
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histogram of oriented gradients were combined to create a final feature vector, which was then given to a 
support vector machine (SVM) classifier. 

Bhatia and Indian[9] developed “Tarang”, a feature extraction technique for recognizing and improving 
offline handwritten Hindi “SWARs” accuracy. Three feature extraction techniques were implemented to 
determine the feature of each sample image from the dataset of 1950 samples. The recognition rate increases 
to 95.7% when both local and global wave features are combined. 

Puri and Singh[10] developed a novel offline Hindi handwritten document classification system 
(HHDCS). The Normal-Moderate-Complex (N-M-C) handwriting classification model found that N 
handwriting performs better than M and C handwriting and uses the right spaces to produce positive 
recognition results. 

Rastogi et al.[11] utilized normalized chain code and gradient direction methods for producing the feature 
vector of Gujarati numeral images and then trained it through a feed-forward back propagation neural 
network with the Levenberg-Marquartdt function. A dataset of approximately 2500 samples was used. 

Acharya et al.[5] created a new dataset, DHCD, which consists of 92,000 images. There are 46 characters 
in the Devanagari script, which makes it publicly available for any researcher. According to the experimental 
findings, CNNs with a dropout layer and a dataset augmentation method can produce extremely high 
accuracy for testing, even for complex and varied datasets. 

Krizhevsky et al.[12] have trained a large deep CNN for classifying 1.2 million high-resolution images 
into thousands of distinct classes during the ImageNet LSVRC-2010 competition. The neural network (NN) 
is built with five convolution layers. Some convolution layers were succeeded by max-pool layers, three 
fully connected layers, and at last 1000-way softmax layer. The dropout regularization technique was used to 
minimize the overfitting problem significantly. 

Dokare et al.[13] explored using a CNN in this study to recognize Devanagari characters. The complexity 
of applications like character recognition, which require a huge amount of data, can best be handled by deep 
learning. The recognition accuracies for Devanagari consonants, vowels, and numbers are 98%, 97.56%, and 
99%, respectively. 

Bisht and Gupta[14] proposed two CNN-based models for recognizing the Devanagari-modified 
characters. The accuracy of a single CNN architecture under six-fold cross-validation and in tests is 81.52% 
and 81.62%, respectively. Stage-1 and Stage-2 validation accuracy for the double-CNN architecture were 
reported at 89.80% and 85.65%, respectively. 

Roy et al.[15] have described their work as creating a dynamic programming-based method for 
recognizing city names and PIN codes in destination addresses on Indian mailing documents. Trilingual city 
name recognition yielded a 0.20% error rate and a 28.11% rejection rate, whereas handwritten pin code 
recognition yielded a 0.83% error rate and a 15.27% rejection rate. 

Sharma et al.[16] used CNN to recognize city names in the postal automation field. The model was 
trained and validated at different hyper-parameters on a dataset of 4000 samples from 10 classes in the 
Gurumukhi script. An Adam optimizer with batch size four and a learning rate of 0.001 gave the best 
average validation accuracy of 99.13% compared to the stochastic gradient descent (SGD) optimizer. 

In addition to English, Roy et al.[17] suggested recognizing the city names, which are handwritten in 
Bangla and Devanagari script. This study addresses recognizing city names written in trilingual form using 
deep learning without script identification. A dataset with 24,460 samples collected from 391 cities was used 
for this. The accuracy rates for Devanagari, Bangla, and English scripts are 93.29%, 96.27%, and 98.01%, 
respectively. 
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Qureshi et al.[3] proposed converting the offline handwritten texts written on ruled-line pages into digital 
text. A custom dataset was created by scanning 400 forms (sentences are from the IAM dataset) with 300 dpi 
resolution and storing them as png files. Three experiments were performed to evaluate the overall 
performance of the proposed method. The suggested method attained 26% improved accuracy in the simple 
HTR case and 20% improved accuracy in the MXNET case. 

Aneja and Aneja[18] proposed CNN and transfer learning for handwriting recognition. The “develop 
model approach” or “pre-trained approach” both use a deep learning method known as “transfer learning”. 
Fine-tuning and ConvNet (fixed feature extractors) are used in transfer learning. The dataset contains 46 
different classes, each with 2000 images. Inception, Vgg, AlexNet, and DenseNet are the models ranked 
from best to worst based on their accuracy levels. 

The advantages of BN, which Bjorck et al.[19] have studied, were mostly mediated by higher learning 
rates, and they contended that the increased implicit regularization of SGD, which enhances generalization, 
results from the higher learning rate. This research demonstrated that significant parameter adjustments to 
large learning rates were constrained by the potential for un-normalized networks to produce activations 
whose magnitudes expand drastically with depth. 

The study of Garbin et al.[20] revealed that deep neural network (DNN) training generally uses BN and 
dropout to enhance the model’s performance. Including BN in CNN improves performance without other 
observable side effects, whereas including dropout in CNN reduces accuracy significantly. BN should be one 
of the initial steps to optimize a CNN, whereas dropout requires careful consideration as a cautionary sign. 

Li et al.[21] used dropout layers in conjunction with batch normalization. They discovered that a neural 
variance would be incorrect and displaced when information flows in inference due to their different test 
strategies in CNN architecture. These insights can be used as practical guidance for improving deep learning 
procedures. The above-proposed systems can be expanded to recognize and classify modified characters and 
half-characters, image-based words, fonts, italicized text, and imaged documents, as well as numbers with 
certain digits. They can also be used to recognize scripts with a higher level of complexity, such as 
compound characters. Deep CNN has been observed as a system for recognizing Devanagari characters, 
numerals, and modified characters with satisfactory accuracy. 

This brief survey concludes that various methods have been employed to solve the OHDCR problem. 
Deep learning is a technology making its way into the field of text recognition. DNN training is complicated 
because the distribution of each layer’s inputs varies in training as the parameters of the preceding layers 
change. Hence, it requires lower learning rates, which slows down training. It takes work to train models 
with saturating nonlinearities known as the internal covariate shift, and it can be solved by normalizing layer 
inputs. The model’s strength should include normalization within the architecture and execution of 
normalization for each training mini-batch. The dropout requirement can be eliminated by using BN as a 
regularizer in DNN, which improves accuracy irrespective of the dataset size with a higher learning rate and 
fewer number epochs. In this study, the use of BN is analyzed in the feature extraction phase only, in the 
classification phase only, and in both phases of CNN. In Tables 1 and 2, present the comparative analysis of 
various character recognition approaches using different datasets of Devanagari script and non-indic script 
respectively. 
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Table 1. Comparison of character recognition approaches using different datasets of Devanagari script. 
S. No. Author Approach Dataset Number of classes Accuracy Year 

1. Acharya S et al.[5] 4 layer CNN  DHCD 46 98.47% 2015 

2. Jangid M and 
Srivastava S[22] 

Layer wise deep CNN 
and different adaptive 
gradient methods 

Isidchar and 
V2DMDCHAR 

47 98% 2018 

3. Deore SP and 
Pravin A[23] 

Fine-tuned VGG 16 
architecture 

Own newly created 58 96.55% 2020 

4. Mhapsekar M et 
al.[24] 

ResNet 34 and ResNet 50 
compared with 4 layer 
CNN and 8 layer CNN 

DHCD 46 ResNet 50 = 
99.35% 

2020 

5. Gurav Y et al.[25] Image processing and 
deep learning 

Own character dataset 
without shirorekha 

30 99.65% 2020 

6. Dokare I et al.[13] 4 layer CNN DHCD 
(consonants) 

36 96.86% 2021 

DHCD 
(numerals) 

10 99.29% 2021 

7. Manocha SK and 
Tewari P[26] 

CNN as feature extractor 
with different classifiers 

DHCD 46 CNN + SVM 
– RBF = 99% 

2021 

8. Mishra M et al.[27] Bottleneck version of the 
residual module (ResNet 
with 85 convolution 
layer) 

DHCD 46 99.72% 2021 

9. Pande SM and Jha 
BK[28] 

Machine learning 
classifiers like extra trees, 
random forest, decision 
tree, KNN, etc. 

Own character dataset 43 Extra tree 
classifier = 
78% 

2021 

10. Sachdeva J and 
Mittal S[29] 

Edge histogram technique 
with different machine 
learning techniques 

Own compound 
character set 

50 SVM = 
99.88% 

2021 

Table 2. Comparison of character recognition approaches using different datasets of non-indic script. 

S. No. Author Script Approach Dataset Accuracy Year 

1. Sousa Neto AF et 
al.[30] 

English, French 
and Latin (9th 
century) 

Gated-CNN-BGRU 
model is motivated by the 
Bluche model and 
Puigcerver model 

Bentham, IAM, 
RIMES, saint 
gall and 
Washington 

Outperformed existing HTR 
systems by an average of 
33% on five handwritten 
benchmark datasets 

2020 

2. Manchala SY et 
al.[31] 

English NN (5 layers CNN, 2 
layers RNN and CTC) 
and tensorflow 

IAM Above 90.3% 2020 

3. Sree A et al.[32] English CNN, RNN, Android app 
using kivy and kivy MD, 
SQL alchemy for 
database storage 

IAM Proposed method 83% and 
east text detector 46% 

2021 

4. Gupta N and Liu 
W[33] 

English Adaptive line 
segmentation scheme 
from unconstrained 
document image using 
MATLAB R 2014 b 
version 

Own (Dataset I 
and Dataset II), 
ICDAR09, 
IAM 

Own = 98.01%, IAM = 
91.99% and ICDAR = 96% 

2021 

5. Wang Y et al.[34] Barcelona, 
English, 
Chinese 

Offline HTR uses a 
variety of deep learning 
techniques for character, 
word or line and multi-
lines recognition 

BH2M, IAM, 
Bentham, HIT-
MW, CASIA-
HWDB 

Current contributions to the 
offline HTR domain can be 
categorized into two: HTR 
with minimal supervision 
and HTR module that is 
quicker and smaller 

2021 
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Table 2. (Continued). 

S. No. Author Script Approach Dataset Accuracy Year 

6. Mondal R et al.[35] English YOLOv3 object 
recognition model trained 
using darknet framework 

IAM 29.21% WER and 9.53% 
CER 

2022 

7. Kumari L et al.[36] English and 
German 

LexiconNet IAM, RIMES 
and READ-
2016 

Average accuracy increased 
by 35.10% on IAM, 48.54% 
on RIMES and 39.79% on 
READ-2016 from previous 
methods 

2022 

8. AlJarrah MN et 
al.[37] 

Arabic CNN AHCD 97.2% 2021 

9. Alkhateeb JH et 
al.[38] 

Arabic CNN AHCR, AHCD, 
and Hijja 

89.8%, 95.4%, and 92.5% 2021 

10 Nayef BH et al.[39] Arabic CNN with optimized 
leaky ReLU 

AHCD, Hijja 
and self-
collected 

99%, 90% and 95.4% 2021 

3. Proposed methodology 
3.1. Dataset 

DHCD[5] is a large dataset of the Devanagari character images written by different persons and is widely 
used by researchers for recognizing handwritten characters. This dataset is openly available at 
https://archive.ics.uci.edu/ml/datasets/Devanagari+Handwritten+Character+Dataset. The DHCD contains 46 
classes, of which 10 are numerals and 36 are consonants. The DHCD does not include vowels. The DHCD 
has already undergone preprocessing. Each character image is resized to a size of 28 by 28 pixels with a 
padding of 2 pixels. Padding makes dataset images have a size of 32 by 32 pixels. Images are grayscaled; 
after this, the intensity of the characters is reversed. Random samples of numerals and consonants taken from 
the DHCD dataset with assigned class labels are shown in Tables 3 and 4. 

Table 3. DHCD numerals sample with assigned class labels. 

 

Table 4. DHCD consonants sample with assigned class labels. 
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3.2. Convolutional neural networks (CNNs) 
As mentioned in the studies of Indian and Bhatia[6] and Yamashita et al.[40], CNN is a type of artificial 

neural network that has been used a lot in computer vision tasks and is the deep learning model with the most 
well-known technique. CNN is a type of deep learning model used to process data with a grid pattern, like 
images. CNN is a mathematical model that is usually made up of three types of layers: convolution, pooling, 
and fully connected layers. The first two layers, convolution and pooling, extract features. The third layer, a 
fully connected layer, maps the features that were extracted into the end output, which leads to classification. 

As CNN-based models effectively extract features, they are utilized to resolve image classification 
issues. The convolution layer (CL), pooling layer (PL), and fully-connected layer (FCL) are the building 
blocks of any CNN model. The CNNs overall architecture is designed when these layers are combined. The 
activation function (AF) and the dropout layer are two more important elements. 

The first layer, the CL, is employed to distinguish the different highlights from a given input image. 
Moving the channel over the input image yields the channel’s dot product and the input image’s various 
components in terms of channel approximation. As mentioned in the study of Guha et al.[41], each CL output 
can be expressed using Equation (1), 

𝑂𝑂𝑂𝑂𝑂𝑂 =
(𝐿𝐿𝑖𝑖𝑖𝑖 + 2 × 𝑃𝑃𝑃𝑃𝑃𝑃 − 𝐹𝐹 )

𝑆𝑆
+ 1 (1) 

where, 𝑂𝑂𝑂𝑂𝑂𝑂 = size of the output, 𝐿𝐿𝑖𝑖𝑖𝑖 = size of the input, 𝑃𝑃𝑃𝑃𝑃𝑃 = padding size, 𝐹𝐹 = filters size, and 𝑆𝑆 = 
size of stride to slide the filter. 

As mentioned in the study of Guha et al.[41], a CL has three dimensions in, 
Input = (𝐻𝐻𝑖𝑖𝑖𝑖 × 𝑊𝑊𝑖𝑖𝑖𝑖 × 𝐶𝐶𝑖𝑖𝑖𝑖) (2) 

where, 𝐻𝐻𝑖𝑖𝑖𝑖 = input height, 𝑊𝑊𝑖𝑖𝑖𝑖 = input width and 𝐶𝐶𝑖𝑖𝑖𝑖 = input channels. Each layer in CNN architecture 
has same calculation for output feature. By using Equation (3), neurons, parameters and connections are 
produced by CLs, 

𝑃𝑃 = 𝑊𝑊𝑡𝑡 + 𝐵𝐵 (3) 
where, 𝑃𝑃 = parameters, 𝐵𝐵 = bias and 𝑊𝑊𝑡𝑡 = CLs weight calculated using Equation (4), 

𝑊𝑊𝑡𝑡 = 𝐶𝐶𝑜𝑜𝑜𝑜𝑡𝑡 × (𝐻𝐻𝑖𝑖𝑖𝑖 × 𝑊𝑊𝑖𝑖𝑖𝑖) × 𝐶𝐶𝑖𝑖𝑖𝑖 (4) 
where, 𝐶𝐶𝑜𝑜𝑜𝑜𝑡𝑡 = previous layer’s output channel. 

The second layer, known as the PL, is employed to map features: max pooling gives the highest value 
from the part of the image that the kernel covers whereas; average pooling gives the arithmetic mean of all 
the values from the part of the image that the kernel covers. 

As mentioned in the study of Guha et al.[41], the PL with M* M size filters is applied with a stride 
expressed in Equations (5) and (6), 

𝑊𝑊𝑜𝑜𝑜𝑜𝑡𝑡 =
(𝑊𝑊𝑖𝑖𝑖𝑖 − 𝐹𝐹)

𝑆𝑆
+ 1 (5) 

𝐻𝐻𝑜𝑜𝑜𝑜𝑡𝑡 =
(𝐻𝐻𝑖𝑖𝑖𝑖 − 𝐹𝐹)

𝑆𝑆
+ 1 (6) 

where, 𝑊𝑊𝑜𝑜𝑜𝑜𝑡𝑡 = output width, 𝑊𝑊𝑖𝑖𝑖𝑖 = input width, 𝐹𝐹 = filters, 𝑆𝑆 = stride, 𝐻𝐻𝑜𝑜𝑜𝑜𝑡𝑡 = output height and 𝐻𝐻𝑖𝑖𝑖𝑖 
= input height. 

The FCL, the third layer, flattens the features received from the CL and PL. 

The BN layer, which normalizes the input of all network layers, is used instead of the dropout layer in 
addition to CL, PL, and FCL, considerably reducing the training time. Deep neural networks’ intermediary 
layers can have their activations normalized using the BN method. BN has been a preferred deep learning 
approach due to its propensity to speed up training and increase accuracy. 



 

9 

The CNN model completes with the AF. Any variable-to-variable relationship in a network may be 
learned and estimated using the AF. The two AFs used in the proposed models are the rectified linear unit 
(ReLU) and softmax (SM). 

As mentioned in the study of Romanuke[42], ReLU employs the non-saturating AF and sets negative 
values to zero, effectively removing them from an activation map as expressed in Equation (7). 

𝑓𝑓(𝑥𝑥) = max{0, 𝑥𝑥} (7) 
SM computes probability distributions from a vector of real numbers, as specified in the study of 

Nwankpa et al.[43]. The resulting output falls within the 0 to 1 value range, with a probability sum of 1. It is 
used for multi-class models, returning the probabilities of each class, with the highest value going to be the 
resultant class. 

𝑓𝑓(xi) =
exp(xi)
∑ exp(xj)j

 (8) 

For classifying multiple classes, the output layer uses the SM and AF, while the input layer and hidden 
layers use the ReLU and AF. 

3.2.1. Introduction to batch normalization and dropout 
Dropout[44] is a method for preventing overfitting. Its core concept is to take an overfitting model and 

then train sub-models by randomly pruning units from all training batches. Dropout pushes units to be more 
resilient by continually removing arbitrary units, forcing them to learn features independently without 
relying on other units. It may be considered a simplified model ensembling in this context. The dropout rate, 
a new hyper-parameter, governs the number of units to keep in the NN. 

BN was developed to address the unpredictability of NN and accelerate learning. A well-known strategy 
is to normalize the values of each sample before feeding it to the neural network as input. BN takes one step 
further by normalizing all network layers, not just the input layer. For each mini-batch, the normalization is 
computed. This normalization enables greater learning rates during training[45]. 

As in the study of Bjorck et al.[19], BN is generally considered for CNN and computed using Equation 
(9). The BN layer’s output and input are four-dimensional tensors known as 𝑂𝑂𝑏𝑏,𝑐𝑐,𝑥𝑥,𝑦𝑦  and 𝐼𝐼𝑏𝑏,𝑐𝑐,𝑥𝑥,𝑦𝑦 
respectively. The dimensions correspond to examples inside a batch b, channel c, and two spatial 
dimensions, x and y. BN uses the same normalization for all channel activations. 

Ob,c,x,y ← γc
Ib,c,x,y − µc
�σc2 + ϵ

+ βc        ∀b, c, x, y (9) 

in Equation (9), BN subtracts the mean activation, 

 µc =
1

|B|
� Ib,c,x,y

b,x,y
 (10) 

From all input activations in channel 𝑐𝑐, 𝐵𝐵 contains all channel 𝑐𝑐 activations across all features 𝑏𝑏 in 
the mini-batch and all spatial 𝑥𝑥 and 𝑦𝑦 locations. In BN, the centered activation is divided by the standard 
deviation 𝜎𝜎𝑐𝑐 (plus ϵ for numerical stability), which is derived in the same way. Running mean and variance 
averages are employed throughout testing. Normalization is then followed by a channel-wise affine 
transformation that is parameterized via 𝛾𝛾𝑐𝑐 and 𝛽𝛽𝑐𝑐, which is learned during training. 

3.3. Proposed HDevChaRNet: An overview 
The proposed CNN model is briefly explained in this section, which is used to classify Devanagari 

characters using the DHCD dataset. An outline of the proposed model is presented in Figure 2. 



 

10 

 
Figure 2. Outline of proposed HDevChaRNet model. 

3.3.1. Proposed HDevChaRNet: Architecture 
The DHCD consists of 32 × 32 grayscale images of characters and is one of the best-known datasets of 

Devanagari handwritten numerals and consonants. Three CNN models are proposed in our study to 
recognize the Devanagari characters. Except for the kernel size, pool size, and activation function, each CNN 
model has a different number of CLs. Three strategies are proposed to study the application of BN in the 
CNN model for recognizing the offline handwritten Devanagari characters. 

1) FEP: Dropout and BN layers are used at the feature extraction phase of the CNN model. 
2) CP: Dropout and BN layers are used at the classification phase of the CNN model, and 
3) FECP: Dropout and BN layers are used at both feature extraction and classification phase of the 
CNN model. 

M1, M2, and M3 are the three proposed models with variations in the number of layers, number of 
filters, and number of neurons, as shown in Table 5. All these models employ the Adam optimizer with a 
default learning rate of 0.001 and a batch size of 200. All these models are employed for three output classes: 
46 for both consonants and numerals, 36 for consonants only, and 10 for numerals only. 

Table 5. Proposed architecture of model M1, M2 and M3 without dropout and BN Layer. 

M1 M2 M3 

Input: 32 × 32 × 1 
Output: 46/36/10 classes, soft max 

Input: 32 × 32 × 1 
Output: 46/36/10 classes, soft max 

Input: 32 × 32 × 1 
Output: 46/36/10 classes, soft max 

Conv2D (32, kernel size = 3, ReLU) 
Conv2D (64, kernel size = 3, ReLU) 
MaxPool2D (pool size = 2, strides = 2) 
Conv2D (128, kernel size = 3, ReLU) 
Conv2D (256, kernel size = 3, ReLU) 
MaxPool2D (pool size = 2, strides = 2) 
Conv2D (512, kernel size = 3, ReLU) 
MaxPool2D (pool size = 2, strides = 2) 
Flatten () 
Dense (128, ReLU) 
Dense (64, ReLU) 

Conv2D (64, kernel size = 3, ReLU) 
MaxPool2D (pool size = 2, strides = 2) 
Conv2D (64, kernel size = 3, ReLU) 
MaxPool2D (pool size = 2, strides = 2) 
Conv2D (64, kernelsize = 3, ReLU) 
MaxPool2D (pool size = 2, strides = 2) 
Flatten () 
Dense (64, ReLU) 

Conv2D (64, kernel size = 3, ReLU) 
MaxPool2D (pool size = 2, strides = 2) 
Conv2D (64, kernel size = 3, ReLU) 
MaxPool2D (pool size = 2, strides = 2) 
Flatten () 
Dense (128, ReLU) 

4. Results analysis 
The results of all proposed models are presented in Tables 6–8 and discussed as follows: 

1) The M1 model without dropout and BN layer has the highest testing accuracy of 98.14%, 98.08%, 
and 99.50% for 46, 36, and 10 output classes, respectively, as shown in Table 6. 
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Table 6. Performance of proposed HDevChaRNet models without dropout and BN layer. 

Batch size = 200 M1 M2 M3 

Number of output 
classes 

Training 
accuracy 

Testing 
accuracy 

Training 
accuracy 

Testing 
accuracy 

Training 
accuracy 

Testing 
accuracy 

46 99.76 98.14 99.69 97.93 99.79 97.71 

36 99.55 98.08 99.42 97.39 99.93 97.07 

10 99.98 99.50 100 99.43 100 99.33 

2) The M1 model with BN layer has the highest testing accuracy of 99.17%, 98.75%, and 99.70% for 46, 
36, and 10 output classes, respectively, as shown in Table 7. 

3) When the results of Table 6 and Table 7 are compared it is found that M1 model has highest testing 
accuracy in both tables. The only difference is that M1 model without BN and dropout has more overfitting 
as compared to M1 model with BN. 

4) Each of the three models has the highest training accuracy of 100% for 10 output classes in all three 
phases of each model, as shown in Table 7. 

5) For 46 output classes, the CP of models M1 and M2 has the highest training and testing accuracy, 
whereas the FECP of model M3 has the highest training and testing accuracy, as shown in Table 7. 

6) The FECP of each of the three models has the highest training and testing accuracy for the 36 output 
classes among all three phases of each model, as shown in Table 7. 

7) The CP of each of the three models has the highest training and testing accuracy for 10 output classes 
among all three phases of each model, as shown in Table 7. 

Table 7. Performance of proposed HDevChaRNet models with BN layer. 

Accuracy 
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8) FECP of model M1 with dropout layer has the highest testing accuracy of 98.86%, 98.80%, and 
99.57% for 46, 36, and 10 output classes, whereas FEP of model M3 has the highest training accuracy of 
99.81%, 99.70%, and 99.90% for 46, 36, and 10 output classes, as shown in Table 8. 

9) In model M1, FECP has the highest training and testing accuracy for all output classes as compared 
to FEP and CP, as shown in Table 8. 
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10) In models M2 and M3, FEP has the highest training accuracy for all output classes as compared to 
CP and FECP, whereas FECP has the highest testing accuracy for all output classes as compared to FEP and 
CP, as shown in Table 8. 

Table 8. Performance of proposed HDevChaRNet models with dropout layer. 
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1) The accuracy graph shown in Figure 3 depicts that model M1 without dropout and BN has the 
highest testing accuracy for 10, 36 and 46 output classes. 

2) The accuracy graph shown in Figure 4 depicts that model M1 with BN at CP has the highest testing 
accuracy for 46 and 10 output classes. 

3) The accuracy graph shown in Figure 5 depicts that model M3 with BN at FECP has the second-
highest testing accuracy for 46 and 36 output classes, respectively. 

4) The accuracy graph shown in Figure 6 depicts that model M2 with BN at CP has the second highest 
testing accuracy for 10 output classes and has more overfitting for 46 and 36 output classes. 

 
Figure 3. Accuracy graph of proposed model HDevChaRNet M1 without dropout and BN. 
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Figure 4. Accuracy graph of proposed model HDevChaRNet M1 with BN layer at CP. 

 
Figure 5. Accuracy graph of proposed model HDevChaRNet M3 with BN layer at FECP. 

 
Figure 6. Accuracy graph of proposed model HDevChaRNet M2 with BN layer at CP. 

5) On comparing the performance of all models as shown in Tables 6–8, it is clear that the models with 
BN layers are giving better results as compared to models with dropout, without dropout and BN. 

6) In Table 9, comparisons of performances of the proposed models with other state-of-the-art are 
presented and observed the following outcomes: 
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• For 46 distinct characters (both consonants and numerals), the proposed HDevChaRNet model M1 
with batch normalization at classification phase has attained an accuracy of 99.17%, which is higher 
compared to the 98%, 98.47% and 99% attained by Acharya et al.[5], Aneja and Aneja[18] and Manocha and 
Tewari[26], respectively. 

• The proposed HDevChaRNet model M1 with batch normalization at feature extraction phase and 
classification phase has also attained a better accuracy of 98.75% compared to the 96.86% attained by 
Dokare et al.[13] for 36 distinct characters (consonants only). 

• The proposed HDevChaRNet model M1 with batch normalization at classification phase has attained 
a better accuracy of 99.70% compared to the 99.29% attained by Dokare et al.[13] for 10 distinct characters 
(numerals only). 

Table 9. Comparisons of performances of the proposed HDevChaRNet models with other states-of-the-art. 

Authors Approach Dataset 
used 

Character 
set used 
from dataset 

No. of 
samples used 
from dataset 

No. of distinct 
characters 
labels 

Batch 
size 

Accuracy 
(%) 

Aneja N and Aneja S[18] AlexNet, Vgg16 and 
Vgg19 

DHCD Consonants 
and numerals 

92,000 46 32 98 

Acharya S et al.[5] 4 layer CNN DHCD Consonants 
and numerals 

92,000 46 200 98.47 

Manocha SK and Tewari 
P[26] 

CNN as feature 
extractor with different 
classifiers 

DHCD Consonants 
and numerals 

92,000 46 - 99 

Proposed HDevChaRNet 
CP of M1 using BN 

8 layer CNN DHCD Consonants 
and numerals 

92,000 46 200 99.17 

Dokare I et al.[13] 4 layer CNN DHCD Consonants 72,000 36 200 96.86 

4 layer CNN DHCD Numerals 20,000 10 200 99.29 

Proposed HDevChaRNet 
FECP of M1 using BN 

8 layer CNN DHCD Consonants 72,000 36 200 98.75 

Proposed HDevChaRNet 
CP of M1 using BN 

8 layer CNN DHCD Numerals 20,000 10 200 99.70 

5. Future direction 
Due to the non-availability of standard public datasets for offline handwritten Devanagari characters, 

DHCD is being used for the proposed models. This dataset comprises consonants and numerals only, not 
vowels. So in the future, these proposed models can also be applied to datasets consisting of vowels, and the 
results can be compared with other state-of-the-art ones. As the proposed models are limited to the 
recognition of individual characters without modifiers, the work can be further extended to recognize the 
characters with modifiers or words or text of Devanagari. 

6. Conclusion 
Various experiments have been carried out at different phases (FEP, CP, and FECP) of the CNN 

architecture to demonstrate the main benefit of BN. It is found that BN allows training at a higher learning 
rate, leading to faster convergence and greater generalization as compared to dropout for recognizing 
Devanagari handwritten characters. Three models are proposed, and each of these has a different number of 
layers except the kernel size and pool size. Results are analyzed in three parts: neutral cases of models 
(where neither BN nor dropout layer is used); models using BN at different phases; and models using 
dropout at different phases. Models using BN have attained the highest accuracy among all the results when 
analyzed. 
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