
Journal of Autonomous Intelligence (2023) Volume 6 Issue 2
doi: 10.32629/jai.v6i2.679

1

Original Research Article

HDevChaRNet: A deep learning-based model for recognizing offline
handwritten devanagari characters
Bharati Yadav, Ajay Indian*, Gaurav Meena

Department of Computer Science, Central University of Rajasthan, Ajmer 305817, India
* Corresponding author: Ajay Indian, ajay.indian@curaj.ac.in

ABSTRACT
Optical character recognition (OCR) converts text images into machine-readable text. Due to the non-availability

of several standard datasets of Devanagari characters, researchers have used many techniques for developing an OCR
system with varying recognition rates using their own created datasets. The main objective of our proposed study is to
improve the recognition rate by analyzing the effect of using batch normalization (BN) instead of dropout in
convolutional neural network (CNN) architecture. So, a CNN-based model HDevChaRNet (Handwritten Devanagari
Character Recognition Network) is proposed in this study for same to recognize offline handwritten Devanagari
characters using a dataset named Devanagari handwritten character dataset (DHCD). DHCD comprises a total of 46
classes of characters, out of which 36 are consonants, and 10 are numerals. The proposed models based on
convolutional neural network (CNN) with BN for recognizing the Devanagari characters showed an improved accuracy
of 98.75%, 99.70%, and 99.17% for 36, 10, and 46 classes, respectively.
Keywords: character recognition; DHCD; deep learning; CNN; batch normalization; dropout

1. Introduction to offline handwritten
Devanagari character recognition (OHDCR)

The scientific community has been researching handwritten text
recognition (HTR) systems for the past two decades. The conversion
process of handwritten text or documents into digital text is termed
HTR[1]. Online HTR and offline HTR are the two basic types into
which HTR has been divided[2]. The writer’s choice of stroke
sequence when writing the text is the key distinction between the two.
In an online HTR, the recognition process has access to the order,
which aids the recognizer in producing better results.

In contrast, an offline HTR has only a scanned copy of the
handwritten documents, which presents numerous challenges in
correctly extracting text from images[2,3]. There is still a need to
develop more robust methods for extracting and recognizing
handwritten text on images, even though offline HTR has been
discussed for many years. The major causes are variations in
handwriting style and unconstrained handwriting.

As mentioned in the study of Puri and Singh[4], the Brahmi
script, the mother script of several Indian languages, is where
Devanagari started. The writing and reading script Devanagari is
widely used in a broad region of India. Devanagari developed and
advanced gradually from Brahmi, going through the following stages:

ARTICLE INFO

Received: 2 June 2023
Accepted: 19 July 2023
Available online: 15 August 2023

COPYRIGHT

Copyright © 2023 by author(s).
Journal of Autonomous Intelligenc is
published by Frontier Scientific Publishing.
This work is licensed under the Creative
Commons Attribution-NonCommercial 4.0
International License (CC BY-NC 4.0).
https://creativecommons.org/licenses/by-
nc/4.0/

2

Brahmi, Bharati (Bhagwat Gita), Gupta, Nagari, and Devanagari scripts. Many Indian languages, including
Hindi, Konkani, Marathi, Prakrit, Sanskrit, and Sindhi, are written in Devanagari. Additionally, it serves as
the additional script for the languages of Punjabi and Kashmiri. Many distinctive characteristics of
Devanagari may be seen, such as the fact that there are no capital or small letters and the letters are not
spelled out in any particular order; it is written left to right, top to bottom, and read in the order of sequence;
the use of a long, continuous horizontal top line (shirorekha) on the characters is a particularly distinctive
aspect of Devanagari; and each character’s top lines are connected one by one when characters are combined
to make a word, resulting in a single, lengthy shirorekha.

Recently, numerous techniques have been developed for offline Devanagari optical character
recognition (OCR). The processing of its documents still needs to be improved as it includes shirorekha, vast
character sets, complicated conjuncts, characteristic geometric structure of characters, and linguistic
complexities (top line)[4]. The Devanagari handwritten character dataset (DHCD) is a new publicly available
dataset comprised of character images segmented from documents written by hand that explores the
problems associated with Devanagari character recognition[5].

1.1. Introduction to the problem
The recognition rate is not very high for Devanagari characters. Non-availability of a standard dataset

for all characters of the Devanagari script; similarly, the dataset used in our proposed work does not
comprise vowels and modifier characters.

Existing challenges in the problem: need to improve the recognition rate of Devanagari characters.
Prepare a dataset of all characters (consonants, vowels, and numerals in one place) as well as of modifier
characters of the Devanagari script.

Contribution proposed study: the DHCD is utilized in the proposed work. A brief study of the existing
systems for Devanagari character recognition is specified in related work section. An attempt to improve the
recognition rate of existing systems by analyzing the effect of batch normalization (BN) at the different
levels of CNN architecture compared to dropout for recognizing the Devanagari characters efficiently. A
Devanagari character recognition system based on deep learning is proposed.

1.2. The general framework of character recognition task
As mentioned in the study of Indian and Bhatia[6], the framework of any character recognition task, in

general, consists of several phases, which are briefly described in Figure 1.

Figure 1. Phases of character recognition framework.

3

1) Image acquiring phase: this is the phase where a handwritten text or character on paper is turned into
a digital image. For this, handwritten text or characters on paper documents are scanned. The next phase is
then applied to these digital images.

2) Pre-processing phase: pre-processing aims to remove noise from an image so that the recognition
system can work well and give accurate results. The main goal is eliminating noise, normalizing the data,
and compressing it without losing important information.

3) Segmentation phase: in this phase, the text or character that has already been processed is broken up
into parts, such as paragraphs, sentences, words, and characters. It is a very important phase because being
able to separate lines into words and words into characters is directly related to how well one can read
handwritten characters. These images can also be turned into binary to be analyzed further.

4) Feature extraction phase: as feature sets are one of the most important parts of a recognition system,
a good feature set shows the characteristics of a class in a way that helps it stand out from other classes. The
main goal of this phase is to extract the best set of features, which reduces mistakes in recognition and as a
result, increases the rate of correct recognition.

5) Classification phase: in this phase, the features extracted in the feature extraction are used to decide
which class an input character belongs to. To make a classification model is done using different
classification methods, such as CNN, SVM, ANN, KNN, etc.

6) Recognition phase: This is the last phase, and it is responsible for using the classification model
made in the classification phase to recognize handwritten characters.

The paper is further organized into six sections. Some of the major studies done on offline character
recognition are reviewed in Section 2. Section 3 elaborates on the proposed methodology, covering a brief
overview of the dataset along with samples of consonants and numerals from the Devanagari script; an
introduction to the convolutional neural network; batch normalization and dropout; and lastly, the proposed
model architecture. In Section 4, the proposed models’ performances are discussed and compared with other
states of the art. Section 5 presents the future direction. At last, Section 6 concludes the present study.

2. Related work
Many researchers with different approaches have attempted offline handwritten character recognition as

a task. Much work has been reported to recognize characters written in Indic and non-indic scripts. This
section reviews several handwritten character recognition methods that have been used.

Bhalerao et al.[7] achieved an overall recognition accuracy of 95.81% by combining quadratic and SVM
classifiers with 3-fold cross-validation. The overall accuracy was computed by averaging the accuracy of
each character. A dataset of 29,440 samples collected from different individuals was used for the study.

Singh and Puri[4] proposed an offline Devanagari character classification system utilizing SVM for
recognizing the Shirorekha-Less (SL) character from scanned monolingual handwritten and printed Hindi,
Marathi, and Sanskrit document images. Features are extracted from SL characters and SL-modified
characters. For training, the SVM (gaussian kernel) classifier was employed, then tested using various
unidentified scanned text document images, and performance was examined. Both handwritten and printed
document images had an average SL classification accuracy of 99.54% and 98.35%, respectively.

For Indian bank cheques, the BCHWTR (bank cheque hand written text recognition) method is
proposed by Ghosh et al.[8]. A dataset of 100 individual people’s handwritten text on 100 separate bank
cheques is created using Latin script. The feature values from the grey level co-occurrence matrix and

4

histogram of oriented gradients were combined to create a final feature vector, which was then given to a
support vector machine (SVM) classifier.

Bhatia and Indian[9] developed “Tarang”, a feature extraction technique for recognizing and improving
offline handwritten Hindi “SWARs” accuracy. Three feature extraction techniques were implemented to
determine the feature of each sample image from the dataset of 1950 samples. The recognition rate increases
to 95.7% when both local and global wave features are combined.

Puri and Singh[10] developed a novel offline Hindi handwritten document classification system
(HHDCS). The Normal-Moderate-Complex (N-M-C) handwriting classification model found that N
handwriting performs better than M and C handwriting and uses the right spaces to produce positive
recognition results.

Rastogi et al.[11] utilized normalized chain code and gradient direction methods for producing the feature
vector of Gujarati numeral images and then trained it through a feed-forward back propagation neural
network with the Levenberg-Marquartdt function. A dataset of approximately 2500 samples was used.

Acharya et al.[5] created a new dataset, DHCD, which consists of 92,000 images. There are 46 characters
in the Devanagari script, which makes it publicly available for any researcher. According to the experimental
findings, CNNs with a dropout layer and a dataset augmentation method can produce extremely high
accuracy for testing, even for complex and varied datasets.

Krizhevsky et al.[12] have trained a large deep CNN for classifying 1.2 million high-resolution images
into thousands of distinct classes during the ImageNet LSVRC-2010 competition. The neural network (NN)
is built with five convolution layers. Some convolution layers were succeeded by max-pool layers, three
fully connected layers, and at last 1000-way softmax layer. The dropout regularization technique was used to
minimize the overfitting problem significantly.

Dokare et al.[13] explored using a CNN in this study to recognize Devanagari characters. The complexity
of applications like character recognition, which require a huge amount of data, can best be handled by deep
learning. The recognition accuracies for Devanagari consonants, vowels, and numbers are 98%, 97.56%, and
99%, respectively.

Bisht and Gupta[14] proposed two CNN-based models for recognizing the Devanagari-modified
characters. The accuracy of a single CNN architecture under six-fold cross-validation and in tests is 81.52%
and 81.62%, respectively. Stage-1 and Stage-2 validation accuracy for the double-CNN architecture were
reported at 89.80% and 85.65%, respectively.

Roy et al.[15] have described their work as creating a dynamic programming-based method for
recognizing city names and PIN codes in destination addresses on Indian mailing documents. Trilingual city
name recognition yielded a 0.20% error rate and a 28.11% rejection rate, whereas handwritten pin code
recognition yielded a 0.83% error rate and a 15.27% rejection rate.

Sharma et al.[16] used CNN to recognize city names in the postal automation field. The model was
trained and validated at different hyper-parameters on a dataset of 4000 samples from 10 classes in the
Gurumukhi script. An Adam optimizer with batch size four and a learning rate of 0.001 gave the best
average validation accuracy of 99.13% compared to the stochastic gradient descent (SGD) optimizer.

In addition to English, Roy et al.[17] suggested recognizing the city names, which are handwritten in
Bangla and Devanagari script. This study addresses recognizing city names written in trilingual form using
deep learning without script identification. A dataset with 24,460 samples collected from 391 cities was used
for this. The accuracy rates for Devanagari, Bangla, and English scripts are 93.29%, 96.27%, and 98.01%,
respectively.

5

Qureshi et al.[3] proposed converting the offline handwritten texts written on ruled-line pages into digital
text. A custom dataset was created by scanning 400 forms (sentences are from the IAM dataset) with 300 dpi
resolution and storing them as png files. Three experiments were performed to evaluate the overall
performance of the proposed method. The suggested method attained 26% improved accuracy in the simple
HTR case and 20% improved accuracy in the MXNET case.

Aneja and Aneja[18] proposed CNN and transfer learning for handwriting recognition. The “develop
model approach” or “pre-trained approach” both use a deep learning method known as “transfer learning”.
Fine-tuning and ConvNet (fixed feature extractors) are used in transfer learning. The dataset contains 46
different classes, each with 2000 images. Inception, Vgg, AlexNet, and DenseNet are the models ranked
from best to worst based on their accuracy levels.

The advantages of BN, which Bjorck et al.[19] have studied, were mostly mediated by higher learning
rates, and they contended that the increased implicit regularization of SGD, which enhances generalization,
results from the higher learning rate. This research demonstrated that significant parameter adjustments to
large learning rates were constrained by the potential for un-normalized networks to produce activations
whose magnitudes expand drastically with depth.

The study of Garbin et al.[20] revealed that deep neural network (DNN) training generally uses BN and
dropout to enhance the model’s performance. Including BN in CNN improves performance without other
observable side effects, whereas including dropout in CNN reduces accuracy significantly. BN should be one
of the initial steps to optimize a CNN, whereas dropout requires careful consideration as a cautionary sign.

Li et al.[21] used dropout layers in conjunction with batch normalization. They discovered that a neural
variance would be incorrect and displaced when information flows in inference due to their different test
strategies in CNN architecture. These insights can be used as practical guidance for improving deep learning
procedures. The above-proposed systems can be expanded to recognize and classify modified characters and
half-characters, image-based words, fonts, italicized text, and imaged documents, as well as numbers with
certain digits. They can also be used to recognize scripts with a higher level of complexity, such as
compound characters. Deep CNN has been observed as a system for recognizing Devanagari characters,
numerals, and modified characters with satisfactory accuracy.

This brief survey concludes that various methods have been employed to solve the OHDCR problem.
Deep learning is a technology making its way into the field of text recognition. DNN training is complicated
because the distribution of each layer’s inputs varies in training as the parameters of the preceding layers
change. Hence, it requires lower learning rates, which slows down training. It takes work to train models
with saturating nonlinearities known as the internal covariate shift, and it can be solved by normalizing layer
inputs. The model’s strength should include normalization within the architecture and execution of
normalization for each training mini-batch. The dropout requirement can be eliminated by using BN as a
regularizer in DNN, which improves accuracy irrespective of the dataset size with a higher learning rate and
fewer number epochs. In this study, the use of BN is analyzed in the feature extraction phase only, in the
classification phase only, and in both phases of CNN. In Tables 1 and 2, present the comparative analysis of
various character recognition approaches using different datasets of Devanagari script and non-indic script
respectively.

6

Table 1. Comparison of character recognition approaches using different datasets of Devanagari script.
S. No. Author Approach Dataset Number of classes Accuracy Year

1. Acharya S et al.[5] 4 layer CNN DHCD 46 98.47% 2015

2. Jangid M and
Srivastava S[22]

Layer wise deep CNN
and different adaptive
gradient methods

Isidchar and
V2DMDCHAR

47 98% 2018

3. Deore SP and
Pravin A[23]

Fine-tuned VGG 16
architecture

Own newly created 58 96.55% 2020

4. Mhapsekar M et
al.[24]

ResNet 34 and ResNet 50
compared with 4 layer
CNN and 8 layer CNN

DHCD 46 ResNet 50 =
99.35%

2020

5. Gurav Y et al.[25] Image processing and
deep learning

Own character dataset
without shirorekha

30 99.65% 2020

6. Dokare I et al.[13] 4 layer CNN DHCD
(consonants)

36 96.86% 2021

DHCD
(numerals)

10 99.29% 2021

7. Manocha SK and
Tewari P[26]

CNN as feature extractor
with different classifiers

DHCD 46 CNN + SVM
– RBF = 99%

2021

8. Mishra M et al.[27] Bottleneck version of the
residual module (ResNet
with 85 convolution
layer)

DHCD 46 99.72% 2021

9. Pande SM and Jha
BK[28]

Machine learning
classifiers like extra trees,
random forest, decision
tree, KNN, etc.

Own character dataset 43 Extra tree
classifier =
78%

2021

10. Sachdeva J and
Mittal S[29]

Edge histogram technique
with different machine
learning techniques

Own compound
character set

50 SVM =
99.88%

2021

Table 2. Comparison of character recognition approaches using different datasets of non-indic script.

S. No. Author Script Approach Dataset Accuracy Year

1. Sousa Neto AF et
al.[30]

English, French
and Latin (9th
century)

Gated-CNN-BGRU
model is motivated by the
Bluche model and
Puigcerver model

Bentham, IAM,
RIMES, saint
gall and
Washington

Outperformed existing HTR
systems by an average of
33% on five handwritten
benchmark datasets

2020

2. Manchala SY et
al.[31]

English NN (5 layers CNN, 2
layers RNN and CTC)
and tensorflow

IAM Above 90.3% 2020

3. Sree A et al.[32] English CNN, RNN, Android app
using kivy and kivy MD,
SQL alchemy for
database storage

IAM Proposed method 83% and
east text detector 46%

2021

4. Gupta N and Liu
W[33]

English Adaptive line
segmentation scheme
from unconstrained
document image using
MATLAB R 2014 b
version

Own (Dataset I
and Dataset II),
ICDAR09,
IAM

Own = 98.01%, IAM =
91.99% and ICDAR = 96%

2021

5. Wang Y et al.[34] Barcelona,
English,
Chinese

Offline HTR uses a
variety of deep learning
techniques for character,
word or line and multi-
lines recognition

BH2M, IAM,
Bentham, HIT-
MW, CASIA-
HWDB

Current contributions to the
offline HTR domain can be
categorized into two: HTR
with minimal supervision
and HTR module that is
quicker and smaller

2021

7

Table 2. (Continued).

S. No. Author Script Approach Dataset Accuracy Year

6. Mondal R et al.[35] English YOLOv3 object
recognition model trained
using darknet framework

IAM 29.21% WER and 9.53%
CER

2022

7. Kumari L et al.[36] English and
German

LexiconNet IAM, RIMES
and READ-
2016

Average accuracy increased
by 35.10% on IAM, 48.54%
on RIMES and 39.79% on
READ-2016 from previous
methods

2022

8. AlJarrah MN et
al.[37]

Arabic CNN AHCD 97.2% 2021

9. Alkhateeb JH et
al.[38]

Arabic CNN AHCR, AHCD,
and Hijja

89.8%, 95.4%, and 92.5% 2021

10 Nayef BH et al.[39] Arabic CNN with optimized
leaky ReLU

AHCD, Hijja
and self-
collected

99%, 90% and 95.4% 2021

3. Proposed methodology
3.1. Dataset

DHCD[5] is a large dataset of the Devanagari character images written by different persons and is widely
used by researchers for recognizing handwritten characters. This dataset is openly available at
https://archive.ics.uci.edu/ml/datasets/Devanagari+Handwritten+Character+Dataset. The DHCD contains 46
classes, of which 10 are numerals and 36 are consonants. The DHCD does not include vowels. The DHCD
has already undergone preprocessing. Each character image is resized to a size of 28 by 28 pixels with a
padding of 2 pixels. Padding makes dataset images have a size of 32 by 32 pixels. Images are grayscaled;
after this, the intensity of the characters is reversed. Random samples of numerals and consonants taken from
the DHCD dataset with assigned class labels are shown in Tables 3 and 4.

Table 3. DHCD numerals sample with assigned class labels.

Table 4. DHCD consonants sample with assigned class labels.

8

3.2. Convolutional neural networks (CNNs)
As mentioned in the studies of Indian and Bhatia[6] and Yamashita et al.[40], CNN is a type of artificial

neural network that has been used a lot in computer vision tasks and is the deep learning model with the most
well-known technique. CNN is a type of deep learning model used to process data with a grid pattern, like
images. CNN is a mathematical model that is usually made up of three types of layers: convolution, pooling,
and fully connected layers. The first two layers, convolution and pooling, extract features. The third layer, a
fully connected layer, maps the features that were extracted into the end output, which leads to classification.

As CNN-based models effectively extract features, they are utilized to resolve image classification
issues. The convolution layer (CL), pooling layer (PL), and fully-connected layer (FCL) are the building
blocks of any CNN model. The CNNs overall architecture is designed when these layers are combined. The
activation function (AF) and the dropout layer are two more important elements.

The first layer, the CL, is employed to distinguish the different highlights from a given input image.
Moving the channel over the input image yields the channel’s dot product and the input image’s various
components in terms of channel approximation. As mentioned in the study of Guha et al.[41], each CL output
can be expressed using Equation (1),

𝑂𝑂𝑂𝑂𝑂𝑂 =
(𝐿𝐿𝑖𝑖𝑖𝑖 + 2 × 𝑃𝑃𝑃𝑃𝑃𝑃 − 𝐹𝐹)

𝑆𝑆
+ 1 (1)

where, 𝑂𝑂𝑂𝑂𝑂𝑂 = size of the output, 𝐿𝐿𝑖𝑖𝑖𝑖 = size of the input, 𝑃𝑃𝑃𝑃𝑃𝑃 = padding size, 𝐹𝐹 = filters size, and 𝑆𝑆 =
size of stride to slide the filter.

As mentioned in the study of Guha et al.[41], a CL has three dimensions in,
Input = (𝐻𝐻𝑖𝑖𝑖𝑖 × 𝑊𝑊𝑖𝑖𝑖𝑖 × 𝐶𝐶𝑖𝑖𝑖𝑖) (2)

where, 𝐻𝐻𝑖𝑖𝑖𝑖 = input height, 𝑊𝑊𝑖𝑖𝑖𝑖 = input width and 𝐶𝐶𝑖𝑖𝑖𝑖 = input channels. Each layer in CNN architecture
has same calculation for output feature. By using Equation (3), neurons, parameters and connections are
produced by CLs,

𝑃𝑃 = 𝑊𝑊𝑡𝑡 + 𝐵𝐵 (3)
where, 𝑃𝑃 = parameters, 𝐵𝐵 = bias and 𝑊𝑊𝑡𝑡 = CLs weight calculated using Equation (4),

𝑊𝑊𝑡𝑡 = 𝐶𝐶𝑜𝑜𝑜𝑜𝑡𝑡 × (𝐻𝐻𝑖𝑖𝑖𝑖 × 𝑊𝑊𝑖𝑖𝑖𝑖) × 𝐶𝐶𝑖𝑖𝑖𝑖 (4)
where, 𝐶𝐶𝑜𝑜𝑜𝑜𝑡𝑡 = previous layer’s output channel.

The second layer, known as the PL, is employed to map features: max pooling gives the highest value
from the part of the image that the kernel covers whereas; average pooling gives the arithmetic mean of all
the values from the part of the image that the kernel covers.

As mentioned in the study of Guha et al.[41], the PL with M* M size filters is applied with a stride
expressed in Equations (5) and (6),

𝑊𝑊𝑜𝑜𝑜𝑜𝑡𝑡 =
(𝑊𝑊𝑖𝑖𝑖𝑖 − 𝐹𝐹)

𝑆𝑆
+ 1 (5)

𝐻𝐻𝑜𝑜𝑜𝑜𝑡𝑡 =
(𝐻𝐻𝑖𝑖𝑖𝑖 − 𝐹𝐹)

𝑆𝑆
+ 1 (6)

where, 𝑊𝑊𝑜𝑜𝑜𝑜𝑡𝑡 = output width, 𝑊𝑊𝑖𝑖𝑖𝑖 = input width, 𝐹𝐹 = filters, 𝑆𝑆 = stride, 𝐻𝐻𝑜𝑜𝑜𝑜𝑡𝑡 = output height and 𝐻𝐻𝑖𝑖𝑖𝑖
= input height.

The FCL, the third layer, flattens the features received from the CL and PL.

The BN layer, which normalizes the input of all network layers, is used instead of the dropout layer in
addition to CL, PL, and FCL, considerably reducing the training time. Deep neural networks’ intermediary
layers can have their activations normalized using the BN method. BN has been a preferred deep learning
approach due to its propensity to speed up training and increase accuracy.

9

The CNN model completes with the AF. Any variable-to-variable relationship in a network may be
learned and estimated using the AF. The two AFs used in the proposed models are the rectified linear unit
(ReLU) and softmax (SM).

As mentioned in the study of Romanuke[42], ReLU employs the non-saturating AF and sets negative
values to zero, effectively removing them from an activation map as expressed in Equation (7).

𝑓𝑓(𝑥𝑥) = max{0, 𝑥𝑥} (7)
SM computes probability distributions from a vector of real numbers, as specified in the study of

Nwankpa et al.[43]. The resulting output falls within the 0 to 1 value range, with a probability sum of 1. It is
used for multi-class models, returning the probabilities of each class, with the highest value going to be the
resultant class.

𝑓𝑓(xi) =
exp(xi)
∑ exp(xj)j

 (8)

For classifying multiple classes, the output layer uses the SM and AF, while the input layer and hidden
layers use the ReLU and AF.

3.2.1. Introduction to batch normalization and dropout
Dropout[44] is a method for preventing overfitting. Its core concept is to take an overfitting model and

then train sub-models by randomly pruning units from all training batches. Dropout pushes units to be more
resilient by continually removing arbitrary units, forcing them to learn features independently without
relying on other units. It may be considered a simplified model ensembling in this context. The dropout rate,
a new hyper-parameter, governs the number of units to keep in the NN.

BN was developed to address the unpredictability of NN and accelerate learning. A well-known strategy
is to normalize the values of each sample before feeding it to the neural network as input. BN takes one step
further by normalizing all network layers, not just the input layer. For each mini-batch, the normalization is
computed. This normalization enables greater learning rates during training[45].

As in the study of Bjorck et al.[19], BN is generally considered for CNN and computed using Equation
(9). The BN layer’s output and input are four-dimensional tensors known as 𝑂𝑂𝑏𝑏,𝑐𝑐,𝑥𝑥,𝑦𝑦 and 𝐼𝐼𝑏𝑏,𝑐𝑐,𝑥𝑥,𝑦𝑦
respectively. The dimensions correspond to examples inside a batch b, channel c, and two spatial
dimensions, x and y. BN uses the same normalization for all channel activations.

Ob,c,x,y ← γc
Ib,c,x,y − µc
�σc2 + ϵ

+ βc ∀b, c, x, y (9)

in Equation (9), BN subtracts the mean activation,

 µc =
1

|B|
� Ib,c,x,y

b,x,y
 (10)

From all input activations in channel 𝑐𝑐, 𝐵𝐵 contains all channel 𝑐𝑐 activations across all features 𝑏𝑏 in
the mini-batch and all spatial 𝑥𝑥 and 𝑦𝑦 locations. In BN, the centered activation is divided by the standard
deviation 𝜎𝜎𝑐𝑐 (plus ϵ for numerical stability), which is derived in the same way. Running mean and variance
averages are employed throughout testing. Normalization is then followed by a channel-wise affine
transformation that is parameterized via 𝛾𝛾𝑐𝑐 and 𝛽𝛽𝑐𝑐, which is learned during training.

3.3. Proposed HDevChaRNet: An overview
The proposed CNN model is briefly explained in this section, which is used to classify Devanagari

characters using the DHCD dataset. An outline of the proposed model is presented in Figure 2.

10

Figure 2. Outline of proposed HDevChaRNet model.

3.3.1. Proposed HDevChaRNet: Architecture
The DHCD consists of 32 × 32 grayscale images of characters and is one of the best-known datasets of

Devanagari handwritten numerals and consonants. Three CNN models are proposed in our study to
recognize the Devanagari characters. Except for the kernel size, pool size, and activation function, each CNN
model has a different number of CLs. Three strategies are proposed to study the application of BN in the
CNN model for recognizing the offline handwritten Devanagari characters.

1) FEP: Dropout and BN layers are used at the feature extraction phase of the CNN model.
2) CP: Dropout and BN layers are used at the classification phase of the CNN model, and
3) FECP: Dropout and BN layers are used at both feature extraction and classification phase of the
CNN model.

M1, M2, and M3 are the three proposed models with variations in the number of layers, number of
filters, and number of neurons, as shown in Table 5. All these models employ the Adam optimizer with a
default learning rate of 0.001 and a batch size of 200. All these models are employed for three output classes:
46 for both consonants and numerals, 36 for consonants only, and 10 for numerals only.

Table 5. Proposed architecture of model M1, M2 and M3 without dropout and BN Layer.

M1 M2 M3

Input: 32 × 32 × 1
Output: 46/36/10 classes, soft max

Input: 32 × 32 × 1
Output: 46/36/10 classes, soft max

Input: 32 × 32 × 1
Output: 46/36/10 classes, soft max

Conv2D (32, kernel size = 3, ReLU)
Conv2D (64, kernel size = 3, ReLU)
MaxPool2D (pool size = 2, strides = 2)
Conv2D (128, kernel size = 3, ReLU)
Conv2D (256, kernel size = 3, ReLU)
MaxPool2D (pool size = 2, strides = 2)
Conv2D (512, kernel size = 3, ReLU)
MaxPool2D (pool size = 2, strides = 2)
Flatten ()
Dense (128, ReLU)
Dense (64, ReLU)

Conv2D (64, kernel size = 3, ReLU)
MaxPool2D (pool size = 2, strides = 2)
Conv2D (64, kernel size = 3, ReLU)
MaxPool2D (pool size = 2, strides = 2)
Conv2D (64, kernelsize = 3, ReLU)
MaxPool2D (pool size = 2, strides = 2)
Flatten ()
Dense (64, ReLU)

Conv2D (64, kernel size = 3, ReLU)
MaxPool2D (pool size = 2, strides = 2)
Conv2D (64, kernel size = 3, ReLU)
MaxPool2D (pool size = 2, strides = 2)
Flatten ()
Dense (128, ReLU)

4. Results analysis
The results of all proposed models are presented in Tables 6–8 and discussed as follows:

1) The M1 model without dropout and BN layer has the highest testing accuracy of 98.14%, 98.08%,
and 99.50% for 46, 36, and 10 output classes, respectively, as shown in Table 6.

11

Table 6. Performance of proposed HDevChaRNet models without dropout and BN layer.

Batch size = 200 M1 M2 M3

Number of output
classes

Training
accuracy

Testing
accuracy

Training
accuracy

Testing
accuracy

Training
accuracy

Testing
accuracy

46 99.76 98.14 99.69 97.93 99.79 97.71

36 99.55 98.08 99.42 97.39 99.93 97.07

10 99.98 99.50 100 99.43 100 99.33

2) The M1 model with BN layer has the highest testing accuracy of 99.17%, 98.75%, and 99.70% for 46,
36, and 10 output classes, respectively, as shown in Table 7.

3) When the results of Table 6 and Table 7 are compared it is found that M1 model has highest testing
accuracy in both tables. The only difference is that M1 model without BN and dropout has more overfitting
as compared to M1 model with BN.

4) Each of the three models has the highest training accuracy of 100% for 10 output classes in all three
phases of each model, as shown in Table 7.

5) For 46 output classes, the CP of models M1 and M2 has the highest training and testing accuracy,
whereas the FECP of model M3 has the highest training and testing accuracy, as shown in Table 7.

6) The FECP of each of the three models has the highest training and testing accuracy for the 36 output
classes among all three phases of each model, as shown in Table 7.

7) The CP of each of the three models has the highest training and testing accuracy for 10 output classes
among all three phases of each model, as shown in Table 7.

Table 7. Performance of proposed HDevChaRNet models with BN layer.

Accuracy

N
um

be
r

of
 o

ut
pu

t
cl

as
se

s

M1 M2 M3

FEP CP FECP FEP CP FECP FEP CP FECP

T
ra

in
in

g

T
es

tin
g

T
ra

in
in

g

T
es

tin
g

T
ra

in
in

g

T
es

tin
g

T
ra

in
in

g

T
es

tin
g

T
ra

in
in

g

T
es

tin
g

T
ra

in
in

g

T
es

tin
g

T
ra

in
in

g

T
es

tin
g

T
ra

in
in

g

T
es

tin
g

T
ra

in
in

g

T
es

tin
g

46

99
.8

1

98
.7

0

10
0

99
.1

7

99
.9

2

98
.9

1

99
.9

1

98
.4

6

10
0

98
.8

0

10
0

98
.7

9

99
.8

0

98
.1

5

10
0

98
.8

0

10
0

98
.9

3

36

99
.5

0

98
.4

0

99
.6

4

98
.1

7

99
.8

9

98
.7

5

99
.9

9

98
.4

3

98
.1

3

96
.2

4

10
0

98
.7

2

99
.9

2

98
.0

8

10
0

98
.5

8

10
0

98
.7

3

10

10
0

99
.6

0

10
0

99
.7

0

10
0

99
.5

7

10
0

99
.5

7

10
0

99
.6

9

10
0

99
.6

3

10
0

99
.4

7

10
0

99
.6

0

10
0

98
.5

7

8) FECP of model M1 with dropout layer has the highest testing accuracy of 98.86%, 98.80%, and
99.57% for 46, 36, and 10 output classes, whereas FEP of model M3 has the highest training accuracy of
99.81%, 99.70%, and 99.90% for 46, 36, and 10 output classes, as shown in Table 8.

9) In model M1, FECP has the highest training and testing accuracy for all output classes as compared
to FEP and CP, as shown in Table 8.

12

10) In models M2 and M3, FEP has the highest training accuracy for all output classes as compared to
CP and FECP, whereas FECP has the highest testing accuracy for all output classes as compared to FEP and
CP, as shown in Table 8.

Table 8. Performance of proposed HDevChaRNet models with dropout layer.

Accuracy

N
um

be
r

of
 o

ut
pu

t
cl

as
se

s

M1 M2 M3

FEP CP FECP FEP CP FECP FEP CP FECP

T
ra

in
in

g

T
es

tin
g

T
ra

in
in

g

T
es

tin
g

T
ra

in
in

g

T
es

tin
g

T
ra

in
in

g

T
es

tin
g

T
ra

in
in

g

T
es

tin
g

T
ra

in
in

g

T
es

tin
g

T
ra

in
in

g

T
es

tin
g

T
ra

in
in

g

T
es

tin
g

T
ra

in
in

g

T
es

tin
g

46

99
.3

1

98
.7

4

99
.2

0

98
.3

6

99
.4

1

98
.8

6

99
.0

5

98
.6

4

98
.9

9

98
.3

3

98
.0

6

98
.7

1

99
.8

1

98
.0

0

99
.2

0

98
.3

8

99
.3

7

98
.7

5

36

98
.9

7

98
.3

1

98
.6

7

97
.9

6

99
.0

2

98
.8

0

99
.2

6

98
.4

8

99
.2

4

98
.0

4

98
.4

2

98
.6

9

99
.7

0

97
.8

0

98
.6

6

97
.7

9

99
.4

0

98
.4

6

10

99
.6

6

99
.3

7

99
.6

1

99
.4

3

99
.6

7

99
.5

7

99
.8

4

99
.4

7

99
.5

9

99
.4

7

99
.2

9

99
.5

0

99
.9

0

99
.3

0

99
.8

5

99
.4

7

99
.7

3

99
.5

3

1) The accuracy graph shown in Figure 3 depicts that model M1 without dropout and BN has the
highest testing accuracy for 10, 36 and 46 output classes.

2) The accuracy graph shown in Figure 4 depicts that model M1 with BN at CP has the highest testing
accuracy for 46 and 10 output classes.

3) The accuracy graph shown in Figure 5 depicts that model M3 with BN at FECP has the second-
highest testing accuracy for 46 and 36 output classes, respectively.

4) The accuracy graph shown in Figure 6 depicts that model M2 with BN at CP has the second highest
testing accuracy for 10 output classes and has more overfitting for 46 and 36 output classes.

Figure 3. Accuracy graph of proposed model HDevChaRNet M1 without dropout and BN.

13

Figure 4. Accuracy graph of proposed model HDevChaRNet M1 with BN layer at CP.

Figure 5. Accuracy graph of proposed model HDevChaRNet M3 with BN layer at FECP.

Figure 6. Accuracy graph of proposed model HDevChaRNet M2 with BN layer at CP.

5) On comparing the performance of all models as shown in Tables 6–8, it is clear that the models with
BN layers are giving better results as compared to models with dropout, without dropout and BN.

6) In Table 9, comparisons of performances of the proposed models with other state-of-the-art are
presented and observed the following outcomes:

14

• For 46 distinct characters (both consonants and numerals), the proposed HDevChaRNet model M1
with batch normalization at classification phase has attained an accuracy of 99.17%, which is higher
compared to the 98%, 98.47% and 99% attained by Acharya et al.[5], Aneja and Aneja[18] and Manocha and
Tewari[26], respectively.

• The proposed HDevChaRNet model M1 with batch normalization at feature extraction phase and
classification phase has also attained a better accuracy of 98.75% compared to the 96.86% attained by
Dokare et al.[13] for 36 distinct characters (consonants only).

• The proposed HDevChaRNet model M1 with batch normalization at classification phase has attained
a better accuracy of 99.70% compared to the 99.29% attained by Dokare et al.[13] for 10 distinct characters
(numerals only).

Table 9. Comparisons of performances of the proposed HDevChaRNet models with other states-of-the-art.

Authors Approach Dataset
used

Character
set used
from dataset

No. of
samples used
from dataset

No. of distinct
characters
labels

Batch
size

Accuracy
(%)

Aneja N and Aneja S[18] AlexNet, Vgg16 and
Vgg19

DHCD Consonants
and numerals

92,000 46 32 98

Acharya S et al.[5] 4 layer CNN DHCD Consonants
and numerals

92,000 46 200 98.47

Manocha SK and Tewari
P[26]

CNN as feature
extractor with different
classifiers

DHCD Consonants
and numerals

92,000 46 - 99

Proposed HDevChaRNet
CP of M1 using BN

8 layer CNN DHCD Consonants
and numerals

92,000 46 200 99.17

Dokare I et al.[13] 4 layer CNN DHCD Consonants 72,000 36 200 96.86

4 layer CNN DHCD Numerals 20,000 10 200 99.29

Proposed HDevChaRNet
FECP of M1 using BN

8 layer CNN DHCD Consonants 72,000 36 200 98.75

Proposed HDevChaRNet
CP of M1 using BN

8 layer CNN DHCD Numerals 20,000 10 200 99.70

5. Future direction
Due to the non-availability of standard public datasets for offline handwritten Devanagari characters,

DHCD is being used for the proposed models. This dataset comprises consonants and numerals only, not
vowels. So in the future, these proposed models can also be applied to datasets consisting of vowels, and the
results can be compared with other state-of-the-art ones. As the proposed models are limited to the
recognition of individual characters without modifiers, the work can be further extended to recognize the
characters with modifiers or words or text of Devanagari.

6. Conclusion
Various experiments have been carried out at different phases (FEP, CP, and FECP) of the CNN

architecture to demonstrate the main benefit of BN. It is found that BN allows training at a higher learning
rate, leading to faster convergence and greater generalization as compared to dropout for recognizing
Devanagari handwritten characters. Three models are proposed, and each of these has a different number of
layers except the kernel size and pool size. Results are analyzed in three parts: neutral cases of models
(where neither BN nor dropout layer is used); models using BN at different phases; and models using
dropout at different phases. Models using BN have attained the highest accuracy among all the results when
analyzed.

15

Data availability
The dataset used in this research is openly available at

https://archive.ics.uci.edu/ml/datasets/Devanagari+Handwritten+Character+Dataset.

Author contributions
Conceptualization, BY and AI; methodology, BY; software, BY; validation, BY, AI and GM; formal

analysis, BY; investigation, BY; resources, BY and AI; data curation, BY; writing—original draft
preparation, BY; writing—review and editing, BY, AI and GM; visualization, BY; supervision, AI.

Conflict of interest
The authors declare no conflict of interest.

References
1. Bal A, Saha R. An improved method for handwritten document analysis using segmentation, baseline recognition

and writing pressure detection. Procedia Computer Science 2016; 93: 403–415. doi: 10.1016/j.procs.2016.07.227
2. Bozinovic RM, Srihari SN. Offline cursive script word recognition. IEEE Transactions on Pattern Analysis and

Machine Intelligence 1989; 11(1): 68–83. doi: 10.1109/34.23114
3. Qureshi F, Rajput A, Mujtaba G, Fatima N. A novel offline handwritten text recognition technique to convert

ruled-line text into digital text through deep neural networks. Multimedia Tools and Applications 2022; 81(13):
18223–18249. doi: 10.1007/s11042-022-12097-7

4. Puri S, Singh SP. An efficient devanagari character classification in printed and handwritten documents using
SVM. Procedia Computer Science 2019; 152: 111–121. doi: 10.1016/j.procs.2019.05.033

5. Acharya S, Pant AK, Gyawali PK. Deep learning based large scale handwritten devanagari character recognition.
In: Proceedings of 2015 9th International Conference on Software, Knowledge, Information Management and
Applications (SKIMA); 15–17 December 2015; Kathmandu, Nepal.

6. Indian A, Bhatia K. A survey of offline handwritten hindi character recognition. In: Proceedings of 2017 3rd
International Conference on Advances in Computing, Communication & Automation (ICACCA); 15–16
September 2017; Dehradun, India. pp. 1–6.

7. Bhalerao M, Bonde S, Nandedkar A, Pilawan S. Combined classifier approach for offline handwritten Devanagari
character recognition using multiple Features. In: Computational Vision and Bio Inspired Computing, 1st ed.
Springer; 2018. pp. 45–54.

8. Ghosh R, Panda C, Kumar P. Handwritten text recognition in bank cheques. In: Proceedings of 2018 Conference
on Information and Communication Technology (CICT’18); 26–28 October 2018; Jabalpur, India.

9. Bhatia K, Indian A. Offline handwritten hindi ‘SWARs’ recognition using a novel wave based feature extraction
method. International Journal of Computer Science Issues 2017; 14(4): 8–14. doi: 10.20943/01201704.814

10. Puri S, Singh SP. Toward recognition and classification of hindi handwritten document image. In: Ambient
Communications and Computer Systems, 1st ed. Springer; 2019. pp. 497–507.

11. Rastogi N, Dutta M, Indian A. Offline handwritten numerals recognition using combinational feature extraction
approach. International Journal of Innovative Research in Computer and Communication Engineering 2017; 5(4):
7844–7851.

12. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks.
Advances in Neural Information Processing Systems 2012; 25(2): 84–90. doi: 10.1145/3065386

13. Dokare I, Gadge S, Kharde K, et al. Recognition of handwritten devanagari character using convolutional neural
network. In: Proceedings of 2021 3rd International Conference on Signal Processing and Communication (ICPSC);
13–14 May 2021; Tamil Nadu, India.

14. Bisht M, Gupta R. Offline handwritten devanagari modified character recognition using convolutional neural
network. Sadhana 2021; 46(1). doi:10.1007/s12046-020-01532-w

15. Roy RK, Pal U, Roy K, Kimura F. A system for recognition of destination address in postal documents of India.
Malaysian Journal of Computer Science 2020; 3(3): 202–216. doi: 10.22452/mjcs

16. Sharma S, Gupta S, Gupta D, et al. Recognition of gurumukhi handwritten city names using deep learning and
cloud computing. Scientific Programming 2022; 2022. doi: 10.1155/2022/5945117

17. Roy RK, Mukherjee H, Roy K, Pal U. CNN based recognition of handwritten multilingual city names. Multimedia
Tools and Applications 2022; 81(8): 11501–11517. doi: 10.1007/s11042-022-12193-8

18. Aneja N, Aneja S. Transfer learning using CNN for handwritten devanagari character recognition. In: Proceedings
of 2019 1st International Conference on Advances in Information Technology (ICAIT); 25–27 July 2019;
Chikmagalur, India.

16

19. Bjorck J, Gomes C, Selman B, Weinberger KQ. Understanding batch normalization. In: Proceedings of 32nd
Conference on Neural Information Processing Systems (NeurIPS 2018); 2–8 December 2018; Montréal, Canada.

20. Garbin C, Zhu X, Marques O. Dropout vs. batch normalization: An empirical study of their impact to deep
learning. Multimedia Tools and Applications 2020; 79(19–20): 12777–12815. doi: 10.1007/s11042-019-08453-9

21. Li X, Chen S, Hu X, Yang J. Understanding the disharmony between dropout and batch normalization by variance
shift. In: Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 15–
20 June 2019; Long Beach CA, USA.

22. Jangid M, Srivastava S. Handwritten devanagari character recognition using layer-wise training of deep
convolutional neural networks and adaptive gradient methods. Journal Imaging 2018; 4(2): 41. doi:
10.3390/jimaging4020041

23. Deore SP, Pravin A. Devanagari handwritten character recognition using fine-tuned deep convolutional neural
network on trivial dataset. Sadhana 2020; 45(1): 243. doi: 10.1007/s12046-020-01484-1

24. Mhapsekar M, Mhapsekar P, Mhatre A, Sawant V. Implementation of residual network (ResNet) for devanagari
handwritten character recognition. In: Vasudevan H, Michalas A, Shekokar N, et al. (editors). Advanced
Computing Technologies and Applications. Springer, Singapore; 2020.

25. Gurav Y, Bhagat P, Jadhav R, Sinha S. Devanagari handwritten character recognition using convolutional neural
networks. In: Proceedings of 2020 International Conference on Electrical, Communication, and Computer
Engineering (ICECCE); 12–13 June 2020; Istanbul, Turkey. pp. 1–6.

26. Manocha SK, Tewari P. Devanagari handwritten character recognition using CNN as feature extractor. In:
Proceedings of 2021 International Conference on Smart Generation Computing, Communication and Networking
(SMART GENCON); 29–30 October 2021; Pune, India. pp. 1–5.

27. Mishra M, Choudhury T, Sarkar T. Devanagari handwritten character recognition. 2021 IEEE India Council
International Subsections Conference (INDISCON) 2021; 1–6. doi: 10.1109/INDISCON53343.2021.9582192

28. Pande SM, Jha BK. Character recognition system for devanagari script using machine learning approach. In:
Proceedings of 2021 5th International Conference on Computing Methodologies and Communication (ICCMC);
8–10 April 2021; Erode, India. pp. 899–903.

29. Sachdeva J, Mittal S. Handwritten offline devanagari compound character recognition using machine learning. In:
Proceedings of ACI’21: Workshop on Advances in Computational Intelligence at ISIC 2021; 25–27 February
2021; Delhi, India.

30. Sousa Neto AF, Bezerra BLD, Toselli AH, Lima EB. HTR-Flor: A deep learning system for offline handwritten
text recognition. In: Proceedings of 2020 33rd Sibgrapi Conference on Graphics, Patterns and Images
(SIBGRAPI); 7–10 November 2020; Porto de Galinhas, Brazil.

31. Manchala SY, Kinthali J, Kotha K, et al. Handwritten text recognition using deep learning with tensorflow.
International Journal of Engineering Research & Technology (IJERT) 2020; 9(5). doi:
10.17577/IJERTV9IS050534

32. Sree A, Chennamsetti V, Maliakal DT, et al. Handwriting recognition using CNN and RNN. Journal of Chengdu
University of Technology (Science and Technology Edition) 2021; 26(7).

33. Gupta N, Liu W. Line segmentation from unconstrained handwritten text images using adaptive approach.
Computer Science 2021. doi: 10.48550/arXiv.2104.08777

34. Wang Y, Xiao W, Li S. Offline handwritten text recognition using deep learning: A review. Journal of Physics:
Conference Series 2021; 1848(1): 012015. doi: 10.1088/1742-6596/1848/1/012015

35. Mondal R, Malakar S, Smith EHB, Sarkar R. Handwritten English word recognition using a deep learning based
object detection architecture. Multimedia Tools and Applications 2022; 81(1): 975–1000. doi: 10.1007/s11042-
021-11425-7

36. Kumari L, Singh S, Rathore VVS, Sharma A. A comprehensive handwritten paragraph text recognition system:
LexiconNet. arXiv 2022; arXiv:2205.11018. doi: 10.48550/arXiv.2205.11018

37. AlJarrah MN, Zyout MM, Duwairi R. Arabic handwritten characters recognition using convolutional neural
network. In: Proceedings of 2021 12th International Conference on Information and Communication Systems
(ICICS); 24–26 May 2021; Valencia, Spain, pp. 182–188.

38. Alkhateeb JH, Turani A, Abuhamdah A, et al. An effective deep learning approach for improving off-line arabic
handwritten character recognition. International Journal of Software Engineering and Computer Systems 2021;
6(2): 104–112. doi: 10.15282/ijsecs.6.2.2020.7.0076

39. Nayef BH, Abdullah SNHS, Sulaiman R, Alyasseri ZAA. Optimized leaky ReLU for handwritten arabic character
recognition using convolution neural networks. Multimedia Tools and Applications 2022; 81: 2065–2094. doi:
10.1007/s11042-021-11593-6

40. Yamashita R, Nishio M, Do RK, Togashi K. Convolutional neural networks: An overview and application in
radiology. Insights into Imaging 2018; 9(4): 611–629. doi: 10.1007/s13244-018-0639-9

41. Guha R, Das N, Kundu M, et al. DevNet: An efficient CNN architecture for handwritten devanagari character
recognition. International Journal of Pattern Recognition and Artificial Intelligence 2019; 34(12): 20052009. doi:
10.1142/S0218001420520096

https://link.springer.com/article/10.1007/s11042-021-11593-6#auth-Zaid_Abdi_Alkareem-Alyasseri
https://doi.org/10.1007/s13244-018-0639-9

17

42. Romanuke V. Appropriate number and allocation of RELU in convolutional neural network. Research Bulletin of
the National Technical University of Ukraine Kyiv Politechnic Institute 2017; 1: 69–78. doi: 10.20535/1810-
0546.2017.1.88156

43. Nwankpa C, Ijomah W, Gachagan A, Marshall S. Activation functions: Comparison of trends in practice and
research for deep learning. In: Proceedings of 2nd International Conference on Computational Sciences and
Technology; 17–19 December 2020; Jamshoro, Pakistan.

44. Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: A simple way to prevent neural networks from overfitting.
Journal of Machine Learning Research 2014; 15(1): 1929–1958. doi: 10.5555/2627435.2670313

45. Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift.
In: Proceedings of the 32nd International Conference on International Conference on Machine Learning; 6–11 July
2015; Lille, France. pp. 448–456.

