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ABSTRACT 

The present research proposes a high-capacity reversible data embedding technique (RDH-EI) for applications 

utilizing cloud storage that use a recursive look ahead adaptive MSB prediction approach. The paper also proposes a 

three-level image encryption approach where on the first level, the image is subdivided into 4 × 4 blocks and the blocks 

are permuted. In the second level, two different neighbourhoods namely the middle neighbourhood and peripheral 

neighbourhood are estimated, from which the elements of the middle neighbourhood are permuted within the respective 

neighbourhood. In the third level, the elements of the peripheral neighbourhood without including the elements of the 

middle neighbourhood are permuted within the respective neighbourhood. The image that was encrypted by the image 

owner was uploaded to the cloud. Out of five different neighbourhoods estimated on the 4 × 4 blocks, the best 

neighbourhood is then estimated from the encrypted image which provides a maximum embedding capacity. The data is 

then embedded in the best neighbourhood using the adaptive MSB prediction algorithm. Once the embedding iteration is 

completed, the marked encrypted image obtained on the previous iteration is again evaluated for the best neighbourhood. 

This recursive process is repeated till the embedding capacity of the best neighbourhood is less than the threshold. The 

standard test images from the datasets BOSS base, UCID and BOWS-2 were used to evaluate the proposed approach 

using measures like embedding rate, SSIM and PSNR. The suggested method offers an average embedding rate that is 

greater than previous recent RDH-EI approaches, at 3.714 bpp, 3.4826 bpp and 2.9412 bpp for the datasets BOSS base, 

BOWS-2 and UCID, respectively. 
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1. Introduction 

Numerous users upload their private data to cloud storage as a 

result of the cloud technology’s rapid growth. Integrity, authentication, 

and secrecy are a few of the threats to cloud storage, though. To protect 

the privacy of content, encryption is a solution. Reversible data 

concealment is supported by a number of approaches, such as 

prediction error[1], integer transforms[2], histogram shifting[3], and 

difference expansion[4]. Before being uploaded to the cloud, the 

original image is often encrypted in order to preserve its privacy-

related information. With the integer transform method, the embedding 

capacity is larger. After embedding the data, the histogram shifting-

based method produces an image with good visual quality. The 

capacity is considerably enhanced by the fact that the data is placed on 

peak points of the histogram. The difference value computed between 

two adjacent pixels is enlarged to embed the data in difference 

expansion schemes. A significant degree of distortion and poor 

embedding capacity are produced by the lossless compression-based 

method. There is a risk of privacy leaking in a cloud that is only 
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partially trustworthy. Based on RDH-EI, there are two methods for protecting image privacy: (i) reserving the 

room before encryption; and (ii) vacating the room after encryption. 

After encryption, the user leaves the room and uploads the image to the cloud, where the cloud embeds 

the extra data needed to manage the encrypted image. Zhang[5] performs an exclusive-OR operation, which 

embeds the extra information by flipping three LSBs of the pixel in the encrypted image. Data is also embedded 

in various LSBs using multi-layer wet paper coding[6]. A parity check matrix compresses the LSB plane to 

embed the data[7]. Qian and Zhang[8] employed a low-density parity check to create a spare room. Chen et al.[9] 

presented lightweight cryptography with multi-secret sharing, where no secret key is shared between the data 

hider and receiver. 

Before encryption, while reserving a room, the plain image of the room is reserved. There is enough data 

included in the encrypted image that was uploaded to the cloud to handle it. Zhang et al.[10] employed prediction 

error and the histogram of prediction error to incorporate the data. The LSBs of a few pixels are integrated into 

other pixels to save space Ma et al.[11]. Patch-level representation was employed by Cao et al.[12] to increase 

embedding capacity. This room reservation before encryption offers a huge payload. 

The following is the paper’s contribution. The study suggests an approach for embedding adaptive MSB 

predictor data on encrypted images that is recursive and looks ahead. The research also suggests data 

encryption based on three-level permutations to encrypt the photos. The best neighbourhood with the highest 

embedding capacity is found by the look-ahead adaptive data embedding algorithm, which then embeds the 

data there. Finally, the PSNR, SSIM and embedding rate metrics were used to evaluate the suggested approach. 

The remaining sections are organised as shown below. In Section 2, a few of the connected works are 

covered. The suggested recursive look-ahead adaptive MSB predictor data embedding and extraction method 

is shown in Section 3. Additionally, it demonstrates how the three-level permutation-based Image 

encryption/decryption system functions. The experimental outcomes of the suggested data embedding 

approach are shown in Section 4. Section 5 brings the process to a close. 

This research work contributes a high-capacity reversible data embedding technique (RDH-EI) for cloud 

storage applications, featuring a three-level image encryption process and a recursive look ahead adaptive 

MSB prediction approach. It achieves superior embedding rates compared to previous methods, offering 

potential advancements in secure and efficient data hiding within cloud-based environments. 

2. Related works 

The image, which resembles a chess board, was divided into two groups by the authors Wu and Sun[13]: 

the qualifying set and the banned set. The qualifying set is the only set that is used to embed the data; the 

banned set is not utilised. The qualified set is also broken into smaller segments by the authors Nguyen et al.[14], 

who used smooth areas to insert the extra data. The most important bit was changed by author Mansoor 

Mohammadi et al.[15] in order to incorporate the data. A prediction approach is employed during the extraction 

phase to rebuild the original image. Block permutation and a particular stream encryption technique were 

employed by Huang et al.[16] to encrypt data. To embed the data, the plain image is divided into blocks, and 

the positions of the blocks are changed using a process known as scrambling. The data is concealed in these 

components using a histogram shifting method based on a bit-plane parameter according to Di et al.[17] 

classification of the bit-planes received from the encrypted image into two components. 

When embedding the data, pixel value ordering[18] is employed. The plain image is broken into 22 blocks, 

and each block is then block permuted to produce the encrypted image. Block-based encryption is employed 

by Tang et al.[19] to communicate spatial correlation between the adjacent pixels, where the compression is 

carried out among the encrypted pixel difference to vacate the room. In addition, Huffman coding[20] MSB bit-
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plane and adaptive block encoding are utilized, with positive outcomes. Yi and Zhou[21] suggested a binary 

tree labelling method that embeds the data on the encrypted image. Puteaux and Puech[22] embed the data on 

MSB instead of LSB, flipping the MSB of the plain picture pixel to obtain its inverse. Estimates are made of 

the absolute difference between the inverse values. Similar to that, an estimate is also made of the absolute 

difference between the original pixel value and the predicted value. If the difference between the inverse value 

and prediction value is greater than the difference between the original pixel value and prediction value, one 

hidden bit may be encoded. If the requirement is not met, the data cannot be incorporated. With this method, 

the embedding rate is about 1 bpp. 

The number of subsequent MSB with the same value was computed by Yin et al.[23] and the difference 

between the prediction value and the original pixel value was used to embed the data. The additional data is 

compressed using Huffman coding. The pixels whose value is closer to the prediction values are not used, 

despite the fact that this strategy offers a high embedding rate. The authors Wu et al.[24] suggested a recursive 

method from MSB to LSB using a combination of encryption, reversible adaptation, error prediction, and 

embedding. Every bit plane is rebuilt during the extraction phase from the LSB to the MSB plane Puteaux and 

Puech[25] proposed a smart RDH-EI that estimates the prediction error between the reference pixel and the last 

remaining pixel of each block. The estimated prediction error value determines the potential payload for each 

pixel. The RDH-EI that the authors Wang and He[26] presented groups the image into various blocks. The 

encryption is then carried out block-by-block. The top-left pixel in a 22 block is utilised to anticipate the other 

pixels during the embedding step. 

Data is concealed in two phases via a hierarchical embedding, as employed by Yu et al.[27]. Using a 

prediction approach, a hierarchical label map is created from the bit-plane of the plain text picture in the first 

stage. After compression, a label map is embedded in the second stage. Three different prediction errors of 

various sizes, including large, medium and tiny are estimated; the prediction errors of large and small sizes are 

employed to carry secret data. By using vector quantization compression to identify the pixels that need to 

leave the room before encryption, Xu et al.[28] offer vector quantization prediction. In the embedding process, 

adaptive block selection is utilised, where different data sizes are embedded on various blocks dependent on 

their type. 

A double linear regression predictor with additional auxiliary rooms is employed by Li et al.[29] for secret 

data embedding. For data embedding, Yin et al.[30] combined pixel prediction with a multi-MSB plane. The 

median edge detector first estimates the prediction value, and one bit-plane is represented by the sign of the 

prediction error while the other bit-planes are represented by the absolute values of the prediction error. To 

embed the data adaptively, the bit-planes are then divided into uniform and non-uniform blocks. A data 

embedding approach using different time Arnold transform, sub-block position disordering, and bit-plane 

disordering was proposed by the authors Bas et al.[31]. A 2D-logistic modified sign map is utilised as encryption 

to increase security. The research suggests iteratively embedding the data using an adaptive look-ahead 

embedding method. The block with the highest embedding capacity is estimated prior to embedding the data 

in it. The suggested data embedding method is displayed in the next section. 

3. Proposed method 

Block diagram of a novel data embedding and extraction procedure is shown in Figure 1. 

The block diagram of the suggested data embedding and extraction technique is shown in Figure 1. Three-

level block permute image encryption, recursive look ahead adaptive MSB predictor data embedding, recursive 

look ahead adaptive MSB predictor data extraction, and three-level block permute image decryption are the 

four operations that make up the proposed reversible data hiding approach. Let G0 represent the user’s 

uncomplicated cloud-uploadable image. The picture owner will encrypt the image using the three-level 
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permutation method to produce the encrypted image G3 in order to protect the privacy content of the image as 

displayed in Figure 2. 

 
Figure 1. Proposed data embedding/extraction procedure. 

 

Figure 2. Three-level permutation-based image encryption. 

3.1. Three-level block permute image encryption 

Let M × N stand in for the G0 image’s size when it comes to encryption. Three keys are used in the three-

level block permute image encryption, K = {K1, K2, K3}. The original image is initially separated into 44 blocks 

that don’t overlap. The integer ranges for the random permutation sequences produced using the key K1 is 

between 1 and L1. Let K1 serve as the key and let S1 serve as the permutation sequence. 

𝐿1 =
𝑀𝑁

16
 (1) 

The first level block permuted image G1 is created by scrambling the positions of each 4 × 4 block using 

the permutation sequence S1. A sample image before encryption is shown in Figure 3a and a sample image 

after first-level block permute encryption is shown in Figure 3b. For every 4 × 4 block in the first level 
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encrypted image G1, a 2 × 2 neighbourhood is built in the second level. In a similar manner, four additional 

outer neighbourhoods are built, each measuring 2 × 2. The representation of middle and peripheral blocks is 

shown in Figure 4. 

 
Figure 3. Illustrates a first-level block permute process. (a) before encryption; (b) after encryption. 

 
Figure 4. Representation of middle and peripheral blocks. 

Then for each 4 × 4 block, L2 the number of random permutation sequences is generated whose integer 

range is between 1 to 4, such that each consecutive four numbers in the sequence should contain the range of 

random integers between 1 to 4. Let the sequence be represented as 𝑆2. Using the sequence 𝑆2, each 2 × 2 

middle neighbourhood is permuted, such that based on the permutation of middle elements the remaining 

elements of the peripheral neighborhood are also permuted to obtain the second level block permuted image 

𝐺2. 

𝐿2 =
𝑀𝑁

4
= 4𝐿1 (2) 

In the third level, using the key 𝐾3, 𝐿3 number of random permutation sequences is generated whose 

integer range is between 1 to 3, such that each consecutive four numbers in the sequence should contain the 

range of random integers between 1 to 3. Let the sequence be represented as 𝑆3. Using the sequence 𝑆3, the 

three elements in the peripheral neighbourhood (elements that are not included in the middle neighbourhood) 

are permuted, to obtain the third level block permuted image 𝐺3. 

𝐿3 =
3𝑀𝑁

4
= 12𝐿1 = 3𝐿2 (3) 

An example of second and third-level permute is provided in Figure 5. 
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Figure 5. Representation of second and third-level block permute image encryption; (a) second-level block permute; (b) third-level 
block permute. 

Algorithm 1: Three-level permute image encryption. 

Input: Plain image 𝐺0, key 𝐾 

Output: Encrypted image 𝐺3 

Step 1: Using the key 𝐾, generate three sub keys 𝐾1, 𝐾2 and 𝐾3. 

Step 2: Estimate the length of the permutation sequence 𝐿1, 𝐿2 and 𝐿3 using equations (1), (2) and (3) respectively. 

Step 3: Subdivide the image 𝐺0 into 4 × 4 non-overlapping blocks. 

Step 4: Generate the permutation sequence 𝑆1 using the key 𝐾1 with length 𝐿1 

Step 5: Obtain the level-1 permuted image 𝐺1 using the sequence 𝑆1. 

Step 6: On the image 𝐺1, obtain the peripheral neighbourhood and the middle neighbourhood 

Step 7: Generate the permutation sequence 𝑆2 using the key 𝐾2 with length 𝐿2. 

Step 8: Obtain the level-2 permuted image 𝐺2 using the sequence 𝑆2. 

Step 9: Generate the permutation sequence 𝑆3 using the key 𝐾3 with length 𝐿3. 
Step 10: Obtain the level-3 permuted image (Encrypted image) 𝐺3 using the sequence 𝑆3. 

3.2. Recursive look ahead adaptive MSB predictor data embedding 

The recursive look ahead adaptive MSB predictor-based data embedding has two modules namely best 

neighbourhood estimation followed by adaptive MSB predictor-based data embedding. The embedding is done 

in a recursive process. The encrypted image 𝐺3  is subdivided into 4 × 4 blocks. Let the 4 × 4 block be 

represented as 

𝐻𝑗 = [𝑎11 𝑎12 𝑎21 𝑎22 𝑎13 𝑎14 𝑎23 𝑎24 𝑎31 𝑎32 𝑎41 𝑎42 𝑎33 𝑎34 𝑎43 𝑎44] (4) 

From each 4 × 4 block, five different neighbourhoods are estimated. Let the five neighbourhoods be 

represented as  𝑛1 , 𝑛2 , 𝑛3 , 𝑛4  and 𝑛5 . Where 𝑛1 = [𝑎11 𝑎12 𝑎21 𝑎22 ] , 𝑛2 = [𝑎13 𝑎14 𝑎23 𝑎24 ] , 𝑛3 =

[𝑎31 𝑎32 𝑎41 𝑎42], 𝑛4 = [𝑎33 𝑎34 𝑎43 𝑎44], 𝑛5 = [𝑎22 𝑎23 𝑎32 𝑎33] . The data is initially embedded in the 

neighbourhood 𝑛1, followed by 𝑛2, 𝑛3, 𝑛4 and 𝑛5 without finding the best neighbourhood. Once the data is 

embedded in these neighbourhoods, the recursive data embedding is performed. Let 𝑛𝑖,1, 𝑛𝑖,2, 𝑛𝑖,3, 𝑛𝑖,4 and 

𝑛𝑖,5 represent the five neighbourhoods of the i-th 4 × 4 block, where 𝑖 = 1, 2, … , 𝐿1. Let 𝐶𝑖,1, 𝐶𝑖,2, 𝐶𝑖,3, 𝐶𝑖,4 and 

𝐶𝑖,5  represents the capacity of 𝑛𝑖,1, 𝑛𝑖,2, 𝑛𝑖,3, 𝑛𝑖,4 and 𝑛𝑖,5 respectively. The total capacity of 𝐿1  number of 

blocks whose neighbourhood position 𝑛1 is 

𝑐1 = 𝐶1,1 + 𝐶2,1 + ⋯ + 𝐶𝐿1,1 = ∑.

𝐿1

𝑖=1

𝐶𝑖,1 (5) 

Similarly, the total capacity of the remaining neighbourhoods can be estimated by the relations 

𝑐2 = ∑ .
𝐿1
𝑖=1 𝐶𝑖,2, 𝑐3 = ∑ .

𝐿1
𝑖=1 𝐶𝑖,3, 𝑐4 = ∑ .

𝐿1
𝑖=1 𝐶𝑖,4, 𝑐5 = ∑ .

𝐿1
𝑖=1 𝐶𝑖,5 (6) 

From the capacity 𝑐1, 𝑐2, 𝑐3, 𝑐4 and 𝑐5, the best neighbourhood can be estimated as 

�̂�𝑡 = 𝑚𝑎𝑥 {𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐4} (7) 

The neighbourhood that provides the maximum capacity represents the best neighbourhood. 

�̂�𝑡 = 𝑛𝑗  where �̂�𝑡 = 𝑐𝑗  (8) 
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Once the best neighbourhood is estimated, the data is then embedded in the respective neighbourhood 

using the adaptive MSB predictor-based data embedding approach. Let �̂�𝑖
(𝑡)

 represent the neighbourhood of i-

th block after embedding the data on i-th recursive stage. For embedding the data in a 2 × 2 neighbourhood, 

two different types of pixels namely primary pixel and secondary pixel are chosen. Figure 6 depicts the 

representation of primary and secondary pixels in the neighbourhood 𝑛1, 𝑛2, 𝑛3, 𝑛4, and 𝑛5. 

 
Figure 6. Representation of primary and secondary pixels in the neighbourhood 𝑛1, 𝑛2, 𝑛3, 𝑛4 and 𝑛5. 

3.3. Adaptive MSB predictor based embedding 

Let the 2 × 2 neighbourhood with primary and secondary pixels be represented as 

𝐹 = [𝑝 𝑠1 𝑠2 𝑠3] (9) 

here 𝑝 represent the primary pixel, 𝑠1, 𝑠2, 𝑠3 represents the remaining three secondary pixels taken in clockwise 

order of the 2 × 2 block. For example, the neighbourhood 𝑛1, 𝐹 = [𝑎22 𝑎21 𝑎11 𝑎12]. Initially, the primary and 

secondary pixels in 𝐹 are converted to 8-bit binary form. The number of common bits in 𝑝, 𝑠1, 𝑠2 and 𝑠3 are 

estimated which can be mathematically expressed by the function 

𝑐 = 𝐶(𝐹) = 𝐶(𝑝, 𝑠1, 𝑠2 , 𝑠3) − 1 (10) 

where the function 𝐶(. ) will find the number of consecutive common bits from MSB. The data cannot be 

embedded in the block 𝐹, if 𝑐 = −1. There are bits that can be inserted in block F in a maximum of 

𝑁𝑏 = 21 − 3 × 𝑐 (11) 

The sequence after embedding in 𝐹 can be represented as 

�̂� = {�̂�, �̂�1,𝑐+1, �̂�1,𝑐+2, … , �̂�1,8, �̂�2,𝑐+1, �̂�2,𝑐+2, … , �̂�2,8, �̂�3,𝑐+1, �̂�3,𝑐+2, … , �̂�3,8, 𝐷1,𝐷2, … , 𝐷𝑁𝑏
, �̂�1, �̂�2, �̂�3} (12) 

where �̂� is the form of 8-bit binary, of 𝑝, �̂�1,𝑗, �̂�2,𝑗  and �̂�3,𝑗  be the j-th binary bit from MSB in 8-bit binary form 

of 𝑠1,  𝑠2 and 𝑠3  respectively. �̂�1, �̂�2, �̂�3  represent the 3-bit binary representation of 𝑐  from MSB to LSB. 

𝐷1, 𝐷2, … , 𝐷𝑁𝑏
 represent the 𝑁𝑏 number of data that is to be embedded. The sequence �̂� contains a totally of 

32 bits. To get the marked encrypted block, the 32 bits are divided into 8 bits and translated to decimal. 

𝐹′ = {𝑝, 𝑠1
′ , 𝑠2

′ , 𝑠3
′ } (13) 

Examples of the data embedding procedure are shown in Figure 7 and an example of blocks before and 

after the data embedding in the blocks 𝑛1 and 𝑛2 is shown in Figure 8. 

 
Figure 7. Data embedding: (a) procedure a; (b) procedure b. 
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Figure 8. Example of blocks before and after embedding on the blocks 𝑛1. and 𝑛2; (a) before embedding; (b) after embedding. 

Algorithm 2: Data embedding 

Input: Plain image 𝐺𝑜, key 𝐾, number of recursive processes 𝑅, data for embedding 
Output: Marked encrypted image 

Step 1: Encrypt the image 𝐺𝑜using the three-level permutation approach provided in algorithm 1. 

Step 2: Sub-divide the image onto 4 × 4 blocks and obtain the five different neighbourhoods of each block 𝑛𝑖,1, 𝑛𝑖,2, 𝑛𝑖,3, 𝑛𝑖,4, 

and 𝑛𝑖,5. 

Step 3: Embed the data and compressed location map on the blocks 𝑛𝑖,1 followed by 𝑛𝑖,2, 𝑛𝑖,3, 𝑛𝑖,4, and finally 𝑛𝑖,5. Thus the 

number of recursive processes reaches 𝑡 = 5. 

Step 4: After completing the recursive process 𝑡 = 5 estimate the best neighbourhood. 
Step 5: Embed the data and the compressed location map information of the non-embeddable blocks on the best neighbourhood 

using the adaptive MSB neighbourhood predictor process. Increment the value of 𝑡 by 1. (𝑡 = 𝑡 + 1) 

Step 6: Repeat step 4 to 5 till 𝑡 = 𝑅. 

3.4. Recursive look ahead adaptive MSB predictor data extraction 

Initially, the marked encrypted pixels of the block 𝐹′ is represented in binary, so that Equation (12) can 

be reconstructed. From the 32-bit sequence, the first 8-bit sequence is used to reconstruct the primary pixel 𝑝, 

the last 3-bit is used to reconstruct the value of 𝑐. The Equation (11) can be used to calculate the number of 

bits embedded in the block F' from the value of c. 

The data can be extracted from the sequence 𝐹′ by 

�̂� = {𝐹29−𝑁𝑏+1
′ , 𝐹29−𝑁𝑏+2

′ , … , 𝐹29
′ } (14) 

The number of common bits between the primary pixel 𝑝 and the remaining secondary pixels can be 

estimated as 

𝐶 = 𝑐 + 1 (15) 

The secondary pixel in binary form can be recovered as 

𝑠1
′ = {𝐹1

′, 𝐹2
′, … , 𝐹𝐶

′ , 𝐹9
′, 𝐹10

′ , … , 𝐹16−𝐶
′ }  

𝑠2
′ = {𝐹1

′, 𝐹2
′, … , 𝐹𝐶

′ , 𝐹17−𝐶
′ , 𝐹17−𝐶+1

′ , … , 𝐹25−2𝐶
′ } (16) 

𝑠3
′ = {𝐹1

′, 𝐹2
′, … , 𝐹𝐶

′ , 𝐹26−𝐶
′ , 𝐹26−𝐶+1

′ , … , 𝐹28
′ }  

The extracted secondary pixel bits of 𝑠1
′ , 𝑠2

′ , 𝑠3
′  are converted to 8-bit decimal numbers to obtain the 

reconstructed secondary pixels 𝑠1, 𝑠2, 𝑠3 . From the primary pixel 𝑝 , and secondary pixels 𝑠1, 𝑠2, 𝑠3  the 

extracted pixel block 𝐹 can be reconstructed using Equation (9). 

Algorithm 3: Data extraction 

Input: Marked encrypted image, key 𝐾, number of recursive processes 𝑅 

Output: Extracted data, decrypted image 𝐺𝑜
′  

Step 1: Sub-divide the image into 4 × 4 sub-blocks and obtain the neighbourhoods 𝑛𝑖,1, 𝑛𝑖,2, 𝑛𝑖,3, 𝑛𝑖,4, and 𝑛𝑖,5 of each block. 

Step 2: Extract the location map information and extract the data that was embedded in recursive stage 𝑡 = 𝑅 using the adaptive 

MSB predictor data extraction algorithm. After extracting the data, decrement count value 𝑡 by 1(𝑡 = 𝑡 + 1). 

Step 3: Repeat step 3 till 𝑡 = 5 is reached 

Step 4: Further, extract the data on the blocks 𝑛𝑖,5 followed by 𝑛𝑖,4, 𝑛𝑖,3, 𝑛𝑖,2, and 𝑛𝑖,1. 

Step 5: Decrypt the image 𝐺3
′  using the three-level permutation approach provided in algorithm 4 using the key 𝐾. 
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3.5. Three-level block permute image decryption 

As seen in Figure 9, there are three levels to the decryption process. The marked encrypted image will 

be represented by G3'. The initial block subdivision of the designated encrypted image is 44 non-overlapping 

blocks. Using the key K, three keys are estimated which are represented as 𝐾1, 𝐾2 and 𝐾3. From the 4 × 4 sub-

blocks, the middle neighbourhood and peripheral neighbourhood are estimated. Using the key 𝐾3, totally 𝐿3 

number of random permutation sequences are generated whose integer range is between 1 to 3, such that each 

consecutive three numbers in the sequence should contain the range of random integers between 1 to 3. Let 

the sequence be represented as 𝑆3. Using the position as 𝑆3, the permuted position is rearranged to obtain the 

level three decrypted image 𝐺2
′ . 

In the second level of decryption 𝐿2  number of random permutation sequences are generated whose 

integer range is between 1 to 4, such that each consecutive four numbers in the sequence should contain the 

range of random integers between 1 to 4. Let the sequence be represented as 𝑆2. Using the sequence 𝑆2 as 

permuted sequence, each 2 × 2 middle neighbourhood is arranged, such that based on the shuffling of middle 

elements the remaining elements of the corresponding peripheral neighbourhood are also arranged to obtain 

the second level block permuted image 𝐺1
′ . In the third level of decryption, using the key 𝐾1, totally 𝐿1 number 

of random permutation sequences are generated whose integer range is between 1 to 𝐿1 . Let S1 stand for the 

permutation sequence produced by key K1. The permutation sequence S1 is used to arrange the positions of 

each 4 × 4 block in order to produce the level-3 decrypted image G0'. 

 

Figure 9. Block diagram of three-level permutation-based decryption. 

Algorithm 4: Three-level permute image decryption 

Input: Marked encrypted image 𝐺3
′ , key 𝐾 

Output: Decrypted image 𝐺0
′  

Step 1: Create the three sub-keys 𝐾1, 𝐾2, and 𝐾3 using the key 𝐾. 

Step 2: Estimate the length of the permutation sequence 𝐿1, 𝐿2 and 𝐿3 using equation (1), (2) and (3) 

Step 3: Subdivide the image 𝐺3
′  into 4 × 4 non-overlapping blocks. 

Step 4: On the image 𝐺3
′ , obtain the peripheral neighbourhood and the middle neighbourhood 

Step 5: Generate the permutation sequence 𝑆1 using the key 𝐾1 with length 𝐿1 

Step 6: Obtain the level-1 rearranged image pixels 𝐺2
′  using the sequence 𝑠1. 

Step 7: Generate the permutation sequence 𝑆2 using the key 𝐾2 with length 𝐿2. 

Step 8: Obtain the level-2 rearranged image 𝐺1
′  using the sequence 𝑆2. 

Step 9: Generate the permutation sequence 𝑆3 using the key 𝐾3 with length 𝐿3. 

Step 10: Obtain the level-3 rearranged image (Decrypted image) 𝐺0
′  using the sequence 𝑆3. 

4. Experimentation outcomes 

Utilising the benchmark test pictures from the BOSSbase[32], BOWS-2[33] and UCID[34] datasets, the 

proposed recursive data embedding approach was assessed using the metrics embedding rate, structural 

similarity index (SSIM), and peak signal to noise ratio (PSNR). The relations (17), (18) and (20) can be used 

to compute the embedding rate, SSIM and PSNR. 
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𝐸𝑅 =
𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦

2 × 𝑀 × 𝑁
 (17) 

𝑃𝑆𝑁𝑅 = 10
2552

𝜀
𝑑𝐵 (18) 

where 𝜀 is the mean square error can be estimated as 

𝜀 =
1

𝑀 × 𝑁
∑.

𝑀

𝑥=1

∑.

𝑁

𝑦=1

(𝐺3(𝑥, 𝑦) − �̂�3(𝑥, 𝑦))
2

 (19) 

The structural similarity index (SSIM) can be expressed as 

𝑆𝐼𝑀 = 𝐿𝑢(𝐺3, �̂�3)𝐶𝑜(𝐺3, �̂�3)𝑆𝑎(𝐺3, �̂�3) (20) 

where 𝑆𝑎(𝐺3, �̂�3) is the saturation comparison function, 𝐶𝑜(𝐺3, �̂�3) is the comparison function for luminance, 

while 𝐿𝑢(𝐺3, �̂�3) is the comparison function for contrast. 

The three-level permutation was initially used to encrypt the plain image. The three-level permutation-

based encrypted graphics with hidden privacy material are shown in Figure 10. As the permutations from level 

1 to level 3 were carried out. Stronger encryption is achieved. 

 
Figure 10. Three-level permutation-based encryption results (a) plain image; (b) first level permutation result; (c) second level 
permutation result; (d) third level permutation result. 

The image that was encrypted was embedded with data (shown in Figure 11) recursively with a different 

number of recursive processes 𝑅 = 1 to 𝑅 = 15. The embedding rate is high, for the recursive process 𝑅 = 1 

to 𝑅 = 5. 

 
Figure 11. Binary ‘android image’ for secret data. 

Figure 12 shows the binary image which represents the position of embedded and non-embedded pixels 

(1.’s represents the position of data embedded pixels and 0.’s represents the position of non-embedded pixels). 

As the number of recursive processes increases, the number of 1.’s gets increases. This indicates that as the 

number of recursive embedding processes increases, the embedding rate also increases. 
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Figure 12. Binary image representing the embedded pixel locations (a) recursive process 𝑅 = 1; (b) recursive process 𝑅 = 2; (c) 

recursive process 𝑅 = 3; (d) recursive process 𝑅 = 4; (e) recursive process 𝑅 = 5. 

Using the datasets BOSSbase, BOWS-2 and UCID datasets, the average embedding rate (ER) of the 

proposed approach is compared with the ER of other traditional schemes, including Puteaux and Puech[22], Ren 

et al.[34], Wu et al.[24], Yin et al.[23], Yin et al.[30], Wang and He[26]. The UCID dataset has 1338 colour images, 

whereas the BOSSbase and BOWS-2 datasets each have 10,000 grayscale images Bas et al.[31], Bas and 

Furon[32]. The UCID algorithm first converts the colour images to grayscale before analysing them. The 

comparison of ER for various techniques for the test images displayed is presented in Table 1. The proposed 

method has an average ER of 2.79 bpp with R = 10, which is 0.1756 bpp and 0.2295 bpp. The highest and 

minimum ER for the provided test images are 2.105 bpp and 3.289 bpp, respectively. 

Table 1. Embedding rate comparison for different approaches with different test images. 

Test image Puteaux and 

Puech[22] 

Ren et al.[34] Wu et al.[24] Yin et al.[23] Yin et al.[30] Wang and He[26] Yu et al.[27] Proposed 

Lena 0.977 1.712 2.645 2.583 2.87 2.83 3.019 3.124 

Mandril 0.838 0.456 0.969 1.006 1.321 1.452 1.4596 2.162 

Jetplane 0.983 2.097 2.673 3.03 3.232 3.154 3.237 3.289 

Cameraman 0.981 1.577 2.479 2.349 2.49 2.629 2.651 2.714 

Blonde 0.993 2.158 2.652 2.824 2.943 3.017 3.091 3.105 

House 0.846 1.457 2.861 3.08 2.532 2.896 3.149 3.197 

Pepper 0.871 1.824 1.963 2.348 1.581 2.347 2.087 2.438 

Bridge 0.957 2.024 2.406 1.054 2.54 2.768 2.851 2.915 

Living room 0.825 2.11 1.087 2.251 2.557 2.617 2.672 2.849 

Lake 0.954 2.054 2.546 2.705 1.51 1.893 1.923 2.105 

Figures 13 and 14 show the variance in embedding rate for various recursive process counts. As the value 

of R goes from 1 to 5, the embedding rate rises quickly. The embedding capacity gradually increases as the R-

value is raised. This is because as R approaches 5, all neighbourhoods are embedded with data, reducing the 

number of embeddable blocks in the marked neighbourhood that results. According to Table 2, the average 

embedding rates with R = 10 for the BOSSbase, BOWS-2 and UCID datasets are respectively 3.714 bpp, 

3.4826 bpp, and 2.9412 bpp. 
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Figure 13. Standard test images (a) cameraman; (b) house; (c) lena; (d) mandril; (e) pepper; (f) blonde; (g) bridge; (h) jetplane; (i) 
living room; (j) lake. 

 
Figure 14. Variation of embedding rate for different number of recursive processes. 

Table 2. Comparison of average embedding rate on BOSSbase, BOWS-2, UCID dataset. 

Schemes BOSSbase BOWS-2 UCID 

Puteaux and Puech[22] 0.966 0.968 0.893 

Ren et al.[34] 2.561 2.519 2.226 

Wu et al.[24] 3.361 3.246 2.688 

Yin et al.[23] 3.498 3.393 2.797 

Yin et al.[30] 3.517 3.421 2.815 

Wang and He[26] 3.587 3.4428 2.857 

Zhang et al.[27] 3.6823 3.4568 2.883 

Proposed 3.714 3.4826 2.9412 

Figure 15 depicts the graphical comparison of ER for the various methods. In comparison to the Zhang 

et al. technique, the suggested method offers a higher average embedding rate for the datasets BOSSbase, 

BOWS-2, and UCID. 



13 

 
Figure 15. A visual comparison of the ER for the datasets from BOSSbase, BOWS-2, and UCID. 

Table 3. PSNR for various recursive process numbers between the encrypted picture and the annotated encrypted image. 

Test images 𝑹 = 𝟏 𝑹 = 𝟐 𝑹 = 𝟑 𝑹 = 𝟒 𝑹 = 𝟓 

PSNR 

(dB) 

SSIM PSNR 

(dB) 

SSIM PSNR 

(dB) 

SSIM PSNR 

(dB) 

SSIM PSNR 

(dB) 

SSIM 

Lena 15.19 0.6340 12.06 0.4101 10.41 0.2589 9.06 0.1341 8.29 0.0510 

Mandril 17.55 0.6270 14.65 0.4240 12.90 0.2837 11.60 0.1757 10.58 0.0975 

Jetplane 14.89 0.4994 11.80 0.3163 10.12 0.2118 8.77 0.1270 8.15 0.0842 

Cameraman 16.13 0.6238 13.09 0.4051 11.39 0.2573 10.08 0.1392 9.19 0.0594 

Blonde 16.77 0.5786 13.83 0.3752 11.98 0.2364 10.78 0.1431 9.85 0.0783 

House 16.44 0.5916 13.41 0.3872 11.69 0.2531 10.39 0.1493 9.51 0.0814 

Peppers 15.64 0.6104 12.55 0.3813 10.87 0.2293 9.57 0.1079 8.70 0.0296 

Bridge 15.24 0.5813 12.14 0.3692 10.47 0.2333 9.13 0.1230 8.38 0.0549 

Livingroom 17.17 0.6161 14.10 0.4033 12.34 0.2594 11.10 0.1551 10.11 0.0847 

Lake 16.02 0.5905 12.98 0.3782 11.25 0.2380 9.97 0.1308 9.11 0.0611 

The variation of PSNR and SSIM for different number of recursive processes is provided in Table 3. As 

the number of recursive processes 𝑅 increases the PSNR and SSIM get reduced. For the test images provided 

in Figure 15. The average PSNR for 𝑅 = 1, 2, 3, 4, 𝑎𝑛𝑑 5 is 16.1 dB, 13.06 dB, 11.34 dB, 10.04 dB and 9.19 

dB respectively. The SSIM for 𝑅 = 1, 2, 3, 4, 𝑎𝑛𝑑 5 is estimated as 0.5953, 0.3850, 0.2461, 0.1385 and 0.0682 

respectively. 

To determine the computational complexity, the embedding/extraction algorithm’s computational 

complexity is examined. Table 4 provides the computation times for 3-level permutation-based encryption 

and decryption. 

Table 4. Computational time in encryption and decryption. 

 Level-1 Level-2 Level-3 Total 

Encryption time (s) 0.236 0.384 0.391 1.011 

Decryption time (s) 0.217 0.376 0.383 0.976 

The proposed work’s average encryption and decryption times are 1.011 s and 0.976 s, respectively. On 

a computer with an Intel Core i5 CPU running at 3.00 GHz, Windows 10, 8 GB of RAM, and a 64-bit operating 
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system, the time complexity is assessed using MATLAB 2018 a. Comparing level-3 permutations to level-1 

and level-2, respectively, requires additional processing time. 

Let 𝑡𝑏 , 𝑡𝑒𝑚 represent the computation time for best neighbourhood search, and data embedding without 

including the best neighbourhood search process respectively. Let 𝑇𝑒𝑚  and 𝑇𝑒𝑥  represent the time of 

embedding and extraction. The time of embedding can be expressed as: 

𝑇𝑒𝑚 = 𝑡𝑏 + 𝑡𝑒𝑚  (21) 

As the number of the recursive process increases, the computational time linearly increases as illustrated 

in Figure 16. 

 
Figure 16. Computation time in data embedding and extraction for different number of recursive processes. 

Figure 17 shows the histogram of images before and after data embedding. As the data is embedded 

recursively from 𝑅 = 1 to 𝑅 = 5, the histogram gets changed. 

 
Figure 17. Before and after data embedding histogram of the image (a) marked encrypted image; (b) marked encrypted image with R 
= 1; (c) R = 2; (d) R = 3; (e) R = 4; (f) R = 5. 
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Figure 18 compares the embedding rates on 100 randomly chosen photos from the BOWS-2 image 

dataset, where the embedding rates range from 2 to 4 bits per picture (bpp). The paper’s conclusion is presented 

in the following section. 

 
Figure 18. Embedding rate comparison on 100 randomly selected images of BOWS-2 image database. 

To enhance the research work, deep learning can be incorporated for image encryption and data 

embedding. A convolutional neural network (CNN) can be trained to learn the optimal image encryption 

patterns for the three-level encryption process, improving security. Additionally, a deep embedding network 

can be developed to dynamically estimate the best neighbourhoods for data embedding, optimizing capacity. 

By leveraging deep learning models, the research can achieve more robust and adaptive encryption and data 

hiding techniques, ensuring better performance and security in cloud storage applications. 

5. Conclusion 

This study suggested an RDH-EI technique that makes use of an adaptive MSB predictor with a recursive 

look-ahead. The research also suggests a three-level permutation-based technique for image encryption and 

decryption. In order to estimate the middle neighbourhood and the periphery, the computer first divides the 

image into 4 × 4 blocks. Blocks are permuted in the first level of encryption, whereas in the second level, the 

position of the middle neighbourhood pixels and its matching peripheral neighbourhood are permuted while 

keeping the same middle neighbourhood components. The third stage involves permuting the pixels within 

their peripheral neighbourhood without affecting the components of the middle neighbourhood. A recursive 

look ahead adaptive MSB predictor approach is used in the data embedding strategy, where the algorithm 

predicts the ideal neighbourhood that offers the most embedding capacity before actual embedding. The 

adaptive MSB prediction technique embeds the data in the neighbourhood with the highest embedding capacity. 

The standard test images obtained from the datasets were used to evaluate the technique using the metrics 

embedding capacity (embedding rate), SSIM, and PSNR. The average embedding rate for the datasets 

BOSSbase, BOWS-2, and UCID provided by the suggested approach is 3.714 bpp, 3.4826 bpp, and 2.9412 

bpp, respectively, with the number of recursive processes R = 10, which is greater than that of previous 

comparable approaches. 

The research presents a high-capacity reversible data embedding technique (RDH-EI) for cloud storage 

applications, incorporating a three-level image encryption process. While achieving superior embedding rates 

compared to previous RDH-EI methods, the approach faces challenges. The complexity of the three-level 

encryption and recursive embedding may lead to higher computational overhead, hindering real-time and 

large-scale data embedding scenarios. Moreover, the lack of a comprehensive security analysis raises concerns 

about potential vulnerabilities. Although the proposed approach outperforms previous methods, the data hiding 

capacity remains limited for applications requiring larger payloads. Additionally, the focus on image data 

raises questions about generalization to other data types. To address these limitations, future work should focus 

on algorithm optimization, thorough security evaluations, improved capacity, cross-domain application 

feasibility, and adaptability to evolving cloud services. Implementing these enhancements can make the RDH-

EI approach more versatile, secure, and relevant for a wider range of data hiding and cloud storage applications. 
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