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ABSTRACT

This research study introduces an ID-based identity authentication protocol that utilizes the enhanced elliptic curve

digital signature algorithm, a cryptographic method developed on elliptic curve cryptography. The protocol enhances the

Consultative Committee for Space Data Systems (CCSDS) File Delivery Protocol (CFDP), a pioneering protocol

explicitly defined for distant space communications. This study employs both dependable and uncertain modes of the

CFDP protocol. To make more secure data transactions, two key security risks are effectively mitigated in this research

as a result of applying the proposed enhanced elliptic curve cryptography algorithm (ECC) over the ternary galois field.

First, it thwarts the impersonation of a harmful entity during a passive attack. Second, it prevents masquerade attacks,

further reinforcing the security of space data transmission. This ID-based authentication protocol, therefore, offers a

significant advancement in protecting far-space communications, optimizing the integrity of data exchanged across vast

distances.

Keywords: authentication protocol; consultative committee for space data systems; CCSDS file delivery protocol; elliptic

curve cryptography

1. Introduction

As the frequency of interplanetary missions continues to rise and

scientific space objectives become more complex, the importance of

onboard data utilization has become increasingly pronounced. Hence,

the spacecraft onboard computer (OBC), which controls mission

fulfilment, has become highly refined in hardware and software.

Additionally, the ground control center serves as a lone jurisdiction for

space regulation and a portal for space-generated actual time data

circulation. As the separation increases and the motion of the earth and

other planets, we cannot expect the transmission channel from
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spacecraft to the ground mission control center (MCC) to be everlasting. During these situations, it is required 

to design new approaches for file transfers to deliver space missions. To acknowledge the prevailing demands, 

CCSDS introduces the CCSDS File Delivery Protocol (CFDP), a novel file transfer protocol designed for both 

space-based and ground-based networks[1]. Traditional authentication schemes rely on symmetric algorithms, 

such as secure hash algorithms, which have long been considered reliable and necessitate secret keys. 

Nonetheless, handling and safeguarding the secret keys is a tough task. Thus, to address the coordination 

problem, Elliptic Curve Cryptography (ECC) is utilized as a viable solution. ECC involves using a pair of 

cryptographic keys—a private key and a corresponding public key—assigned to each device. When sending a 

message, the sender signs it using their private key, while the recipient can verify the signature’s authenticity 

by employing the sender’s public key[2]. If the message is altered before reaching the receiver, the signature 

authentication is declined as the authentic signature is invalid for the altered message. This study aims to 

discuss a particular implementation of the CFDP with the ECDSA and to show its practical usage. Figure 1 

shows the layered architecture of security implementation on CFDP protocol. 

 
Figure 1. Implementation of the CFDP. 

The existing space data communication uses RSA for confidentiality and authentication of data. RSA and 

ECC are the most productive techniques among all asymmetric encryption algorithms[3]. They have a huge 

number of benefits in contrast with different cryptosystems. RSA is a principal public-key cryptosystem 

generally utilized for secure data transmission. In such a cryptosystem, the encryption key is public and varies 

from the decryption key is kept secret. In RSA, this asymmetry depends on the functional trouble of factoring 

the result of two substantial prime numbers, the factoring issue[4]. RSA represents Ron Rivest, Adi Shamir and 

Leonard Adleman, who first publicly depicted the calculation in 1977. A client of RSA makes and distributes 

a public key dependent on the two extensive prime numbers that must be kept secret. Anybody can use the 

public key to scramble a message; however, with distributed strategies, if the public key is sufficiently huge, 

just somebody with information on the prime numbers can decode the message[5]. The limitations of RSA stem 

from its requirement of a large number of bits, which can pose challenges when dealing with computationally 

intensive tasks, such as encoding large volumes of data on a single computer. Additionally, RSA relies on 

third-party verification to ensure the reliability of public keys, which introduces potential vulnerabilities. The 
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use of RSA encryption also leaves the exchanged data susceptible to manipulation by intermediaries who may 

tamper with the public key infrastructure[6]. 

Elliptical curve cryptography is a strategy for encoding data records with the goal that just explicit people 

can decode them. ECC depends on the arithmetic of elliptic curves and uses the area of points on an elliptic 

curve to encode and unscramble data. ECC bears productive execution of wireless security highlights, for 

example, secure electronic mail and Web perusing. A huge preferred standpoint of EC over RSA is a 

considerably shorter key (and data length because of cushioning). Beginning to deal with 4096-bit keys (512-bytes) 

is getting difficult. Identical security of a 3072 RSA key can be accomplished with a 256-bit EC key[7]. ECC 

is an extremely promising and new field to locate a more cost-effective strategy to perform encryption for 

versatile gadgets and verify image transmission over the web. Elliptic curves are accepted to give great security 

little key sizes, which are exceptionally valuable in numerous applications. Littler key sizes may result in 

quicker execution timings for the plans, which is gainful to frameworks where real-time execution is a basic 

factor[8]. We have appraisals of parameter sizes giving equal security dimensions to RSA and ECC 

frameworks[9]. These correlations show the intrigue of elliptic curve cryptography, particularly for applications 

that have high security. The use of ECC is exceedingly prescribed to make greater security and higher speed 

without expanding the computational burden. Then again, with the expansion of smaller embedded gadgets 

designed with additional confinements (for example, Calculation Power, Memory and Battery life) and 

cryptographic plans, particularly in asset-compelled gadgets, should be secure, viable, and less expensive[10]. 

ECC has littler cost proportion. Besides, to boost the execution of the recently designed gadgets, ECC itself 

needs predictable improvement[11]. 

Several authors have conducted a comparative analysis between RSA and ECC in the literature, 

considering various measurement parameters, including security performance. One study compared the point 

multiplication operation of an elliptic curve in RSA and ECC on two 8-bit processor computer systems. The 

results indicated that ECC-160-point multiplication demonstrated greater efficiency than RSA-1024 private 

key operation[12]. The risk associated with key usage depends on the key length of RSA and ECC. The authors 

concluded that until 2014, a 1024-bit RSA key presented a small level of risk, whereas a 160-bit ECC key over 

a prime field could be safely used for an extended period[13]. While RSA exhibits faster performance compared 

to ECC, it is important to note that ECC surpasses RSA in terms of security. The utilization of digital signatures 

in RSA and ECC suggests that RSA could be a suitable option for applications that prioritize message 

verification over the generation of the signature itself. According to research findings[13], ECC surpasses RSA 

in both operational efficiency and security. While RSA is widely recognized as the first practical asymmetric-key 

cryptosystem and has become the de facto standard for public-key cryptography, its security relies on the 

difficulty of integer factorization. However, RSA’s decryption process is less efficient than its encryption 

process. To compare RSA and ECC, encryption and decryption were performed on three sample input data 

sets of 8 bits, 64 bits, and 256 bits using random keys following NIST recommendations. The experimental 

results revealed that ECC outperforms RSA regarding operational efficiency and security, even with fewer 

parameters. ECC is particularly suitable for devices with limited resources[14]. The primary objective of this 

study is as follows. 

• To study existing cryptographic methods for space data communication. 

• To study CCSDS File Delivery Protocol for NCC to satellite for core procedures. 

• To design and implement enhanced ECC for transaction. 

The paper is organized as follows. Section 2 discusses the design concept and the elements of the CCSDS 

file delivery protocol. Section 3 briefly discusses the CCSDS file delivery protocol and ECC operation. 

Sections 4 and 5 present the digital signature and elliptic digital signature algorithm. Section 6 presents the 

operation of the enhanced elliptic curve cryptography, and Section 7 comprehensively discusses the results 

obtained from various case studies. And Section 8 concludes the paper. 
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2. Design concept and architectural elements of CFDP 

The protocol contains core procedures and extended procedures. This research work proposed Class I and 

Class II communications. Class I is an unreliable mode of core procedures. Class II is a reliable mode of core 

procedures. The core procedure supports point-to-point communications, and the extended procedure 

addresses point-to-multipoint communications. The former communicates amidst protocol entities with an 

explicit network pathway[15]. The source is the one from which the file is copied to perform a file copy exercise, 

which is copied to the receiver. In case the sender and the receiver are not able to be connected directly by the 

network, the extended procedures accordingly conform to an end-to-end file copy activity by carrying out 

several file copy activities, single file copy activity with source and first waypoint; others constituting 

subsequent waypoints; and ultimate file copy procedure with the final waypoint and target node. These are the 

cases of core file copy procedures. For a transaction to be reliable, it must choose whether to conduct in 

acknowledged or unacknowledged modes. If an unacknowledged mode is chosen, data distribution failing will 

not be announced to the source; hence, reconstruction cannot be performed even if errors are present and such 

data is cast off. Hence it cannot be assured that the entire file is received. When using the acknowledged mode, 

the sender is notified by the receiver of data that is not delivered and transmitted again, ensuring exhaustive 

data delivery[16]. 

The structural components are illustrated in Figure 2. It is demonstrated that every protocol entity can 

access just a specific filestore and a specific user. 

 
Figure 2. Units of file delivery protocol. 

When the CFDP user makes a request, the protocol is initiated. The interaction of the user with the 

protocol is through service primitives. A CFDP user is a software undertaking that can be exerted manually. 

There is exactly one user assigned to the CFDP entity. In case there is no user, extended procedures waypoint 

comes into effect. Protocol entity comprises core delivery operations, which grant prompt file delivery and 

control across an individual network node, allowing for separate time or prompt transmission across several 

nodes with the right competence for forward routing. The protocol is operated by replicating files from 

different storage media, which means that all the entities have a local copy[17]. As there are several different 

storage facilities, the protocol comprehends that a filestore be represented as a standard representation termed 

as ‘Virtual File store’, is designated a definitive group of attributes, and the protocol maintains the file 

transmission procedure using them. Hence in this way, entire freedom is provided by the technology that uses 

the file store. Static data between local users and local and remote CFDP entities are managed as system tables 

or Management Information Base (MIB), which has default values for user communication requirements. The 

underlying communication system protocol considers the opportunity for transmission framework to be 

available to which the CFDP entities have access. The protocol services are not complicated because they 
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might have to conduct over an endless scope of applications. This elemental theoretical delivery system is 

called the Unit data Transfer (UT) layer. As just the basic network facilities are considered, occasionally, 

CFDP contributes to the services administered by the UT layer[18]. 

3. CFDP protocol operations and elliptic curves 

CFDP contains core file-delivery and extended file-delivery operations. The former provides elemental 

file delivery operations between two points realized over an individual link. The latter is devised for point-to-point 

data transmission in increasingly complicated assignments where in the absence of a direct channel from source 

to destination, it facilitates multi-hop transmission over an erratic network with numerous channels. The CFDP 

protocol renders QoS for both unreliable and reliable modes. Within the context of ECC, the Digital Signature 

Standard (DSS) categorizes elliptic curves into two types: pseudo-random curves and special curves. Pseudo-random 

curves derive their coefficients as an output from the cryptographic hash function. On the other hand, special 

curves enhance the performance of elliptic curve operations by incorporating upgraded coefficients and hidden 

fields. Pseudo-random curves may be exemplified across prime fields 𝐺𝐹(𝑝) and also binary fields 𝐺𝐹(2𝑚)[19]. 

This research focuses on ECC 𝐺𝐹(3𝑚). A prime field 𝐺𝐹(𝑝) consists of a prime number p of elements. 

The field consists of integers modulo p. The elliptic curve has the form 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏. Figure 3 is an 

example of a prime field modulo 23. 

The geometry of elliptic curves is elaborated on in this study. The steps in the geometry of elliptic curves 

are as follows. 

Adding points on an Elliptic curve: Consider the elliptic curve E, 𝑦2 = 𝑥3 − 5𝑥 + 8. To add points to 

the curve, consider points P and Q. Draw a line L across the selected points. The curve is intersected by the 

line at a third point called R. A vertical line must be drawn through R to intersect the curve at E[20]. The sum 

of P and Q on the curve E is defined as a reflected point and denoted as P ⊕ Q or P + Q. The adding points on 

the elliptic curve are visualized in Figure 4. 

 
Figure 3. 3rd-degree elliptic curves, real domain (left), over the prime field (right). 
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Figure 4. Adding two points, P and Q, and drawing a line L across the third point. 

Adding a curve point to itself: Considering the same Elliptic curve, the main task is to add the point to 

itself, while several lines have to go through the same point[20]. If P has to be added to Q, and Q approaches P, 

then the line L is tangential to the curve at the point P. Now a third intersecting point is considered, reflected 

along the x-axis and culminates as P ⊕ P or 2P. 

Vertical lines and the “extra point” at infinity: Consider point P on the curve in Figure 5 and its reflected 

point P[21]. The issue that arises is that a line through P and −P do not converge to give another point. As a 

solution, an extra point O, which is a point on every vertical line, is considered out of the plane, supposedly at 

infinity[22]. 

 
Figure 5. Vertical line across two points having no third intersection point with E and creation of point O at infinity. 

4. Digital signature 

Digital signatures are based on public-key and used for message verification. In the actual physical world 

scenario, handwritten signatures or names are written for personal identification and verification of the 

message’s origin[23]. In a similar vein, a digital signature serves as a method to securely bind the digital 

information of an individual or entity in a way that can be verified by both the recipient and any third party 

involved. A digital signature is a cryptographic value obtained from the data and a secret key which is secret 

to the signer. In the physical scenario, the receiver of the message has to be sure of the origin and the sender 

and should not be able to reject it. This is very important in business applications where sensitive data is 
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exchanged, and disagreements should not be over the information exchanged[24]. Digital signature has its basis 

in public key cryptography, and its design is interpreted as shown in Figure 6[25]. 

 
Figure 6. Digital signature model. 

Every individual implementing this design owns a pair of public-private keys. Normally, the key pairs 

utilized for enciphering/deciphering and signing/verifying are different. The private key (signature key) is used 

for approval, and the public key verifies. The signer provides the data to the hash function and obtains the hash. 

Hash value and signature key are input to a signature algorithm to form a digital signature. The data is 

combined with the signature and communicated to the verifier. The digital signature and the verification key 

are input to the verification algorithm. Verifier implements the hash function on obtained data to produce a 

hash value. To verify, the hash value and output of the verification algorithm are set side by side, thereby 

deciding if the digital signature is valid. As a digital signature is formed by the ‘private’ key of the signer, the 

signer cannot commit repudiation. 

Considering the diverse range of digital communications, it is required that encrypted data is transmitted 

instead of plaintext to support privacy. In the public key encryption model, the sender’s public key can be 

obtained, and encrypted messages can be sent by spoofing identity[26]. As a result, users utilize Public Key 

Cryptography (PKC) to achieve digital signatures alongside encrypted data, ensuring message authentication 

and non-repudiation. This is accomplished by combining digital signatures with encryption schemes. Let us, 

for a short time, discuss how to attain this requirement. A digital signature is either done by the sign then 

encrypt method or encrypt then sign method. The receiver can use the sign-then-encrypt crypto model to spoof 

the sender’s identity and send data to another party, because of which this scheme is not adopted. The procedure 

of encrypt-then-sign is staunch, broadly accepted, and illustrated in Figure 7. 

 
Figure 7. Encryption and digital signature. 
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5. Elliptic curve digital signature algorithm 

ECDSA, or the Elliptic Curve Digital Signature Algorithm, interprets the widely-used DSA algorithm to 

obtain security levels with smaller key sizes. This is done using elliptic curve cryptography, based on PKC, 

advanced in the mid-2000 s. Instead of depending on a large integer which is a product of several large prime 

factors, it uses an ECDLP (elliptic curve discrete logarithmic problem)[9,10]. As ECDLP is considerably more 

complicated than DLP, the strength-per-key-bit is significantly higher in elliptic curve systems than in 

traditional discrete logarithm systems. Hence, lower value elements are used in ECC than with DL (Discrete 

Logarithm) systems with comparable security levels. Smaller parameters provide leverage, such as speed and 

shorter keys and certificates. They have crucial usage in constrained environments. The ECDSA authenticator 

should learn the private key to operate. The public key is obtained from the private and domain parameters. 

They are stored in the authenticator’s repository. The private key is not available to everyone. But the public 

key should be available to everyone. Figure 8 shows the key generation process. 

 
Figure 8. Process of generating key pair. 

The random number generator obtains private key d (a scalar). The public key 𝑄(𝑥, 𝑦) is calculated as 

Equatioon (1). 

(𝑥, 𝑦) = 𝑑 × 𝐺(𝑥, 𝑦) (1) 

A digital signature plays a crucial role in verifying authenticity by utilizing the public key of the 

authenticator. To begin with, the original message of variable length is transformed into a fixed-length message 

digest, denoted as h(m), by applying a secure hash algorithm. This algorithm possesses specific characteristics:  

1) irreversibility, making it impossible to retrieve the original message from its digest through any 

calculations; 

2) collision resistance, ensuring it is highly unlikely to obtain multiple messages that result in the same 

digest; and 3) high avalanche effect, where even a slight modification in the message results in a significant 

alteration in the digest. Once the message digest is obtained, a random number generator generates a value of 

‘k’ for subsequent curve calculations. Figure 8 depicts the mechanism. 

The signature comprises r and s, which are both integers. Equation (2) depicts how r is obtained from k, 

which is a random number and base point 𝐺(𝑥, 𝑦): 

(𝑥1, 𝑦1) = 𝑘 × 𝐺(𝑥, 𝑦)𝑚𝑜𝑑𝑝
𝑟 = 𝑥1 𝑚𝑜𝑑 𝑛

} (2) 

https://www.computerhope.com/jargon/a/algorith.htm
https://www.computerhope.com/jargon/p/prime-number.htm
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Figure 9. Process of computation of the signature and verification. 

To prove validity, r must be anything other than zero. If r is 0, a different random number, k, is obtained, 

and r is calculated afresh. Now, s is calculated as per Equation (3). The message digest ℎ(𝑚); the private key 

𝑑; r; and the random number 𝑘 are used as inputs: 

𝑠 = (𝑘−1ℎ((𝑚) + 𝑑 × 𝑟)𝑚𝑜𝑑 𝑛)) (3) 

To prove validity s must be anything but zero. In case s is 0, k, which is a random number, is obtained 

newly, and values of r and s are calculated again. 

Signature verification and signature computation are correlated. It serves for message authenticity 

verification by utilizing the public key of the authenticator. The authenticator obtains and signs a message 

digest using the secure hash algorithm for signature computation. 

Public keys Q(x, y), 𝑟 and 𝑠 are used to obtain the result. Figure 9 depicts the mechanism of signature 

and verification. Equation (4) presents separately how the verification process is carried out. The essential 

components involved in the digital signature process include the message digest ℎ(𝑚), the public key 𝑄(𝑥, 𝑦), 

as well as the signature components 𝑟 and 𝑠. These elements, which are given as inputs, work in conjunction 

with the base point 𝐺(𝑥, 𝑦) of the elliptic curve. 

𝑤 = 𝑠−1𝑚𝑜𝑑𝑛
𝑢1 = (ℎ(𝑚)× 𝑤)𝑚𝑜𝑑𝑛
𝑢2 = (𝑟 × 𝑤)𝑚𝑜𝑑𝑛

(𝑥2, 𝑦2) = (𝑢1 × 𝐺(𝑥, 𝑦) + 𝑢2 × 𝑄(𝑥, 𝑦))𝑚𝑜𝑑𝑛}
 
 

 
 

 (4) 

For the verification to be successful, 𝑥2 has to be equal to 𝑟, which tells the signature was obtained by 

using the private key[9]. 

6. Enhanced elliptic curve cryptography 

In this research would like to emphasize that the uniqueness of this proposal is the representation of the 

elements of Galois Field in its p’s ternary form 𝐺𝐹(3𝑚) to ensure enhanced security of the information. As an 

illustration, let us consider GF(33). The elements of 𝐺𝐹(3𝑚) are constructed using the primitive polynomial 

𝑝(𝑥) = 𝑥3 + 2𝑥2 + 1. 
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Let 𝛼 be a root of the polynomial p(x). 

𝑝(𝑥 = 𝛼) = 𝛼3 + 2𝛼2 + 1 = 0 

𝛼3 = 2𝛼2 + 1 

Hence 𝛼3 = 𝛼2 + 2. 

Table 1. The elements of 𝐺𝐹(33) constructed using the primitive polynomial 𝑝(𝑥) = 𝑥3 + 2𝑥2 + 1. 

Elements Polynomial representation Ternary and decimal representation 3’s complement representation 

0 0 (000)3 = (0) 001 

1 1 (100)3 = (1) 201 

𝛼 𝛼 (010)3 = (3) 221 

𝛼2 𝛼2 (001)3 = (9) 000 

𝛼3 2 + 𝛼2 (201)3 = (11) 100 

𝛼4 2 + 2𝛼 + 𝛼2 (221)3 = (17) 010 

𝛼5 2 + 2𝛼 (220)3 = (8) 011 

𝛼6 2𝛼 + 2𝛼2 (022)3 = (24) 202 

𝛼7 1 + 𝛼2 (101)3 = (10) 200 

𝛼8 2 + 𝛼 + 𝛼2 (211)3= (14) 020 

𝛼9 2 + 2𝛼 + 2𝛼2 (222)3 = (26) 002 

𝛼10 1 + 2𝛼 + 𝛼2 (121)3 = (16) 110 

𝛼11 2 + 𝛼 (210)3 = (5) 021 

𝛼12 2𝛼 + 𝛼2 (021)3 = (15) 210 

𝛼13 2 (200)3 = (2) 101 

𝛼14 2𝛼 (020)3 = (6) 211 

𝛼15 2𝛼2 (002)3 = (18) 222 

𝛼16 1 + 2𝛼2 (102)3 = (19) 122 

𝛼17 1 + 𝛼 + 2𝛼2 (112)3 = (22) 112 

𝛼18 1 + 𝛼 (110)3 = (4) 121 

𝛼19 𝛼 + 𝛼2 (011)3 = (12) 212 

𝛼20 2 + 2𝛼2 (202)3 = (20) 022 

𝛼21 1 + 2𝛼 + 2𝛼2 (122)3 = (25) 102 

𝛼22  1 + 𝛼 + 𝛼2 (111)3 = (13) 120 

𝛼23 2 + 𝛼 + 2𝛼2 (212)3 = (23) 012 

𝛼24 1 + 2𝛼 (120)3 = (7) 111 

𝛼25 𝛼 + 2𝛼2 (012)3 = (21) 212 

𝛼26 1 (100)3 = (1) 001 

As can be seen, Table 1 shows the elements of 𝐺𝐹(33) constructed using the primitive polynomial 

𝑝(𝑥) = 𝑥3 + 2𝑥2 + 1 . The polynomial representation, the ternary representation, and the decimal 

representation of the galois field elements are depicted in Table 1. This ternary representation of the data is 

used for all the mathematical operations like addition, multiplication, inverse and all the other relevant modular 

operations in the proposed algorithm. In this research, the ternary representation of ECC over galois field is 

utilized for representing the following: 

• The information that needs to be secured. 

• The mathematical relation between the private key and public key in customized ECC. 
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• The modular operations use an Elliptic digital signature algorithm for authentication. 

Figure 10 explains the Elliptic curve cryptography’s random key generation and implementation over the 

ternary galois field. Simple implementation of ECC over finite field 𝐺𝐹(33) and 𝐺𝐹(3−3) system setup. 

ECC over finite field 𝑮𝑭(𝟑𝟑) 

The underlying finite field will be F3 m, and using the generator point 𝑝 = 𝛼3, 𝛼5 which has order E(F3 

m) = n = 27; 

Step 1: Key generation 

Entity A performs the following operation 

A selects a random integer KA = 3 from[1, n−1] 

A computes the point A = K𝐴 ×𝑃 = 3× (𝛼
3, 𝛼5) = 𝛼12, 𝛼18 

 
Figure 10. Process of computation of the ECC over ternary galis field. 

Step 2: Encryption process 

Entity B Sends Message to A 

Message M = (10100000100) = {(2203)3, (020)3)} = (𝛼
5, 𝛼14) 

Entity B performs the following steps. 

Look up the public key of A from the public key sensor: A = 𝛼12, 𝛼18 

Represent M as a pair of elements (M1,M2) 

M1 = (101000), (00100) = (220), (020) over 𝐺𝐹(3𝑚) 

Selects the random integer 𝐾𝐵 = 2 from [1, 𝑛 − 1] 

Computes his public key: B = 𝐾𝐵 × 𝑃=2× (𝛼3, 𝛼5) = (𝛼18, 𝛼24) 

Computes the shared Key = 𝑆𝐵𝐴 = 𝐾𝐵 × A = 2× (𝛼
12 , 𝛼18) 

(𝑥3, 𝑦3) = (𝛼20, 𝛼22) 

The shared key 𝑆𝐵𝐴 is treated as the Session Key. Computes the field element by considering the session 

key and raising it to the order of the Galois field m. 

(𝑥4, 𝑦4) = ((𝑆𝐵𝐴(𝑥))𝑀, ((𝑆𝐵𝐴(𝑦))𝑀 

(𝑥4, 𝑦4)=((𝛼(20)
3
, (𝛼(22)

3
) over 𝐺𝐹(33) 

=(𝛼8, 𝛼14) 

B foams the cipher text 

𝑐1 = ((𝑚1 + 𝑥3)(𝑥4))=𝛼3 
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𝐶2 = (𝑚2 + 𝑦3)(𝑦4)=𝛼21 

B transmits the public key of A and the cipher text to A; (𝛼12, 𝛼18 , 𝛼3, 𝛼21) 

Step 3: Decryption process (A) 

Entity A decrypts the cipher (𝛼12, 𝛼18, 𝛼3, 𝛼21) received from B by performing the following steps: 

A computes the session key 

𝑆𝐴𝐵 = 𝐾𝐴(B) = (2) × (𝛼
18, 𝛼24) 

(𝑥3, 𝑦3) = (𝛼20 , 𝛼22) 

A forms (𝑥4, 𝑦4) just as B did 𝑥4 = (𝛼(20)
3
) = 𝛼5 

𝑦4 = (𝛼(22)
3
) = 𝛼14 

A recovers the message (M1,M2) by Computing 

M1 =
𝐶1

𝑥4
− 𝑥3 over 𝐺𝐹(3𝑚) =

𝛼3

𝛼8
− 𝛼20 = 𝛼5 

M2 =
𝐶2

𝑦4
− 𝑦3 over 𝐺𝐹(3𝑚) =

𝛼21

𝛼14
− 𝛼22 = 𝛼14 

(M1,M2) = (𝛼5, 𝛼14) = (220,020) = (101000001000) 

ECC over finite field 𝐺𝐹(3�̅�) 

The underlying finite field will be F3 �̅� and using the generator point 𝑝 = 𝛼0, 𝛼19 which has order E (F3 

m) = n = 27; 

Step 1: Key generation 

Entity A performs the following operation 

A selects a random integer 𝐾𝐴 = 3 from [1, 𝑛 − 1] 

A computes the point A = 𝐾𝐴 ×𝑃 = 3 × 𝛼
0, 𝛼19 = (𝛼5, 𝛼7) 

Step 2: Encryption process 

Entity B Sends Message to A 

Message M = (10100000100) = {(2203)3, (020)3)} = (𝛼
5, 𝛼14) 

Entity B perform th the following steps. 

Look up the public key of A from the public key sensor: A = (𝛼5, 𝛼7) 

Represent M as a pair of elements (M1,M2) 

M1 = (101000), (00100) = (220), (020) over 𝐺𝐹(3�̅�) = (𝛼5, 𝛼14) 

= (𝛼19, 𝛼8) over 𝐺𝐹(3�̅�) 

Selects the random integer 𝐾𝐵 = 2 from [1, 𝑛 − 1]  

Computes his public key: B = 𝐾𝐵 × 𝑃=2× (𝛼0, 𝛼19) = (𝛼17, 𝛼17) 

Computes the shared Key =𝑆𝐵𝐴 = 𝐾𝐵 × A=2 × (𝛼5, 𝛼7) 

(𝑥3, 𝑦3) = (𝛼14, 𝛼4) 

The shared key 𝑆𝐵𝐴 is treated as the Session Key. Computes the field element by considering the session 

key and raising it to the order of the Galois field m. 

(𝑥4, 𝑦4) = ((𝑆𝐵𝐴(𝑥))𝑀 , (𝑆𝐵𝐴(𝑦))𝑀 

(𝑥4, 𝑦4)=((𝛼(14)
3
, (𝛼(4) over 𝐺𝐹(33) = (𝛼16, 𝛼12) 

B foams the cipher text  

𝐶1 = ((𝑚1 + 𝑥3)(𝑥4))=𝛼18 

𝐶2 = (𝑚2 + 𝑦3)(𝑦4)=𝛼4 

𝐶𝐵 transmits the public key of A and the cipher text to A; (𝛼5, 𝛼7, 𝛼18 , 𝛼2) 

Step 3: Decryption process (A) 

Entity A decrypts the cipher (𝛼5, 𝛼7, 𝛼18, 𝛼2) received from B by performing the following steps: 

A computes the session key 
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𝑆𝐴𝐵 = 𝐾𝐴(𝐵) = (2)(𝛼
18, 𝛼24) 

(𝑥3, 𝑦3) = (𝛼14 , 𝛼4) 

A form (𝑥4, 𝑦4) just as B did 𝑥4 = (𝛼(14)
3
)=𝛼16 

𝑦4 = (𝛼(4)
3
)=𝛼12 

A recovers the message (M1,M2) by Computing, M1 =
𝐶1

𝑥4
− 𝑥3 over 𝐺𝐹(3�̅�) =

𝛼18

𝛼16 
− 𝛼14 = 𝛼19 

M2 =
𝐶2

𝑦4
− 𝑦3 over 𝐺𝐹(3�̅�) =

𝛼2

𝛼12
− 𝛼4 = 𝛼8 

(M1,M2) = (𝛼19, 𝛼8) over 𝐺𝐹(3�̅�) = (101000001000) 

In this approach, point addition over 𝐺𝐹(3�̅�) has been used. Figure 11 shows the mapping points for 

plain text and cipher text mapping of Elliptic Curve cryptography over the Ternary Galois Field. 

 
Figure 11. Mapping of points (x, y) of ECC over ternary galois field. 

The comparative time analysis of the enhanced ECC algorithm is shown in Table 2. The results proved 

that elliptic curve cryptography over the ternary galois field consumes less time and is more secure than the 

conventional elliptic curve method. 

Table 2. Comparative time analysis of proposed method with binary galois field ECC. 

Time 𝑮𝑭(𝟐𝒎) 𝑮𝑭(𝟑𝒎) 𝑮𝑭(𝟑�̅�) 

Time consumption for encryption 
and decryption process 

0.1340 s 0.0938 s 0.1013 s 

Key generation time 0.043 s 0.0298 s 0.0298 s 

Overall processing time 0.1770 s 0.1236 s 0.1311 s 

Throughput 1627 bps 2330 bps 2196 bps 

Figure 12 explains the comparison analysis of the proposed method with binary galois field ECC. In the 

ternary galois field, data transmission for successful packets is more compared to the conventional ECC 

method. 
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Figure 12. Comparison analysis of the proposed method with binary galois field ECC. 

7. Results and discussions 

System Configuration: OS-RedHat Linux 7.2 

Peer 1. Desktop/Processor-64-Bit/RAM-1GB 

Peer 2. Onboard Commuter/Red hat Linux 7.2/Processor-Intel® Core 2 Duo/RAM-1GB 

Peer 1 acts as NCC, and Peer 2 is the spacecraft. 

The screenshots demonstrate the usage of the CFDP protocol along with the ECDSA over the ternary 

Galois field algorithm. The code for the protocol is implemented in C language along with socket programming 

in the UNIX system, and data transmission (peer-to-peer process) is carried out using two UNIX terminals. 

The code for ECDSA is implemented in Python, and the results are as follows: Firstly, to demonstrate CFDP 

protocol, the following commands are provided as input to the CFDP user: 

Transmission mode: Unreliable transmission mode 

Sender 

IP Address: 10.0.0.2 

Source file name: data.c 

Run the command service iptables stop initially. 

Figure 13 depicts the user interface by calling put.request service primitive. The transaction is initiated 

when the user sends a Put request to the CFDP entity. Upon receiving the Put request, the CFDP entity begins 

the transaction process. It adds the necessary information to the file metadata, encrypts the data using a public 

key, and starts the file delivery operation. To transmit each item, the CFDP entity organizes it into a Protocol 

Data Unit (PDU) and transfers it to the lower layer network. The PDU consists of metadata, an encrypted file 

PDU, and an End of File PDU. During this operation, the CFDP data is transmitted using the IP layer. The 

CFDP data is attached with an IP header to form an IP datagram, which is then transmitted to the Data Link 

Layer. The data link layer supports CCSDS path services, which package the PDUs into CCSDS packets, 

virtual channels, and frames. These are then transmitted over the physical channel to the ground station. 
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Figure 13. User interface program. 

The transmission core program accepts the input data from the user interface program through a pipe and 

starts transmitting the CFDP data shown in Figure 14: The metadata and file PDU transmits to the receiver 

side. 

 
Figure 14. Core procedure output at the sender. 

Receiver 

IP Address: 10.0.0.1 

Figure 15 shows a space image of remote sensing data and encrypted by using ECC obtained from the 

hex file, as shown in Figure 16. The encrypted data is signed by ECDSA, as shown in Figure 17. 
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Figure 15. Input image ‘cloud_amo_2.0.1.8.2.3.8._lrg.jpg’. 

 
Figure 16. Encryption at the sender. 

 
Figure 17. Signature generation. 

At the receiver end, the data is verified by using the private key. The verification procedure is shown in 

Figure 18. 
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Figure 18. Signature verification and decryption at the receiver. 

The image was decrypted using ECC private key pair and retrieved the image, as shown in Figure 19. 

 
Figure 19. Decrypted image ‘out_cloud.jpg’. 

Similarly, the space image of campfire data and other stages, such as encrypted by using ECC obtained 

the hex file, encrypted data signed by ECDSA, the receiver end data verification by using the private key, and 

the decrypted image using ECC private key pair and image retrieved are also illustrated in Figure 20. 

The receiver core program accepts the data from the sender and performs encryption, as shown in Figure 

21. Upon receiving the data through the physical channel, the receiver host transfers it to the data link layer. 

Within the data link layer, the receiver identifies the service packet and proceeds to check if the spacecraft ID 

matches. If there is a match, it then verifies the virtual channel ID for a successful match. 
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(a) (b) 

  
(c) (d) 

 
(e) 

Figure 20. (a) Input image ‘campfire111518.jpg’; (b) Encryption at the sender; (c) Signature generation; (d) Signature verification; 
(e) Decrypted image. 

Once confirmed, the header is removed, and the data is transmitted to the IP layer. Within the IP layer, 

the receiver identifies the destination address. Upon identifying the IPv4 header, the IP layer examines the 

protocol field in the IPv4 header, where a value of 17 indicates UDP. The IP datagram is then passed to the 

UDP layer. Within the UDP layer, the UDP layer verifies the application port number. If the port number 

matches, the data is forwarded to the CFDP layer. The CFDP entity receives the data, and the Receiver 

identifies the metadata details. If the destination entity matches, the receiver utilizes its private key to decrypt 

the data. Subsequently, the decrypted file data is stored in the file store. 

Transmission Mode: Reliable Transmission Mode 

Sender 

IP Address: 10.0.0.2 
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Figure 21. Core procedure at the receiver. 

This mode of transmission is reliable and is guaranteed transmission. ACK will be generated after 

successful transmission. Figure 22 depicts the user interface by calling put.request service primitive. 

The sender-side core mode is shown in Figure 23. If NAK is 0, then the checksum value is zero. 

 
Figure 22. User interface program at the sender (reliable). 

 
Figure 23. Core procedure output at the sender for reliable transmission. 
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Core procedure output at the sender for reliable transmission is shown in Figure 24. Metadata, file data 

and CCSDS comprised as CCSDS frame. 

Figure 25 shows the CCSDS frame encryption and digital signature generation. 

 
Figure 24. Coreprocedure output at the sender for reliable transmission. 

 
Figure 25. Encryption performed at the sender for reliable transmission. 

Receiver 

IP Address: 10.0.0.1 

At the receiver side, the CCSDS frame is received via space data link and decrypted and verified using 

ECDSA. Decryption performed at the sender for reliable transmission is shown in Figure 26. 
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Figure 26. Decryption performed at the sender for reliable transmission. 

The receiver core program accepts the data from the sender program after decryption is performed, as 

shown in Figure 27. If the spacecraft id matches, extract the original file data PDU and store it in the file store. 

The encryption and decryption timing was evaluated by utilizing the provided code, along with a randomly 

chosen key (𝑘) consisting of 252 integers and a private key (Pk) selected as 325, as demonstrated in Tables 3 

and 4 during the implementation testing. Table 3 provides encryption and decryption times (in seconds) for 

different image resolutions. As the image resolution increases, encryption and decryption times also increase. 

For example, with a resolution of 100 × 100, encryption takes approximately 6.38 seconds, while decryption 

takes around 6.17 seconds. However, with higher resolutions, such as 2.56 × 2.56, encryption time increases 

to 44.48 seconds, and decryption time rises to 30.91 seconds. 

 
Figure 27. (Continued). 
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Figure 27. Core procedure output at the receiver for reliable transmission. 

Table 3. Examination of the identical security level for a few normally utilized cryptographic key sizes. 

Time to break in MIPS years RSA/DSA key size ECC key size RSA/ECC key size ration 

104 512 106 5:1 

109 768 132 6:1 

1011 1024 160 7:1 

1020 2048 210 10:1 

1079 21,000 600 35:1 

Table 4. Examination of the timing for encryption and decryption. 

Image resolution Encryption time seconds Decryption time seconds 

100 × 100 6.38 6.17 

150 × 150 13.12 12.52 

200 × 200 43.02 29.88 

256 × 256 44.48 30.91 

Table 4 presents the estimated time required to break cryptographic keys in Million Instructions Per 

Second (MIPS) years, the key sizes for RSA/DSA and ECC, and the ratio between RSA/ECC key sizes. An 

RSA/DSA, with a key size of 512 bits, would take approximately 104 MIPS years to break. For a key size of 

768 bits, the estimated time to break increases to around 109 MIPS years. A key size of 1024 bits would require 

approximately 1011 MIPS years to break. When using a key size of 2048 bits, the time to break rises to 

approximately 1020 MIPS years. For a significantly larger RSA/DSA key size of 21000 bits, it would take 

approximately 1079 MIPS years to break. Comparing the RSA/ECC key sizes, the ratio between RSA and 

ECC key sizes increases progressively: For a 512-bit RSA/DSA key, the corresponding ECC key size is 106 

bits, resulting in a ratio of 5:1. With a 768-bit RSA/DSA key, the ECC key size is 132 bits, resulting in a ratio 
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of 6:1. For a 1024-bit RSA/DSA key, the ECC key size is 160 bits, resulting in a ratio of 7:1. With a 2048-bit 

RSA/DSA key, the ECC key size is 210 bits, resulting in a ratio of 10:1. Finally, for a large 21000-bit 

RSA/DSA key, the ECC key size is 600 bits, resulting in a ratio of 35:1. 

8. Conclusions 

This research work focuses on ensuring the dependability and security of space file transactions. To 

enhance security, we have developed an improved elliptic key public key cryptosystem based on curve 

coordinate system. This cryptographic system enhances the overall security of data transactions. Moreover, 

the system design also incorporates fault tolerance mechanisms, making the protocol more reliable. We have 

implemented various fault-handling mechanisms within the CFDP protocol, which further strengthens its 

reliability. While the Internet Planetary Network (IPN) surpasses CFDP in certain areas, such as network 

scalability and compatibility with terrestrial delay-tolerant networking technology, it is important to note that 

the deployed IPN protocols will not replace CFDP but rather complement it. In this project, we analyze the 

design elements of both technologies and explore ways to integrate them seamlessly. This integration leads to 

new capabilities, including the efficient transmission of large files through the simultaneous operation of 

multiple relay satellites. 

CFDP serves as a stable global standard that offers significant benefits to mission operations in terms of 

cost reduction and risk mitigation. By enabling reliable file transfer and remote file system management across 

interplanetary distances, CFDP plays a crucial role in deep space exploration missions. However, by 

incorporating emerging delay-tolerant networking technology into interplanetary internet operations, 

specifically in conjunction with CFDP within complex mission architectures, we can further enhance CFDP’s 

value and effectiveness. This integration holds immense potential for advancing deep space exploration 

missions. The comparative analysis of Enhanced ECDSA, RSA, and DSA highlights the superiority of ECDSA 

in delivering digital signatures. The findings reveal the dominance of ECDSA in both the generation of keys 

and the signing process, where its performance outstripped that of its counterparts. The primary selling point 

of ECDSA lies in its ability to maintain similar security levels with significantly smaller key sizes. Despite 

potential vulnerabilities to certain attacks, such as Pollard’s Rho and Pohlig-Hellman algorithms, ECDSA 

remains a more robust choice. The slower processing times of these attacks compared to those against RSA 

and DSA reinforce the security advantages of ECDSA. The rigorous requirements of ECDSA pertaining to 

hash functions, discrete logarithms, and number generation bolster its performance claims. 

The future expansion of this study should aim to explore the efficacy of ECDSA in real-world applications, 

particularly focusing on its resistance to emerging threats. It could also further investigate potential 

enhancements in ECDSA’s underlying principles to augment its security performance. Additionally, more 

exhaustive comparative analyses involving newer cryptographic algorithms may offer additional insight into 

the evolving dynamics of digital signature technology. 
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Abbreviations 

CCSDS Consultative Committee for Space Data Systems 

CFDP CCSDS File Delivery Protocol 

ECC Elliptic Curve Cryptography 

ECDSA Elliptic Curve Digital Signature Algorithm 

GF Galois Field 

OBC On-Board Computer 

PDU Protocol Data Unit 

PKC Public Key Cryptography 

MCC Mission Control Center 

NCC Network Control Centre 

TM Telemetry 

TC Telecommand 
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