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ABSTRACT
The early and accurate diagnosis of skin cancer is crucial for improving patient outcomes and reducing the need for

invasive biopsies. This study proposes a deep learning model for classifying skin malignancy using transfer learning and
data augmentation techniques to address limitations observed in previous models and enhance diagnostic accuracy. The
approach involves applying transfer learning to a pre-trained ResNet152 architecture using tensorflow and keras. Data
augmentation techniques are employed on a dataset consisting of 10,015 skin lesion images obtained from the
international skin imaging collaboration (ISIC) 2018 challenge, which encompasses diverse lesion types, sizes, and colors,
posing a challenging classification task. Binary cross-entropy serves as the loss function, and the Adam optimizer is
utilized for training the model. The results demonstrate a specificity of 87.42% and an F1 score of 0.854, outperforming
other models in the field. These statistical findings highlight the effectiveness of transfer learning and data augmentation
techniques in improving the accuracy of skin cancer diagnosis. The novelty of this study lies in the combination of transfer
learning and data augmentation methods to enhance diagnostic accuracy. However, it is important to acknowledge the
limitations of this study, including the necessity for further investigation to evaluate the clinical practicality of the model
and address potential biases. Future research could explore the application of this model in a clinical setting and the
development of models for detecting other types of skin lesions. In conclusion, the proposed deep learning model based
on the ResNet152 architecture showcases promising results in the classification of skin lesions, demonstrating its potential
for accurate skin cancer diagnosis. With further research and improvement, these models have the potential to
revolutionize healthcare, improving patient outcomes, reducing healthcare costs, and increasing accessibility to screening
and diagnosis, particularly for underserved populations.
Keywords: skin malignancy; deep learning; data augmentation; transfer learning; skin lesion; biopsy reduction; diagnosis
accuracy

1. Introduction
Skin cancer is a major concern in the 21st century, with cases

increasing every day. It is the third most common type of cancer and a
leading cause of non-accidental death among individuals aged 20–
39[1,2]. Moreover, melanoma cases have increased by 53% in the last
decade, primarily due to UV exposure[3]. Early detection of skin lesions
is critical to prevent metastasis and fatal consequences. However, it can
be challenging to differentiate many skin lesions, even for experienced
dermatologists, due to their subtle differences. Prompt and accurate
diagnosis of skin lesions is crucial, as early detection can prevent
metastasis and fatal consequences[4]. However, many skin lesions can
be difficult to differentiate, even for experienced dermatologists, due
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to their subtle differences[5]. To improve the accuracy and efficiency of skin cancer diagnosis while reducing 
the need for invasive biopsy procedures, a novel deep learning model was developed using transfer learning 
and data augmentation techniques. It is important to note that this study is not an ablation study, as the proposed 
model was not evaluated by removing or modifying individual components to analyze their contribution to the 
overall performance. 

As shown in Figure 1, the HAM10000 dataset comprises 10,015 dermoscopy images collected from two 
different locations over 20 years. A selection of dermoscopy images representing each of the seven types of 
skin lesions used in the study[6]. 

 

 
Figure 1. Sample images for the seven skin lesion categories from HAM10000 dataset[6]. 

The seven categories of skin lesions utilized in the study are: 

Melanocytic nevi: benign tumors that may vary in size, color, and appearance[7]. 

Melanoma: malignant skin tumors that originate in melanocytes, the cells responsible for pigmentation in 
the skin[8]. 

Basal cell carcinoma: the most common type of skin cancer that appears as a shiny or waxy bump on the 
skin[9]. 

Actinic keratosis: precancerous skin lesions that present as scaly or crusty spots on the skin. 

Benign keratosis: a group of non-cancerous skin lesions caused by the overgrowth of keratinocytes. The 
typical outward manifestation is roughness or scaling[10]. 

Dermatofibroma: benign skin tumours originating from collagen-producing fibroblasts. They usually 
appear as firm or hard lumps on the skin[11]. 

Vascular lesions are skin lesions that arise from blood vessels in the skin. The type of lesion depends on 
its appearance and location, and can include conditions such as hemangiomas, port-wine stains, or pyogenic 
granulomas[12]. 

According to the World Health Organization (WHO), skin cancer is the most common cancer worldwide, 
and its incidence is increasing. The incidence of melanoma, the most deadly form of skin cancer, has been 
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increasing over the past few decades, particularly in countries with fair-skinned populations, such as the United 
States, Australia, and Europe[13]. According to the latest data from the American cancer society’s cancer facts 
& figures 2023 report, melanoma remains a significant health challenge. In the United States alone, it is 
estimated that in 2023, approximately 186,680 new cases of melanoma will be diagnosed, with 97,610 cases 
classified as invasive. Tragically, in 2022, over 7500 lives were lost to this aggressive form of skin cancer, with 
men accounting for 5000 of those fatalities and women comprising around 2500. However, there is hope as 
the report reveals a 4% decrease in death rates due to melanoma between 2014 and 2018. These compelling 
statistics serve as a powerful reminder of the urgent need for early detection strategies and robust preventive 
measures to combat the rising burden of skin cancer[13]. In 2021, the American cancer society estimated 
106,110 new cases of melanoma in the United States, with approximately 7180 deaths from the disease[14,15]. 
The current diagnostic methods for skin cancer typically involve a visual inspection of skin lesions by a 
dermatologist or healthcare provider, followed by a biopsy of suspicious lesions for microscopic examination. 
Dermoscopy, a non-invasive imaging technique, may also be used to visualize skin lesions in more detail[16]. 
While these methods are effective in identifying many cases of skin cancer, they have several limitations. 
Visual inspection can be subjective and may miss small or subtle lesions, leading to delayed diagnosis and 
treatment. A biopsy is an invasive procedure that can be uncomfortable for patients and may leave scars. 
Dermoscopy requires specialized equipment and training, and its accuracy depends on the skill of the 
practitioner[17]. Moreover, these methods can be time-consuming and costly, and they may not be accessible to 
all patients, especially those living in remote or underserved areas. As a result, there is a need for new 
diagnostic methods that are non-invasive, accurate, and cost-effective[18]. This study aims to improve the 
accuracy and efficiency of skin cancer diagnosis and reduce the need for invasive biopsy procedures. The 
development of an accurate and efficient diagnostic tool would greatly benefit the field of cancer metastasis 
and treatment by improving diagnostic accuracy, reducing the probability of misdiagnosis, and ultimately 
improving patient outcomes. Despite the availability of various machine-learning models for skin cancer 
classification, the existing literature still lacks a comprehensive and accurate deep learning model for the early 
detection and classification of skin malignancy from dermoscopic images. Most of the existing models are 
limited in their ability to accurately classify different types of skin lesions due to the subtle variations in color, 
texture, and patterns[13,19]. In recent years, deep learning models have become increasingly popular for a variety 
of machine learning tasks, including classification. However, it is still an open question whether these models 
are more effective when applied end-to-end for classification or when used as feature extractors. In this paper, 
the question is explored by comparing the performance of several deep learning models on a classification task, 
both when applied end-to-end and when used as feature extractors. This study aims to fill the research gap by 
developing a deep learning model using dermoscopic images and transfer learning techniques. The proposed 
model will be trained on a large dataset and will use the ResNet152 architecture to accurately classify different 
types of skin lesions with high accuracy and sensitivity. The study will also compare the performance of the 
proposed model with existing models to demonstrate its superiority and effectiveness in improving the 
diagnosis of skin cancer. 

The main objective of this study is to develop a deep learning model using dermoscopic images for 
accurate classification of skin malignancy. The study aims to answer the following research questions: 
 The study aims to evaluate the accuracy of the proposed deep learning model in classifying different types 

of skin lesions using dermoscopic images. 
 The study investigates the potential improvement in performance of the deep learning model with transfer 

learning. 
 The study examines the impact of using the ResNet152 architecture on the accuracy of the deep learning 

model. 
 The study aims to determine whether the developed model can assist dermatologists in the prompt 
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diagnosis of skin malignancies and reduce the likelihood of misdiagnosis. 

The hypothesis is that the proposed model, utilizing transfer learning and ResNet152 architecture, can 
accurately classify skin lesions and assist dermatologists in the prompt diagnosis of skin malignancies. 

As shown in Table 1, this provides a summary of the number of images in each of the seven classes of 
skin lesions included in the HAM10000 dataset used for training the deep learning model proposed in the study. 
The classes include actinic keratosis, basal cell carcinoma, melanoma, benign keratosis, dermatofibroma, 
melanocytic nevi, and vascular lesions. Moreover, as shown in Table 1 shows that the dataset contains 10,015 
images, with melanocytic nevi being the most common class with 6705 images and dermatofibroma being the 
least common with only 115 images. This information is useful for understanding the distribution of data in 
the dataset and the potential impact of class imbalance on model performance[20]. Previous studies have often 
relied on smaller or less diverse datasets, which may limit the generalizability of their findings to different 
populations[21]. This study addresses the limitation of using smaller or less diverse datasets by utilizing a large 
and diverse dataset of dermoscopic images of skin lesions, which improves the reliability and validity of the 
proposed model. Moreover, previous studies in the field have shown promising results in using deep learning 
models for diagnosing skin cancer. For example, researchers have developed convolutional neural networks 
(CNNs) that accurately differentiate between malignant and benign skin lesions based on images[22]. Some 
studies have reported accuracy rates of up to 95%, comparable to the performance of dermatologists[23]. 

Table 1. Distribution of images across different classes of skin lesions. 

Skin lesion class Number of images 

Actinic keratosis 327 

Basal cell carcinoma 514 

Melanoma 113 

Benign keratosis 1099 

Dermatofibroma 115 

Melanocytic nevi 6705 

Vascular lesion 142 

Total 10,015 

The importance of evaluating the proposed deep learning model’s performance across all classes of skin 
lesions to determine its clinical utility is crucial. It is essential to investigate potential biases and limitations of 
the model and assess its ability to generalize to new data. If the model performs well on specific subsets of 
images or lesions, it may be less useful in clinical practice, where there is a wide range of lesion types and 
presentations. To address this concern, the proposed study aims to evaluate the accuracy of the deep learning 
model in classifying all seven classes of skin lesions using the HAM10000 dataset. This evaluation will identify 
any potential weaknesses or biases in the model and assess its ability to generalize to new data. Additionally, 
the study aims to compare the proposed model’s performance with existing models, providing further insights 
into its effectiveness and clinical utility. These analyses will provide a more comprehensive understanding of 
the potential benefits and limitations of the proposed deep learning model in assisting dermatologists in 
diagnosing skin malignancies. 

Furthermore, while some studies have used transfer learning to improve deep learning model 
performance[24], there is a need to explore the optimal approach for transferring knowledge from pre-trained 
architectures to skin lesion classification. This study contributes to this area by investigating the effectiveness 
of transfer learning with the ResNet152 architecture in accurately classifying different types of skin lesions. 
However, there are potential limitations to using deep learning models for skin cancer diagnosis. For example, 
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these models may be less effective in cases where the lesion is not clearly visible or the image quality is poor. 
Additionally, deep learning models may be more prone to overfitting the training dataset, which could lead to 
poor generalization performance on new and unseen data[25]. Overall, this study aims to address the gaps in the 
literature by proposing a deep learning model that utilizes transfer learning with ResNet152 architecture to 
accurately classify skin malignancy in dermoscopic images of skin lesions. The study also aims to contribute 
to the development of new techniques for analyzing and interpreting dermoscopic images and to provide 
insights into the performance and limitations of deep learning models for skin cancer diagnosis. 

As shown in Figure 2, depicts the flowchart of the skin lesion classification process using the proposed 
deep learning model. The process begins with the user inputting their information and the dermoscopic image 
of the skin lesion. The pre-trained deep learning model is then loaded, and the necessary data is supplied to the 
model for classification. Based on the trained parameters, the model classifies the lesion and outputs the results, 
indicating the presence or absence of malignancy. The flowchart demonstrates the overall simplicity and 
efficiency of the proposed model, which can aid dermatologists in accurately and timely diagnosing skin cancer, 
leading to early detection and treatment and ultimately improving patient outcomes. The study will adopt a 
deep learning approach to develop a model for accurately classifying skin malignancy from dermoscopic 
images. 

 
Figure 2. Flowchart of skin lesion classification using deep learning model. 

To achieve the research objectives, the HAM10000 dataset will be collected, which contains 10,000 
dermoscopic images of skin lesions classified into seven different types of skin malignancies. The dataset will 
be preprocessed by resizing the images to a standard size, and data augmentation techniques will be applied to 
balance the classes. A convolutional neural network (CNN) will be trained using keras and tensorflow to 
classify the images into the seven classes. Transfer learning and fine-tuning techniques will be used to improve 
the model’s accuracy and reduce training time. The model’s performance will be evaluated using metrics such 
as accuracy, precision, recall, and F1 score. Additionally, a comparison with state-of-the-art models in the 
literature will be conducted to validate the proposed model’s effectiveness in accurately diagnosing skin 
malignancy[13]. The proposed study holds promise for contributing to the field of cancer metastasis and 
treatment. Firstly, it aims to develop a deep learning model that utilizes a pre-trained architecture and transfer 
learning techniques to accurately classify skin malignancy from dermoscopic images. This model could have 
significant clinical implications by enhancing the accuracy of skin cancer diagnosis and reducing the risk of 
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misdiagnosis. Secondly, the study will employ the HAM10000 dataset, which comprises a large number of 
high-quality dermoscopic images of skin lesions. The utilization of such a vast and diverse dataset can help 
address the limitations of previous studies in this domain, which often relied on smaller or less diverse datasets. 
Thirdly, the study may contribute to the development of new techniques for analyzing and interpreting 
dermoscopic images. The increasing popularity of deep learning models for image classification necessitates 
a deeper understanding of their performance and limitations in skin cancer diagnosis, and this study has the 
potential to provide valuable insights. Overall, the proposed study has the potential to advance our knowledge 
of skin cancer diagnosis and treatment and lay the foundation for future research in this area. 

In this study, the novelty and contributions are as follows: 
1) Novel deep learning model: in this study, a novel deep learning model is proposed specifically designed 

for accurate classification of skin malignancy from dermoscopic images. The model adopts the 
ResNet152 architecture, known for its effectiveness in image classification tasks. The utilization of 
ResNet152 for skin cancer diagnosis is a novel aspect of this study, and it provides evidence of its 
effectiveness in this particular context. 

2) Transfer learning for skin cancer diagnosis: the study investigates the application of transfer learning 
techniques with the ResNet152 architecture to enhance the accuracy of the deep learning model. Transfer 
learning is a powerful approach that allows the model to leverage pre-trained knowledge from large-scale 
image classification tasks, thereby improving its ability to accurately classify skin lesions. The use of 
transfer learning for skin cancer diagnosis is a notable contribution in this study. 

3) Comprehensive evaluation and comparison: in this study, the proposed deep learning model is 
comprehensively evaluated using the HAM10000 dataset, which contains diverse dermoscopic images of 
skin lesions. The evaluation includes various metrics such as accuracy, sensitivity, specificity, and AUC-
ROC, providing a comprehensive assessment of the model’s performance. Additionally, the study 
compares the proposed model with existing models used for skin cancer diagnosis, demonstrating its 
superiority and effectiveness in classifying different types of skin lesions. 

4) Addressing limitations and future directions: in this study, potential limitations of deep learning models 
for skin cancer diagnosis are identified, such as challenges with unclear or poor-quality images and the 
risk of overfitting. By acknowledging these limitations, the study offers valuable insights for future 
research and the development of improved diagnostic methods. Additionally, the study suggests future 
directions for the analysis and interpretation of dermoscopic images and further enhancements of deep 
learning models in skin cancer diagnosis. 

5) Clinical relevance and impact: the proposed deep learning model aims to assist dermatologists in the 
prompt and accurate diagnosis of skin malignancies. Early detection of skin cancer is critical for effective 
treatment and prevention of metastasis. By developing a model that can accurately classify various types 
of skin lesions, this study has the potential to significantly impact clinical practice by improving 
diagnostic accuracy, reducing the need for invasive procedures, and ultimately leading to better patient 
outcomes. 

In summary, this study’s contributions lie in the development of a novel deep learning model for skin 
cancer diagnosis, the exploration of transfer learning techniques in this context, and the comprehensive 
evaluation and comparison of the proposed model with existing methods. The study’s focus on addressing 
limitations and suggesting future research directions further adds to its significance. By advancing the field of 
skin cancer diagnosis with accurate and efficient deep learning models, this study contributes to improving 
patient care and outcomes in the context of skin malignancy. 

The remainder of this paper is organized as follows: Section 2 presents a comprehensive review of the 
existing literature. Section 3 describes the proposed method and materials in detail, outlining the steps involved. 
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Section 4 presents the results and analysis of the experiments, highlighting important findings and implications. 
Section 5 is dedicated to the discussion of our findings in the broader context of the research field. Finally, 
Section 6 concludes the paper by summarizing the main contributions, discussing the implications, and 
suggesting potential avenues for future research. 

2. Literature review 
The literature review highlights the challenges of accurately diagnosing skin cancer and the limitations 

of current deep learning models. It proposes a new model using transfer learning and data augmentation 
techniques to improve accuracy and efficiency in skin malignancy classification. The importance of early 
detection and potential clinical applications of deep learning models are also discussed. Future research 
directions include advanced data augmentation techniques and model interpretability. The review concludes 
with a summary table of recent studies using machine-learning techniques for skin cancer classification. Skin 
cancer is a prevalent and deadly disease, with over 5.4 million cases diagnosed annually worldwide. Early 
detection and treatment are crucial for improving patient outcomes, as survival rates decline significantly in 
advanced stages of the disease. Biopsy and histopathological examination currently serve as the gold standard 
for skin cancer diagnosis, but they are invasive, time-consuming, and expensive procedures. In recent years, 
machine learning techniques, particularly deep learning models, have shown promising results in skin cancer 
diagnosis. These models can classify skin lesion images based on various features extracted from the image, 
reducing the need for invasive biopsy procedures. However, existing deep learning models have limitations 
that need to be addressed, such as imbalanced class distribution, data heterogeneity, and a limited sample size. 
Several studies have proposed deep learning models for skin cancer diagnosis. For example, a deep 
convolutional neural network was proposed for skin cancer identification from dermoscopy images[26]. Another 
study conducted a systematic review of deep learning-based algorithms for skin cancer classification and 
highlighted the challenges and limitations of these models[27]. A third study proposed a deep transfer learning 
model that utilizes a more comprehensive and diverse dataset, transfer learning, and data augmentation 
techniques to accurately and efficiently classify skin malignancy from dermoscopic images[28]. In a nutshell, 
deep learning models have shown promise in skin cancer diagnosis, but there are still challenges that need to 
be addressed. By utilizing more comprehensive and diverse datasets, transfer learning, and data augmentation 
techniques, deep learning models can improve the accuracy and efficiency of skin cancer diagnosis, ultimately 
leading to better patient outcomes. 

2.1. Challenges in skin cancer diagnosis 
The proposed model addresses the limitations of current deep learning models by incorporating 

unsupervised and supervised learning techniques. Firstly, unsupervised learning techniques such as 
autoencoders and clustering algorithms are used to learn the underlying structure of the data and identify 
patterns in the input. This allows the model to capture more complex relationships between the input features, 
improving the accuracy of the model. Secondly, supervised learning techniques such as deep neural networks 
are employed to perform classification tasks. The model is trained on a large dataset of labeled data, enabling 
it to accurately classify new data. Attention mechanisms are also incorporated into the model to focus on 
important features in the input, further enhancing its performance. The proposed model also utilizes 
comprehensive evaluation metrics to assess its performance, including accuracy, precision, recall, F1 score, 
and area under the receiver operating characteristic curve (AUC-ROC). By employing a range of evaluation 
metrics, the proposed model provides a more complete assessment of its performance than existing models, 
which typically focus solely on accuracy[29,30]. 

2.2. Current deep learning models for skin lesion classification 
Current deep learning models for skin lesion classification have shown promising results in improving 
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the accuracy and efficiency of skin cancer diagnosis. These models utilize convolutional neural networks 
(CNNs) to analyze skin lesion images and classify them as either benign or malignant. Transfer learning, where 
pre-trained CNN models on large image datasets like ImageNet are fine-tuned for skin lesion classification, is 
a popular approach. This allows the model to leverage learned features from the pre-trained model and adapt 
them to the specific task. Data augmentation is another technique used in these models, involving the creation 
of new images through transformations like rotations and scaling, to increase the size and diversity of the 
training dataset and prevent overfitting. Despite their promising results, current deep learning models for skin 
lesion classification have limitations. One major limitation is the availability and quality of the datasets used 
for training and testing. Many existing datasets suffer from imbalanced class distribution, data heterogeneity, 
and limited sample size, which can bias models and limit their generalizability. Another limitation is the lack 
of interpretability of these models[31]. Deep learning models often function as black boxes, making it 
challenging to understand their decision-making process. In clinical settings, interpretability is crucial for 
clinicians and patients to comprehend the reasoning behind the model’s classifications. Moreover, previous 
works have primarily focused on binary classification, specifically distinguishing between benign and 
malignant skin lesions. However, this binary classification may not fully capture the complexity of skin lesion 
diagnosis in clinical practice. Multiclass classification tasks, such as distinguishing between benign nevi, basal 
cell carcinoma, and melanoma, are more representative of real-world scenarios[32,33]. 

2.3. Summary of recent studies on skin cancer classification 
In the study by Liu et al.[34], a deep convolutional neural network (CNN) was used to diagnose skin 

diseases, including melanoma, achieving an accuracy of 91%. In another study[35], the authors presented a 
challenge to classify skin lesions as benign or malignant using machine learning techniques, with the top-
performing model achieving an area under the curve (AUC) of 0.86. Similarly, researchers[36] utilized a very 
deep residual network (ResNet) to recognize melanoma in dermoscopy images with an accuracy of 91%. In a 
subsequent study[37], a deep ResNet model was employed to classify histopathological images of skin lesions 
as benign or malignant, achieving an AUC of 0.94. Additionally, a team[38] proposed an ensemble of deep 
CNNs to classify skin lesions as benign or malignant, achieving an accuracy of 94.9%. These studies 
demonstrate the potential of machine learning techniques, particularly deep learning models, in accurately 
classifying skin lesions as benign or malignant and detecting melanoma, as shown in Table 2. 

To address the limitations of current models, potential solutions include developing more efficient 
algorithms that require fewer data and computational resources, exploring unsupervised learning techniques 
to learn from unlabeled data, and improving the quality and diversity of training data through data synthesis 
and crowdsourcing. Efforts to enhance the interpretability and transparency of deep learning models can 
involve incorporating attention mechanisms, generating explanations for model decisions, and developing 
visualization tools. Future research directions in skin lesion classification may involve exploring the use of 
multimodal data by combining dermoscopic images with patient demographics or clinical data to improve 
model accuracy. Further exploration of transfer learning techniques can enhance model performance on smaller 
datasets or data with limited diversity. Additionally, investigating the potential of other imaging techniques, 
such as reflectance confocal microscopy or optical coherence tomography, can contribute to improving the 
accuracy of skin cancer diagnosis. In conclusion, while deep learning models have shown great potential for 
improving skin cancer diagnosis, there is still a need for comprehensive and diverse datasets, advanced data 
augmentation techniques, and interpretable models that better reflect the complexity of skin lesion diagnosis 
in clinical practice. By addressing these challenges and exploring future directions, researchers can further 
enhance the contribution of deep learning models to skin cancer diagnosis. 
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Table 2. Recent studies on skin cancer classification using machine learning techniques. 

Author (year) Research objective Methodology Key findings 

Liu Y et al. 
(2020)[34] 

To develop a deep 
learning model for skin 
lesion classification. 

Used transfer learning on pre-trained 
VGG16 architecture with data 
augmentation. 

Achieved an accuracy of 83.3% on ISIC 
dataset, outperforming traditional machine 
learning methods. 

Codella NCF et 
al. (2018)[35] 

To compare different 
deep learning models for 
skin lesion classification. 

Used inception-ResNet-V2, VGG16, 
and ResNet-50 architectures with data 
augmentation. 

ResNet-50 achieved the highest accuracy of 
91.2% on ISIC dataset. 

Harangi B et al. 
(2018)[36] 

To develop a deep 
learning model for 
melanoma detection. 

Used a hybrid network of inception 
V3 and DenseNet with transfer 
learning and data augmentation. 

Achieved an AUC of 0.90 on ISIC dataset, 
outperforming dermatologists in melanoma 
detection. 

Prathiba M et al. 
(2019)[37] 

To develop a deep 
learning model for skin 
cancer classification. 

Used Inception-V4 architecture with 
transfer learning and data 
augmentation. 

Achieved an accuracy of 91% on a private 
dataset, outperforming board-certified 
dermatologists. 

Jiang S et al. 
(2021)[38] 

To develop a web-based 
tool for skin lesion 
classification. 

Used a deep neural network with a 
hybrid architecture of inception V4 
and ResNet-50 with transfer learning 
and data augmentation. 

Achieved an accuracy of 88.0% on a held-
out test set, and the tool was comparable to 
board-certified dermatologists in skin lesion 
classification. 

 

3. Materials and methods 
Research design: the research design of this study can be described as follows: 

Research question: the study aims to develop a system for classifying skin lesions using dermoscopic 
images recorded with a dermoscopic lens. 

Data collection: the data used in this study was collected from the HAM10000 dataset, which contains 
10,015 dermoscopic images of skin lesions from two different sources over a 20-year period. The dataset 
includes seven unique types of skin lesions and is publicly accessible via the ISIC repository. The images were 
collected using a dermoscopic lens, providing a high-resolution view of the skin surface and helping to identify 
features not visible to the naked eye. 

The dataset is somewhat imbalanced, with approximately 6000 photographs in the ‘nevus’ class and only 
a few images in the other classes. To address this imbalance, conventional preprocessing techniques such as 
scaling and data augmentation were used. The images in the dataset were scaled to 224 × 224 pixels, and data 
augmentation methods, including rotation, zooming, flipping, and shearing, were applied to increase the 
number of images and balance the class distribution. This resulted in a total of 36,862 images across seven 
classes. The data was randomly split into an 80% training set and a 20% validation set. The training set was 
used to train the model, while the validation set was used to evaluate the model’s performance during training, 
as shown in Table 3. 

Data preprocessing: data preprocessing techniques were also applied to the images to enhance their 
quality and make them suitable for use in the model. This included standardization, normalization, and noise 
reduction. Standardization ensured that the pixel values of each image had a mean of zero and a standard 
deviation of one, facilitating the learning process. Normalization scaled the pixel values of each image to a 
range of 0 to 1, mitigating the impact of brightness and contrast differences. Noise reduction techniques, such 
as gaussian blurring, were applied to reduce image noise and improve clarity. 

Model selection: the model in this study utilized a deep convolutional neural network (DCNN) and 
transfer learning techniques on a pre-trained ResNet152 architecture. The ResNet152 architecture was chosen 
based on its exceptional performance in various image classification tasks. 
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Table 3. Summary of the HAM10000 dataset. 

Dataset HAM10000 

Number of images 10,015 

Image types Dermoscopic images 

Number of images 7 

Class labels Melanocytic nevi, melanoma, benign keratosis-like lesions, basal cell carcinoma, 
actinic keratoses, vascular lesions, dermatofibroma 

Number of classes 7 

Data preprocessing Scaling, data augmentation 

Deep learning framework Tensor flow, keras 

Pre-trained architecture ResNet152 

Overall accuracy 86.47% 

Model training and evaluation: the dataset was split into an 80% training set and a 20% validation set for 
model implementation. The base network’s weights were frozen, and the model was compiled with learning 
rate decay and a categorical cross-entropy loss function. The Adam optimizer was used to optimize the model’s 
performance. Model performance was evaluated by measuring accuracy, precision, recall, and F1 score. The 
confusion matrix was also included to provide a detailed evaluation of the model’s performance, showing the 
number of true positives, true negatives, false positives, and false negatives[39]. 

Agile methodology: in this study, the scrum methodology is used for managing and completing the work. 
The time-boxed approach is employed, working in sprints of two to four weeks. At the beginning of each sprint, 
the work is planned for the upcoming period by defining the sprint goal and outlining the tasks required to 
achieve it. Daily stand-up meetings are held to provide progress updates, discuss any impediments, and align 
the team’s efforts. At the end of each sprint, a sprint review is conducted to assess the achieved results and 
gather feedback from stakeholders. Additionally, a sprint retrospective is carried out to reflect on the team’s 
collaboration and identify areas for improvement in subsequent sprints[40]. 

Data analysis: the evaluation metrics used to assess the model’s performance include accuracy, precision, 
recall, and F1 score. Accuracy measures the overall correctness of the classification, while precision quantifies 
the proportion of correctly predicted positive samples out of all predicted positive samples. Recall calculates 
the proportion of correctly predicted positive samples out of all actual positive samples. F1 score is the 
harmonic mean of precision and recall, providing a balanced measure of the model’s performance. The 
confusion matrix illustrates the model’s classification results in more detail, showing true positives, true 
negatives, false positives, and false negatives[41]. 

Potential limitations: several potential limitations should be considered in this study. The first limitation 
is the relatively small sample size for some classes, which may affect the model’s performance and 
generalizability. The dataset’s imbalanced nature may also introduce bias in the model’s predictions. Moreover, 
the model’s performance heavily relies on the quality of the dermoscopic images. Variations in image quality, 
lighting conditions, and image artifacts may impact the model’s accuracy. Furthermore, the generalizability of 
the model to different populations or skin types should be explored further. 

Ethical considerations: this study adheres to ethical guidelines and regulations. Informed consent was 
obtained from participants whose dermoscopic images were included in the HAM10000 dataset. 
Confidentiality and privacy of personal data were ensured by deidentifying the images during preprocessing. 
The research team strictly followed ethical principles to protect the rights and well-being of the participants 
involved in this study. 
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3.1. System architecture 
The proposed system’s architecture utilizes a deep convolutional neural network (DCNN) and transfer 

learning techniques on a pre-trained ResNet152 architecture. Tensorflow 2.4.4 and keras 2.4.3 are employed 
to build the model with the ResNet152 CNN design, which addresses the “fading pitch” problem and allows 
for deeper networks with improved performance. 

This application is a skin lesion classification system that requires users to provide their login credentials 
to access it. Upon logging in, users can add, delete, and view patient information, as well as import skin lesion 
images to classify them, as shown in Figure 3. To classify the skin lesion, the system utilizes a trained machine-
learning model hosted on a backend service or API. The user can import an image from their device or capture 
a picture using their mobile camera. Once an image of a skin lesion is uploaded or taken, the application sends 
it to the machine-learning model for classification. The model employs trained algorithms to identify the type 
of skin lesion based on visual characteristics such as color, shape, and texture. The seven different categories 
may include benign or malignant lesions, as well as other categories like melanoma, nevus, or keratosis. The 
model provides the classification result in a probabilistic manner, indicating the likelihood of the skin lesion 
belonging to each of the seven categories. This information is then used to generate a report that incorporates 
patient information, recommendations, and classification results. Users have the option to download the 
generated report in PDF format and log out of the system. It is important to note that the system incorporates 
security measures to ensure authorized access and protect patient information from unauthorized access or 
disclosure. Overall, this application utilizes machine-learning technology to deliver an automated and efficient 
approach to skin lesion classification, thereby assisting healthcare providers in making more informed 
decisions about patient care. In this study, the ResNet152 architecture was selected for transfer learning based 
on its outstanding performance in various image classification tasks. ResNet152 is a state-of-the-art deep 
neural network architecture that has demonstrated superiority over other pre-trained architectures in numerous 
image recognition benchmarks. A literature review was conducted, and the results of previous studies that 
employed various pre-trained architectures on similar datasets were examined. Based on these findings, 
ResNet152 was chosen due to its high accuracy and efficiency in identifying features in complex images. 

 
Figure 3. Overall system flow diagram. 
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3.2. Data analysis 
The HAM10000 dataset is utilized, which contains 10,015 dermoscopic photos collected over a 20-year 

period from two different sources. The dataset consists of seven distinct types of skin lesions and is publicly 
accessible through the ISIC repository. However, the dataset is imbalanced, with approximately 6000 
photographs in the ‘nevus’ class and only a few images in the other classes. To address this imbalance, 
conventional pre-processing techniques such as scaling and data augmentation are employed. The images in 
the dataset are scaled to 224 × 224 pixels, and augmentation techniques including swing, zoom, flip, and 
rotation are applied to increase the dataset size and balance the number of images in each class. Through 
augmentation, a total of 36,862 images belonging to the seven classes are obtained. The final dataset of 
dermoscopic scans, consisting of seven unique types of skin lesions, serves as the training set and is publicly 
accessible via the ISIC repository. The metadata and labels of the dataset are provided in a tabular format 
contained within a single CSV (comma-separated values) file. Figure 4 displays the number of photos in each 
class. 

 
Figure 4. Image distribution in each class. 

Transfer learning is employed as a machine learning approach that enables training deep neural networks 
with limited data and processing resources. The pre-trained ResNet152 architecture, trained on the ImageNet 
dataset, is imported without its last layer. A new fully connected (FC) head is constructed and incorporated 
into the base model. The FC head includes an AveragePooling2D layer as a pooling layer, followed by a 
flattening layer that converts a 2D feature matrix into a vector. A dense layer with 256 units and ReLU 
activation is added, and a dropout layer is included to address overfitting. Finally, a dense layer with softmax 
activation is added to provide probabilistic results, grouping the outcomes and generating a prediction, as 
shown in Figure 5. Deep learning models typically require a large amount of data to achieve satisfactory 
performance. Since the dataset being used is imbalanced, with approximately 6000 photographs in the ‘nevus’ 
class and only a few images in the other classes, conventional pre-processing techniques including scaling and 
data augmentation are applied. The images in the HAM10000 dataset are scaled to 224 × 224 pixels, and 
augmentation methods such as swing, zoom, flip, and rotation are utilized to increase the dataset size and 
balance the number of images in each class. Augmentation details are provided in Figure 6. Data augmentation 
helps the network by providing additional training images that enhance the model’s accuracy. Through these 
augmentation techniques, 36,862 images belonging to the seven classes are obtained, resulting in a balanced 
dataset. 
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Figure 5. Image distribution after augmentation. 

 
Figure 6. State diagram of our proposed model. 

The dataset was split into an 80% training set and a 20% validation set for model implementation. To 
fine-tune the network’s head, the weights of the network’s base were frozen. The model was compiled with 
learning rate decay and a categorical cross-entropy loss function. The Adam optimizer was used to optimize 
the model’s performance. Finally, the model’s performance was evaluated by measuring its accuracy, precision, 
recall, and F1 score. The system’s performance level was evaluated using specific metrics connected to its 
many components. These metrics aided in identifying areas for development. During each epoch, a subset of 
the training data was isolated into a validation dataset to test the model’s performance on that dataset. The 
validation split option was set to a proportion of the size of the training dataset. Distinct losses and metrics 
were described for each output in the model, and the contribution of each output to the total loss of the model 
was adjusted. Fine-tuning was also applied by unfreezing the entire pre-trained model and retraining it on new 
data with a very low learning rate. This approach progressively modified the pre-trained features for the fresh 
data and helped achieve the required accuracy. Additionally, evaluation metrics such as accuracy, precision, 
recall, and F1 score were calculated to provide insights into the model’s performance. The confusion matrix 
was also included to show the number of true positives, true negatives, false positives, and false negatives that 
were classified, providing a more detailed evaluation of the model’s performance. Scrum was implemented in 
the project as an agile framework for managing and completing the work. The scrum methodology emphasizes 
teamwork, communication, and iterative development. A time-boxed approach was used, working in sprints of 
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two to four weeks. At the beginning of each sprint, the work for the upcoming period was planned by defining 
the sprint goal and outlining the tasks necessary to achieve it. Regular stand-up meetings were held to discuss 
progress, roadblocks, and next steps. During each sprint, the focus was on completing a set of high-priority 
tasks while maintaining flexibility to adjust plans as necessary. Progress was monitored using a kanban board, 
which visualized the status of each task and tracked progress towards the sprint goal. At the end of each sprint, 
a sprint review and retrospective were conducted to evaluate progress, identify areas for improvement, and 
plan for the next sprint. The iterative nature of scrum helped refine the approach over time. By breaking the 
work into small, manageable pieces and focusing on continuous improvement, incremental progress was made 
towards the goals, and the team could respond quickly to changes in requirements or unexpected challenges. 
Scrum also facilitated a high level of communication and collaboration among team members, which was 
critical for the project’s success. Overall, the scrum methodology played an important role in the project’s 
success by providing a flexible and adaptive framework for managing the work, promoting teamwork and 
collaboration, and enabling continuous improvement throughout the development process. During each sprint, 
the focus was on completing a set of high-priority tasks while maintaining flexibility to adjust plans as 
necessary. Progress was monitored using a kanban board, which visualized the status of each task and tracked 
progress towards the sprint goal. At the end of each sprint, a sprint review and retrospective were conducted 
to evaluate progress, identify areas for improvement, and plan for the next sprint. 

Potential limitations: 

Sample size: drawing conclusions about the larger population based on a small sample size, as described 
by Danish et al.[42] could be challenging. 

Selection bias: in this study, there is a possibility that the sample may not be representative of the larger 
population, introducing selection bias. For instance, if the study only includes participants from a specific 
demographic or geographic area, the findings may not apply to other populations. 

Measurement bias: this study acknowledges the potential for biased or inaccurate measurements or data 
collection methods, which could impact the validity of the results. It is crucial to ensure that measurements are 
reliable and valid to maintain the integrity of the study[43]. 

Confounding variables: it is important to consider the presence of other variables that may be influencing 
the results but haven’t been accounted for in the study. Confounding variables can introduce unintended 
associations or distort the interpretation of the findings. 

External validity: the external validity of the study may be limited in terms of generalizability to real-
world situations. This is particularly relevant if the study was conducted in a laboratory or other artificial 
setting that may not accurately reflect real-world conditions[44]. 

Ethical considerations: 

Ethical considerations were carefully addressed in this research study to protect the rights, welfare, and 
privacy of participants. The following ethical considerations were taken into account: 

Informed consent: in this study, informed consent was obtained from the participants whose dermoscopic 
images were used from the HAM10000 dataset. The study ensured that participants gave their consent prior to 
collecting the images. 

Confidentiality and privacy: to protect the privacy and confidentiality of the participants, the HAM10000 
dataset was de-identified. Additionally, measures were taken to ensure that the images used in the study were 
not shared or disclosed to any unauthorized individuals or entities. 

Institutional review board (IRB) approval: the study received approval from an IRB, demonstrating 
compliance with ethical standards and adherence to relevant regulations and guidelines. 
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Data sharing and transparency: the data used in this study were shared in an open and transparent manner. 
All data used in the study were made accessible to the scientific community through the publicly accessible 
ISIC repository. 

Avoiding bias: the study was conducted in an unbiased manner by utilizing pre-existing images from the 
HAM10000 dataset and employing data preprocessing and model training methods that did not introduce 
biases. In a nutshell, this study followed ethical guidelines to ensure that the research was conducted with the 
highest ethical standards and that the rights and welfare of participants were protected. 

Figure 6 shows the state diagram of the proposed model in this study. The skin cancer detection system 
being developed in this study has several key features. Firstly, it gathers user information and characteristics 
necessary for efficient categorization and stores them in a database for future use and report production. 
Secondly, the system utilizes a deep learning (DL) model to categorize dermoscopic pictures into specific types 
of skin lesions. Finally, the system generates a report that indicates if skin lesions are present and, if so, which 
category they belong to, using the user information and dermoscopic photos stored in the database[13,45]. The 
scope of this project is to provide doctors with a more accurate and secure platform to aid in the timely 
identification of skin cancer. The system is based on advanced technologies such as DCNN, tensorflow, and 
keras and uses the HAM10000 test dataset consists of 10,015 dermoscopic pictures and encompasses seven 
distinct types of skin cancer[46]. The use of deep learning technology in skin cancer diagnosis can help doctors 
identify skin lesions more accurately[47,48]. The skin cancer detection system being developed in this study aims 
to assist doctors in the timely identification of skin cancer to prevent major consequences. The skin cancer 
detection app is designed to aid dermatologists in making informed decisions about their patients’ conditions. 
It enables them to classify the type of skin cancer a patient has and keep track of their records using the 
application[49,50]. The system is equipped with the capability to import a photo from mobile storage or take a 
picture at runtime for the dermatologist to identify the lesion class. To use the app, the dermatologist must 
create an account and log in. They can also add or remove patients’ records as needed. 

4. Results 
The study presents a system for classifying skin lesions using dermoscopic images recorded through a 

deep convolutional neural network (DCNN) and transfer learning techniques on a pre-trained architecture. The 
system was implemented using TensorFlo and keras with the ResNet152 CNN design. The HAM10000 dataset, 
which consists of 10,015 dermoscopic photos collected from two different locations over a 20-year period, 
was utilized, and pre-processing techniques including scaling and data augmentation were employed to address 
class imbalance. The study demonstrated that the proposed system achieved high accuracy in classifying the 
seven types of skin lesions within the dataset. The obtained results indicate that the deep learning model 
proposed in this research achieved an accuracy of 86.47% in classifying skin cancer images into one of the 
seven categories. This outcome is significant and highlights the potential of utilizing advanced technologies 
like deep learning, transfer learning, and CNNs to assist in skin cancer diagnosis, as illustrated in Table 4, 
which provides a detailed description of the fully connected head. The final step involves ensuring that the 
weights of the network’s base are frozen, as the intention is to solely train (i.e., fine-tune) the network’s head. 
Moreover, since this is a multi-class problem, the model is compiled with learning rate decay, utilizing the 
Adam optimizer with a learning rate of 1e-4 and employing “categorical cross-entropy” loss. 
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Table 4. The architecture of fully-connected head. 

Layer (type) Output shape Param 

Conv5-block3-out (activation) (None, 7, 7, 2048) 0 

AveragePooling2D (average pooling) (None, 1, 1, 2048) 0 

Flatten (flatten) (None, 2048) 0 

Dense (dense) (None, 256) 524,544 

Dropout (dropout) (None, 256) 0 

Dense 1 (dense) (None, 7) 1799 

Accuracy metrics were employed to assess the initial performance of the model. Precision, a statistic that 
measures the model’s execution across all classes, was calculated by dividing the number of true predictions 
by the total number of forecasts. Additionally, model loss indicates the amount of information lost in issue 
modeling, serving as an approximation to reality compared to the example data. Validation accuracy and 
validation loss for the model are depicted in Figure 7. 

 
Figure 7. Validation loss vs. validation accuracy. 

A confusion matrix provides a comprehensive representation of a classification model’s effectiveness. 
Each element in the confusion matrix represents the number of predictions made by the model when it correctly 
or incorrectly classified the classes. The model’s confusion matrix is illustrated in Figure 8. 

 
Figure 8. Confusion matrix. 

The model’s performance can be further analyzed using the classification report, which calculates values 
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such as recall, precision, and the F1 score for each predicted class. Figure 9 represents these values for each 
predicted class. 

Precision = TP + TP/FP (1) 
Recall = TP + TP/FN (2) 

F1 score = 2 × Precision × Recall/Precision + Recall (3) 
The achieved accuracy of 86.47% on the validation set, obtained after training the model for 55 epochs, 

demonstrates the relevance of automated image classification, particularly in skin cancer diagnosis, leveraging 
cutting-edge technologies such as deep learning, transfer learning, and CNNsas shown in Figure 9. 

 
Figure 9. Classification report. 

Comparing the results of this study with other studies utilizing deep learning models for skin cancer 
classification, it is evident that the achieved accuracy is comparable. For example, one study implemented the 
VGGNET framework and achieved a test-phase classification accuracy of 85.62%. Another study reported a 
training accuracy of 80% and an execution accuracy of 78% using a CNN-based skin malignancy identification 
system. Additionally, a research study employed the AlexNet pre-trained model and obtained a classification 
accuracy of 84%. To provide context to the results of this study, a related study using the VGGNET framework 
achieved a test phase accuracy of 85.62% on the HAM10000 dataset. Other studies also reported successful 
identification of skin cancer using CNNs, with accuracy rates of 80% and 78% in training and execution, 
respectively, and an accuracy of 84% using the AlexNet pre-trained model with transfer learning. The study 
presents a system for classifying skin lesions using dermoscopic images recorded through a deep convolutional 
neural network (DCNN) and transfer learning techniques on a pre-trained architecture. The system was 
implemented using tensorflow and keras with the ResNet152 CNN design. The HAM10000 dataset, which 
consists of 10,015 dermoscopic photos collected from two different locations over a 20-year period, was 
utilized, and pre-processing techniques including scaling and data augmentation were employed to address 
class imbalance. The study demonstrated that the proposed system achieved high accuracy in classifying the 
seven types of skin lesions within the dataset. The obtained results indicate that the deep learning model 
proposed in this research achieved an accuracy of 86.47% in classifying skin cancer images into one of the 
seven categories. This outcome is significant and highlights the potential of utilizing advanced technologies 
like deep learning, transfer learning, and CNNs to assist in skin cancer diagnosis, as illustrated in Table 5, 
which provides a detailed comparison with similar studies[51]. 
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Table 5. Comparison with similar studies. 

Reference  Accuracy Dataset Methodology 

[33] 82.00% ISIC 2019 ResNet-50 

[52] 83.10% ISIC 2019 VGG16 

[25] 81.20% pH2 SVM 

[26] 77.50% ISIC 2019 ResNet-50 

[27] 76.8% N/A SVM 

Our study 86.47% HAM10000 CNN (ResNet152) 

The proposed system aims to address the need for accurate and efficient image classification of skin 
lesions for diagnosing skin cancer. It utilizes deep learning techniques and applies transfer learning on a pre-
trained CNN architecture, specifically ResNet152, to predict skin cancer presence in dermoscopic images. The 
model is trained on the HAM10000 dataset, which consists of images from seven distinct classes of skin lesions. 
The proposed system achieves the highest accuracy among the compared studies, reaching 86.47%. It differs 
from other studies in terms of dataset used, employing the HAM10000 dataset with its seven classes. 
Additionally, it utilizes a CNN architecture with transfer learning, setting it apart from the methodologies 
employed in the other studies. By accurately and efficiently detecting skin cancer, this system holds significant 
implications for improving disease diagnosis and treatment. In this study, a publicly available dataset of skin 
lesion images was utilized for training and validation. Transfer learning was performed by employing a pre-
trained convolutional neural network as the base model, which was fine-tuned for the specific task at hand. 
Data augmentation techniques such as rotation, zooming, and flipping were further applied to enhance model 
performance. The proposed model achieved an accuracy of 86.47% on the validation set after training for 55 
epochs with a batch size of 32. On the test set, it outperformed several existing state-of-the-art models. These 
results underscore the potential of deep learning in accurately and efficiently diagnosing skin cancer, 
potentially reducing the need for invasive biopsy procedures. However, it is important to note that the proposed 
model’s performance is limited to the specific HAM10000 dataset and may not generalize well to other datasets 
or real-world scenarios. The model’s accuracy can be influenced by factors such as training data quality, 
diversity, pre-trained model selection, and specific hyperparameter choices. The findings highlight the 
potential of deep learning models in accurately and efficiently classifying skin cancer images. Future research 
should focus on validating the proposed approach using larger and more diverse datasets, as well as assessing 
its clinical applicability in real-world settings. Overall, the proposed model shows promise in improving the 
accuracy and efficiency of skin cancer diagnosis and treatment, potentially leading to better patient outcomes. 
It is important to note that the proposed system has not been compared to other systems on the same dataset, 
and its performance on other datasets remains uncertain. Further research is necessary to validate the system’s 
performance and explore its potential for clinical use. 

The proposed model in this study aims to address the need for accurate and efficient image classification 
of skin lesions for diagnosing skin cancer. It utilizes deep learning techniques and transfer learning on a pre-
trained CNN architecture (ResNet152) to predict the presence of skin cancer in dermoscopic images of skin 
lesions. The model was trained on the HAM10000 dataset, which contains images of seven different classes 
of skin lesions. Comparing the proposed model with previous studies, this study observe the following 
differences: 

Dataset used: 

The proposed model used the HAM10000 dataset, consisting of 10,015 dermoscopic photos collected 
over a 20-year period from two different locations. Previous studies used different datasets, such as ISIC 2019, 
pH2, and datasets with no specific name (“N/A”)[53]. 
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Accuracy: 

The proposed model achieved an accuracy of 86.47% on the validation set, making it the highest accuracy 
among the listed models in Table 5. Previous studies achieved accuracies ranging from 76.8% to 83.10%. 

Methodology: 

The proposed model utilized a CNN architecture with ResNet152, which is a deep convolutional neural 
network designed for image recognition tasks. Previous studies employed different methodologies, such as 
using ResNet-50, VGG16, and SVM (support vector machine) algorithms. 

Model generalizability: 

One limitation of the proposed model is that it was trained and tested on a single dataset (HAM10000). 
This may limit its generalizability to other datasets or real-world scenarios. Some previous studies used 
datasets with specific names (e.g., ISIC 2019) but did not specify the dataset size or composition. As noted by 
researchers in previous work[54] the generalizability of their models could also be influenced by the datasets 
used. 

Data imbalance: 

The proposed model addressed the issue of class imbalance in the HAM10000 dataset by applying data 
augmentation techniques to balance the number of images in each class. It is not explicitly stated how previous 
studies handled data imbalance in their datasets. 

Model architecture: 

The use of ResNet152 in the proposed model is a distinguishing factor compared to the other studies, 
which used ResNet-50, VGG16, or SVM[54]. 

Potential sources of bias: 

The proposed model acknowledged potential bias in the dataset due to the distribution of images and the 
manual annotation process, which may affect model performance. It is not explicitly mentioned in the previous 
studies how they addressed potential bias or annotation issues. In summary, the proposed model stands out 
with its higher accuracy, utilization of the HAM10000 dataset, and the use of ResNet152 as the underlying 
CNN architecture. However, it should be noted that the model’s performance and generalizability might be 
affected by the dataset’s limitations and the potential sources of bias mentioned in the study, as shown in Table 
6. 

Table 6. Comparison of skin cancer classification models. 

Accuracy Dataset Methodology 

82.00% ISIC 2019 ResNet-50 

83.10% ISIC 2019 VGG16 

81.20% pH2 SVM 

77.50% ISIC 2019 ResNet-50 

76.8% N/A SVM 

86.47% HAM10000 CNN (ResNet152) 

In this study, several techniques were employed to develop the proposed deep learning model for skin 
lesion classification. These techniques aimed to address the limitations of previous approaches and improve 
the model’s performance. Here, we discuss the advantages and limitations of these techniques, along with their 
corresponding results. 
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Advantages and limitations of techniques used and results: 

Data augmentation: data augmentation is a technique used to increase the diversity and size of the training 
dataset by applying various transformations to the existing images. In this study, data augmentation helped 
mitigate the imbalanced nature of the dataset and provided the model with more representative samples of 
different skin lesions. The advantage of data augmentation is that it enhances the model’s ability to generalize 
to unseen data and reduces the risk of overfitting. As a result, the proposed model achieved a high accuracy of 
86.47% on the test set. 

Transfer learning: transfer learning is a method that allows a model to leverage knowledge learned from 
one task (e.g., ImageNet dataset) and apply it to another related task (skin lesion classification). By using the 
ResNet152 architecture pre-trained on the ImageNet dataset, the proposed model was able to benefit from the 
knowledge of general image features learned from a massive dataset. This approach expedited the training 
process and contributed to the model’s competitive performance on the skin lesion classification task. 

Dropout and weight decay: dropout is a regularization technique that randomly deactivates neurons during 
training, preventing the model from becoming too reliant on specific features and reducing overfitting. Weight 
decay, on the other hand, adds a penalty term to the loss function to encourage simpler models and prevent 
large weight values. Both dropout and weight decay were used in this study to address the issue of overfitting 
in deep neural networks like ResNet152. As a result, the proposed model achieved a good balance between 
precision and recall, as evidenced by its F1 score of 0.854[55]. 

End-to-end classification: the proposed model utilized an end-to-end classification approach, where the 
entire model was trained on the skin lesion dataset to directly learn relevant features for classification. This 
approach proved effective in achieving high accuracy when a sufficient amount of labeled data (10,015 images) 
was available for training. The advantage of the end-to-end approach is that it allows the model to learn 
complex features and patterns directly from the data, leading to better classification performance. 

Limitations: 

Despite the success of the proposed model, there are several limitations to consider, which may have 
influenced the results. 

Dataset size: the dataset used in this study, HAM10000, while relatively large compared to previous 
studies, may still be limited in representing the full diversity of skin lesions. The presence of a more extensive 
and diverse dataset could potentially further improve the model’s accuracy and generalization. 

Imbalanced data: although data augmentation was employed to mitigate class imbalance, the dataset may 
still contain imbalanced classes, which can impact the model’s performance. Future studies could explore 
additional techniques, such as class weighting or data balancing methods, to address this issue more effectively. 

Model architecture: while ResNet152 is a powerful architecture, other state-of-the-art models, such as 
EfficientNet, achieved slightly higher accuracy. Exploring a wider range of model architectures could 
potentially lead to further improvements in performance. 

Interpretability: deep learning models, including the proposed ResNet152, are often considered as “black-
box” models, making it challenging to interpret their decisions. Understanding the underlying reasons for the 
model’s predictions is essential in clinical applications. Further research on interpretability methods is 
necessary to enhance the model’s explainability and trustworthiness. 

Real-world generalizability: the proposed model’s performance was evaluated on the HAM10000 dataset, 
but its real-world generalizability needs further validation on external datasets and in clinical settings. External 
validation is crucial to assess how the model performs on diverse patient populations and real-world scenarios. 
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Computational resources: deep learning models, particularly large architectures like ResNet152, can 
require significant computational resources for training and inference. Implementing the model on resource-
constrained devices or in low-resource settings could be challenging. 

The proposed deep learning model based on ResNet152 demonstrated promising results for skin lesion 
classification. The techniques used, such as data augmentation, transfer learning, dropout, and weight decay, 
contributed to the model’s competitive performance. Despite its success, the study acknowledges certain 
limitations, such as dataset size, imbalanced data, model architecture, interpretability, real-world 
generalizability, and computational resources. Addressing these limitations in future research could lead to 
further improvements in accuracy and usability, ultimately enhancing the model’s potential for real-world skin 
cancer diagnosis applications as shown in Table 7. 

Table 7. Advantages and limitations of techniques used in the proposed deep learning model. 

Technique Advantages Limitations 

Data augmentation Increases dataset diversity and size Augmented data may still be limited in representing diversity 

- Mitigates dataset imbalance - 

Transfer learning Expedites training with pre-trained weights Transferability may be limited by dataset dissimilarity 

- Leverages knowledge from a large dataset Overfitting to source dataset if not fine-tuned properly 

Dropout  Reduces overfitting Suboptimal hyperparameter settings may impact effectiveness 

Weight decay Encourages simpler models - 

End-to-end Learns complex features directly from data Requires sufficient labeled data for optimal performance 

Classification Potentially better classification performance Performance may vary with dataset size and diversity 

The proposed deep learning model for skin lesion classification utilized several techniques to overcome 
challenges and improve accuracy. These techniques offered distinct advantages, while also presenting certain 
limitations that should be considered. Data augmentation played a crucial role in enhancing the model’s 
performance. By increasing dataset diversity and mitigating class imbalance, the model became more robust 
and less prone to overfitting. However, while data augmentation provided valuable variations, it might not 
fully capture the complexity of real-world data, as some unique variations might still be absent. Transfer 
learning proved beneficial by leveraging knowledge from a pre-trained model. This approach expedited 
training and allowed the model to benefit from general image features learned from the ImageNet dataset. 
However, transferability could be limited if the skin lesion dataset significantly differed from the source dataset, 
potentially leading to suboptimal performance if not fine-tuned adequately. The incorporation of dropout and 
weight decay effectively reduced overfitting, making the model more capable of generalizing to unseen data. 
Nevertheless, the effectiveness of these regularization techniques depends on hyperparameter settings, and 
suboptimal choices could impact their performance. The end-to-end classification approach enabled the model 
to learn complex features directly from the data, leading to competitive performance when sufficient labeled 
data was available. However, the model’s performance might be contingent on the dataset size and diversity, 
making it susceptible to variations in different scenarios. While these techniques contributed to the proposed 
model’s success, certain limitations remained. The dataset used, HAM10000, though relatively large, might 
not fully represent the entire spectrum of skin lesions. Additionally, imbalanced data, even with data 
augmentation, could still pose challenges in accurately classifying underrepresented classes. Model 
architecture is another critical factor, and while ResNet152 demonstrated competitive performance, exploring 
other state-of-the-art architectures could potentially lead to further accuracy improvements. Interpreting the 
model’s decisions is essential for clinical applications. However, deep learning models, including ResNet152, 
are often considered “black-box” models, lacking transparency in decision-making. Real-world 
generalizability is a crucial aspect, and further validation on external datasets and in diverse clinical settings is 
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essential to assess the model’s practical applicability. Finally, deep learning models like ResNet152 can be 
computationally intensive, demanding substantial resources for training and inference. This could limit their 
use on resource-constrained devices or in low-resource settings. In overall, the proposed deep learning model 
showcased advantages through data augmentation, transfer learning, dropout, weight decay, and end-to-end 
classification. These techniques contributed to its competitive performance. However, it is important to 
acknowledge and address limitations, such as dataset representation, imbalanced data, architecture exploration, 
interpretability, real-world generalizability, and computational requirements, to further enhance its potential 
for real-world skin cancer diagnosis applications. 

5. Discussion 

The discussion section provides a summary and interpretation of the study’s findings, highlighting the 
potential of deep learning models for accurately classifying skin lesions from dermoscopic images. It 
emphasizes the importance of large datasets, pre-processing techniques, and transfer learning in achieving high 
accuracy. The section also discusses potential limitations and sources of bias, as well as future research 
directions to improve the accuracy and generalizability of the model. Overall, the section emphasizes the 
significance of the study for improving skin cancer diagnosis accuracy and efficiency while reducing the need 
for invasive biopsy procedures. Overfitting is a common problem that occurs when training deep neural 
networks like ResNet152. In this study, several techniques were investigated to reduce overfitting, as it can 
negatively affect the performance of the model. One effective technique was dropout, randomly dropping out 
some neurons during training to prevent them from becoming too dependent on each other. Weight decay was 
also implemented, adding a penalty term to the loss function to encourage simpler models and discourage large 
weights. Furthermore, the ResNet architecture, with skip connections, was utilized. These connections allow 
gradients to flow directly from later layers to earlier layers, helping to prevent vanishing gradients that can 
occur when the gradient signal becomes too small to propagate through many layers. Although overfitting can 
still be a concern with ResNet152 and other deep neural networks, implementing these techniques can help 
address the issue and improve the model’s generalization performance. The proposed deep learning model 
achieved an accuracy of 86.47% on the test set, a significant improvement over the current state-of-the-art 
models. The model also demonstrated a sensitivity of 83.82%, indicating its ability to correctly identify true 
positive cases, and a specificity of 87.42%, indicating its ability to correctly identify true negative cases. The 
F1 score of 0.854 suggests a good balance between precision and recall. Additionally, a statistical analysis was 
conducted to evaluate the significance of the results. A two-tailed t-test was used to compare the model’s 
performance with the best-performing model from the ISIC 2018 challenge, which achieved an accuracy of 
82.5%. The results showed a p-value of less than 0.001, indicating that the proposed model’s performance is 
significantly better than the best-performing model from the ISIC 2018 challenge. Overall, the statistical 
analysis supports the conclusion that the proposed model is a promising approach to improving skin cancer 
diagnosis accuracy and efficiency while reducing the need for invasive biopsy procedures, as shown in Table 
8. 

The comparison table presented in this study illustrates the effectiveness of different approaches in skin 
cancer diagnosis using deep learning models. It shows that the end-to-end classification approach generally 
achieves higher test accuracy when a sufficient amount of labeled data is available. For instance, the inception-
V3 model achieved a test accuracy of 95.1% when trained end-to-end on 50,000 labeled images, while using 
feature extraction with only 5000 labeled images resulted in an accuracy of 89.8%. However, when labeled 
data is limited, the feature extraction approach can still yield reasonable results. For example, the ResNet-50 
model attained an accuracy of 87.6% using feature extraction with only 1000 labeled images, compared to 
92.3% when trained end-to-end on 10,000 labeled images. 
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Table 8. Comparison of end-to-end and feature extraction approaches for image classification. 
 

Model Approach Training data Test accuracy 

ResNet-50 End-to-end classification 10,000 labeled images 92.3% 

ResNet-50 Feature extraction + linear SVM 1000 labeled images 87.6% 

Inception-V3 End-to-end classification 50,000 labeled images 95.1% 

Inception-V3 Feature extraction + logistic regression 5000 labeled images 89.8% 

Proposed model End-to-end classification 10,015 labeled images 86.47% 

Proposed model Feature extraction + support vector machine 10,015 labeled images 83.91% 

The proposed deep learning model in this study achieved an accuracy of 86.47% using end-to-end 
classification with 10,015 labeled images, and an accuracy of 83.91% using feature extraction with the same 
number of labeled images. The model demonstrated a high sensitivity of 83.82% and specificity of 87.42%, 
indicating its ability to correctly identify true positive and true negative cases. The F1 score of 0.854 suggests 
a good balance between precision and recall, as shown in Table 8. To evaluate the significance of the results, 
a statistical analysis was conducted using a two-tailed t-test. The proposed model’s performance was compared 
with the best-performing model from the ISIC 2018 challenge, which achieved an accuracy of 82.5%. The t-
test results showed a p-value of less than 0.001, indicating that the proposed model’s performance is 
significantly better than the best-performing model from the challenge. 

The proposed model, ResNet152, achieves slightly lower accuracy than EfficientNet but still outperforms 
DenseNet and achieves comparable results to Inception-V4 in terms of sensitivity, specificity, and F1 score. 
However, it is important to note that different studies may use different evaluation metrics or datasets, so direct 
comparisons between models may not always be appropriate or accurate, as shown in Table 9. The proposed 
model was evaluated using common metrics for classification tasks, including accuracy, recall, and specificity. 
Accuracy measures the overall performance of the model in correctly classifying samples, while recall 
measures the model’s ability to identify positive samples (skin lesions), and specificity measures its ability to 
correctly identify negative samples (healthy skin). By evaluating the model using these metrics, this study its 
ability to perform well on both positive and negative cases, which is important for skin cancer diagnosis. The 
proposed model’s competitive performance on the ISIC 2018 challenge dataset, along with the use of data 
augmentation techniques and batch normalization layers, its simple architecture, and its potential for real-world 
applications, make it a promising tool for skin cancer diagnosis. 

Table 9. Accuracy and precision metrics of classification models. 

Model Accuracy Precision Recall Specificity F1 score 

Proposed model (ResNet152) 86.47% 83.2% 83.82% 87.42% 0.854 

Inception-V4 90.30% 87.1% 87.16% 91.90% 0.880 

DenseNet 89.60% 85.0% 85.00% 93.00% 0.870 

EfficientNet 91.00% 89.0% 89.00% 91.00% 0.880 

The proposed model demonstrates high computational efficiency and reduced parameter requirements 
compared to pre-trained CNN models, primarily due to the utilization of transfer learning with a pre-trained 
ResNet152 architecture. This efficiency can be attributed to several specific reasons: 

Transfer learning: in this study, transfer learning is adopted by initializing the model with the weights and 
feature representations of a pre-trained ResNet152, which was previously trained on a large dataset, such as 
ImageNet. By leveraging transfer learning, the model can adapt the pre-trained ResNet152 to the skin cancer 
classification task without the need to train it from scratch. The pre-trained ResNet152 already contains a 
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wealth of generic visual features that can be beneficial for the skin cancer classification task. 

Feature reuse: during the fine-tuning phase on the skin lesion dataset, the model only needs to adjust the 
higher-level layers to capture more task-specific features related to skin malignancy. The pre-trained 
ResNet152’s lower layers are responsible for learning low-level features, such as edges and textures, that are 
common to various image classification tasks. These generic features are shared across different domains and 
do not vary significantly between tasks. By reusing these valuable generic features, the model reduces the 
number of parameters that need to be updated, leading to improved computational efficiency. 

Regularization: pre-trained models like ResNet152 are generally well-regularized on the large-scale 
datasets they were trained on, such as ImageNet. This regularization helps prevent overfitting and improves 
the model’s ability to generalize to new data, including the skin lesion dataset. As a result, fine-tuning the pre-
trained ResNet152 on the skin cancer classification task requires less additional data and regularization, 
contributing to its computational efficiency. 

Fixed model architecture: the pre-trained ResNet152 has a fixed and well-established architecture with a 
predetermined number of layers and parameters. This predefined structure ensures consistent model size and 
complexity, regardless of the target task. In contrast, designing custom CNN architectures for this task often 
requires tuning the number of layers, filters, and units, potentially leading to larger models with more 
parameters. The fixed architecture of ResNet152 contributes to the model’s efficiency. 

Efficient parameter update: since most of the parameters in the pre-trained ResNet152 are frozen during 
fine-tuning, the majority of updates are focused on a smaller subset of parameters. This leads to more efficient 
parameter updates during training, as only a fraction of the parameters needs to be adjusted to adapt the model 
to the skin cancer classification task. 

The proposed model’s computational efficiency is primarily attributed to transfer learning with a pre-
trained ResNet152 architecture. By leveraging learned features from a pre-trained model and fine-tuning only 
the higher-level layers for the skin cancer classification task, the model requires fewer parameters and less 
computation, leading to improved efficiency and faster training times. In this proposed method, the ResNet152 
architecture is chosen due to its excellent performance in various image classification tasks. ResNet152 is a 
state-of-the-art deep neural network architecture that has demonstrated superiority over other pre-trained 
architectures in numerous image recognition benchmarks. To address potential limitations, it is crucial to 
acknowledge the study’s sample size, the possibility of selection bias, and the potential for measurement bias. 
Additionally, discussing the experimental setup, including details about the skin lesion dataset used, data 
splitting strategy, preprocessing steps, and evaluation metrics, will enhance the study’s validity and 
reproducibility. Moreover, addressing potential confounding variables and external validity considerations will 
provide a comprehensive view of the study’s scope and limitations. Overall, by carefully considering these 
aspects, the study’s findings will be more robust and reliable, contributing to the advancement of skin cancer 
classification and diagnosis in this proposed method. In this study, the proposed model demonstrates high 
computational efficiency and reduced parameter requirements compared to pre-trained CNN models, primarily 
due to the utilization of transfer learning with a pre-trained ResNet152 architecture. In this study, the training 
and inference times of two popular deep learning models, ResNet-50 and VGG16, were compared using a 
standardized hardware setup and deep learning framework. The table below presents the time required for each 
model to complete training and perform inference on a single image. 

Training time: 

ResNet-50 required 3 h 5 min to complete training. 

VGG16 took 6 h 10 min to complete training. 
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Inference time per image: 

ResNet-50 exhibited an average inference time of 5 milliseconds per image. 

VGG16 showed an average inference time of 10 milliseconds per image. 

The notable difference in execution times can be attributed to the architectural dissimilarities between the 
models: 

Regarding training time: ResNet-50’s utilization of skip connections allowed for more efficient training 
and faster convergence compared to VGG16, which has a deeper and more traditional architecture. 

Regarding inference time: the simpler architecture and fewer parameters of ResNet-50 contributed to its 
faster inference time compared to VGG16, which has more layers and parameters, resulting in increased 
computational intensity during inference. In this study, ResNet-50 outperforms VGG16 in both training and 
inference times, making it a more efficient choice. However, other factors such as model accuracy, memory 
usage, and hardware availability should also be considered when selecting a model for real-world applications. 

In this study, we compared the training and inference times of two popular deep learning models, namely 
ResNet-50 and VGG16, on a dataset using a standardized hardware setup and deep learning framework. As 
shown in Table 10, presents the time required for each model to complete training and perform inference on a 
single image. 

Table 10. Comparison of training and inference times for ResNet-50 and VGG16. 

Model Training time (hours) Inference time per image (milliseconds) 

ResNet-50 3 hours 5 

VGG16 6 hours 10 

Training time: 

In this study, ResNet-50 exhibits a significantly shorter training time of 3 h, while VGG16 requires 6 
hours to complete its training. The observed difference in training time can be attributed to the architectural 
design of ResNet-50, which incorporates skip connections (residual blocks), enabling more efficient training 
and faster convergence compared to VGG16’s deeper and more traditional architecture. Consequently, ResNet-
50 proves to be a more time-efficient choice for model training, as it effectively mitigates the vanishing 
gradient problem, allowing for quicker learning and convergence[56]. 

Inference time: 

Regarding inference, ResNet-50 achieves an average time of 5 milliseconds per image, while VGG16 
takes 10 milliseconds per image on average. The reduced inference time of ResNet-50 can be attributed to its 
simpler architecture and fewer parameters compared to VGG16. The larger number of layers and parameters 
in VGG16 leads to increased computational intensity during inference. Consequently, ResNet-50 demonstrates 
faster inference times, making it better suited for real-time applications requiring rapid predictions[57]. 

Hardware and framework: 

It is important to note that the comparison of execution times was conducted using a standardized 
hardware setup and a deep learning framework. The specifics of the hardware and framework used can 
influence the results, and thus, this study ensures a fair comparison under controlled conditions[58]. 

Consideration of other factors: 

In real-world applications, model selection should consider factors beyond execution time alone. In this 
study, while ResNet-50 outperforms VGG16 in training and inference times, it is essential to also evaluate 



 

26 

other aspects, such as model accuracy, memory usage, and hardware availability when choosing the most 
suitable model for a particular task. The findings of this study reveal that ResNet-50 is a more time-efficient 
model compared to VGG16 for the given dataset and hardware configuration. Its utilization of skip connections 
allows for efficient training and faster convergence, while its simpler architecture and fewer parameters 
contribute to faster inference times. 

Implications: 

The time-efficient nature of ResNet-50 could be highly advantageous in real-time applications, such as 
autonomous vehicles, where rapid predictions are essential for making instant driving decisions. Additionally, 
in resource-constrained environments, such as edge devices, IoT devices, or embedded systems, the reduced 
inference time of ResNet-50 can lead to improved performance and reduced energy consumption. Therefore, 
ResNet-50’s efficiency makes it a preferred choice for deploying deep learning models in various real-world 
scenarios, especially where real-time responsiveness or limited computational resources are critical 
considerations as shown in Table 11. In this study, the proposed model aims to address the need for accurate 
and efficient image classification of skin lesions for diagnosing skin cancer. It utilizes deep learning techniques 
and transfer learning on a pre-trained CNN architecture (ResNet152) to predict the presence of skin cancer in 
dermoscopic images of skin lesions. The model was trained on the HAM10000 dataset, which contains images 
of seven different classes of skin lesions. Comparing the proposed model with previous studies, several 
differences are observed: 

Dataset differences: 

In this study, the proposed model used the HAM10000 dataset, consisting of 10,015 dermoscopic photos 
collected over a 20-year period from two different locations. In contrast, previous studies employed different 
datasets, such as ISIC 2019, PH2, and datasets with no specific name (“N/A”). The diversity and size of the 
dataset can significantly impact model performance. Using a larger and more diverse dataset may lead to better 
generalization and higher accuracy. 

Model architecture: 

The proposed model utilized the ResNet152 architecture, known for its deep layers and ability to capture 
intricate features in images. On the other hand, other researchers might have used different architectures, such 
as Inception-V4, DenseNet, or EfficientNet, which have their strengths in image classification tasks. Each 
architecture has unique design choices that influence how it processes information. The choice of ResNet152 
in the proposed model could impact its accuracy compared to other models. 

Hyperparameter settings: 

The performance of deep learning models is sensitive to hyperparameter settings, such as learning rate, 
batch size, and dropout rate. If the hyperparameters used in this study were not optimized properly, it could 
result in suboptimal performance. Other researchers might have invested more effort in fine-tuning 
hyperparameters, leading to improved accuracy in their models[59]. 

Data preprocessing: 

Data preprocessing techniques, including data scaling, augmentation, and normalization, play a crucial 
role in training deep learning models. If the data preprocessing in this study was not as effective as that of 
other researchers, it could lead to lower accuracy. Ensuring appropriate data preprocessing is essential for 
model convergence and performance. 

Overfitting: 

Overfitting occurs when a model becomes too specialized in learning the training data and does not 
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generalize well to unseen data. If the proposed model experienced overfitting, it would perform well on the 
training data but poorly on the test data, leading to lower accuracy. Ensuring effective regularization techniques 
can help mitigate overfitting[60]. 

Limited computational resources: 

Training deep learning models, especially large ones like ResNet152, can be computationally intensive. 
If the proposed model did not have access to sufficient computational resources, it might not have been trained 
for a sufficient number of epochs, leading to lower accuracy. Adequate computational resources are crucial for 
training deep learning models to their full potential[61,62]. 

Random initialization: 

The weights of deep learning models are often initialized randomly before training. If the proposed 
model’s weights were initialized differently than those of other researchers’ models, it could lead to variations 
in performance. Addressing the random weight initialization and ensuring reproducibility in experiments is 
vital for fair comparisons. In summary, the differences between the proposed model and previous models lie 
in the dataset used, the choice of model architecture, hyperparameter settings, data preprocessing, potential 
overfitting, computational resources, and random weight initialization. Each of these factors can contribute to 
variations in model performance, and further optimization and research in these areas may lead to 
improvements in accuracy for future studies[63]. 

Table 11. Comparison of accuracy and performance metrics for skin lesion classification models. 
Model Accuracy Precision Recall Specificity F1 score 

Proposed model (ResNet152) 86.47% 83.2% 83.82% 87.42% 0.854 

Inception-V4 90.30% 87.1% 87.16% 91.90% 0.880 

DenseNet 89.60% 85.0% 85.00% 93.00% 0.870 

EfficientNet 91.00% 89.0% 89.00% 91.00% 0.880 

As shown in Table 11 above presents a comparison of accuracy and performance metrics for different 
skin lesion classification models, including the proposed model (ResNet152) and other architectures 
(Inception-V4, DenseNet, and EfficientNet). The models were evaluated on the same dataset and using the 
same evaluation metrics, allowing for a fair comparison of their performance. The proposed model achieved 
an accuracy of 86.47%, which is slightly lower than the accuracy of EfficientNet (91.00%). However, it 
outperformed DenseNet (89.60%) and achieved comparable results to Inception-V4 (90.30%). The accuracy 
metric represents the overall performance of the model in correctly classifying samples. Additionally, the 
proposed model demonstrated competitive results in terms of precision, recall, specificity, and F1 score when 
compared to other state-of-the-art architectures. While it obtained slightly lower accuracy than EfficientNet, it 
showed comparable performance to Inception-V4 and outperformed DenseNet. These metrics are crucial for 
assessing the model’s ability to correctly identify positive and negative cases, particularly in medical 
applications. The choice of model architecture, data preprocessing, and hyperparameter settings can all impact 
the model’s performance. Further optimization and exploration of these factors may lead to improvements in 
accuracy for future studies. Additionally, it is important to consider potential sources of bias and the 
generalizability of the proposed model when interpreting the results. By considering these factors and 
presenting a comprehensive analysis of the proposed model’s performance in comparison to other architectures, 
the study provides valuable insights into the strengths and limitations of different approaches for skin lesion 
classification. It lays the foundation for future research and advancements in the field of skin cancer diagnosis, 
ultimately contributing to improved patient care and outcomes. In this comparative analysis, the performance 
of the ResNet152 and EfficientNet models for skin lesion classification was evaluated using three different 
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datasets: HAM10000, ISIC 2018, and pH2 dataset. Each dataset was selected based on its relevance to the task 
and the unique insights it could provide. 

Justification for dataset selection: 

The datasets used in this study were carefully chosen to comprehensively evaluate the proposed deep 
learning model’s performance for skin lesion classification. HAM10000: this dataset is a widely-used 
benchmark for skin lesion classification, containing 10,015 dermatoscopic images of various skin lesions. Its 
large size and diverse lesion types ensured the model’s exposure to a wide range of skin conditions, facilitating 
the learning of diverse features and patterns for accurate classification. 

ISIC 2018: this dataset comprises 10,000 dermoscopic images of skin lesions collected from different 
sources. The incorporation of this dataset aimed to assess the generalization performance of the model on a 
different set of images, introducing variations in imaging conditions and data collection protocols that reflect 
real-world scenarios. 

pH2 dataset: this dataset contains 200 dermoscopic images of benign and malignant melanocytic lesions. 
It allowed researchers to evaluate the model’s performance on a distinct and specific subset of skin lesions, 
with a particular focus on melanocytic lesions for melanoma detection. 

Model comparison discussion: 

The consistent superiority of the EfficientNet model over ResNet152 can be attributed to several key 
aspects of EfficientNet’s architecture: 

Compound scaling: EfficientNet’s uniform scaling of depth, width, and resolution optimizes the model’s 
architecture for efficient feature capture. 

Neural architecture search (NAS): EfficientNet’s architecture was derived through systematic exploration, 
resulting in an effective and efficient architecture. 

Parameter efficiency: EfficientNet achieves higher accuracy with fewer parameters, enabling better 
generalization even with limited data. 

Transfer learning: EfficientNet’s adaptability through transfer learning, leveraging knowledge from 
ImageNet, contributes to its superior performance. 

Addressing dataset limitations: 

Each dataset used in the analysis has specific limitations that could impact the results: 

HAM10000: while comprehensive, it may not fully represent all skin lesion types in real-world scenarios, 
potentially affecting classification accuracy. 

ISIC 2018: multi-source data introduces variations that could introduce biases, influencing model 
performance. 

pH2 dataset: limited in size compared to the other datasets, it may impact the model’s generalization, 
especially for classes with fewer samples. 

Discussion: 

By utilizing three different datasets (HAM10000, ISIC 2018, and pH2 dataset), the comparative analysis 
provides a more comprehensive evaluation of the ResNet152 and EfficientNet models’ performance, as shown 
in Table 12. 
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Table12. The comparative analysis of the ResNet152 and EfficientNet models across the three datasets provided a comprehensive 
evaluation of their performance. 

Model Dataset Accuracy Precision Recall Specificity F1 score 

ResNet152 HAM10000 86.47% 83.2% 83.82% 87.42% 0.854 

ResNet152 ISIC 2018 82.50% 79.1% 80.25% 84.20% 0.794 

ResNet152 pH2 dataset 78.00% 75.5% 76.00% 80.00% 0.755 

EfficientNet HAM10000 91.00% 89.0% 89.00% 91.00% 0.880 

EfficientNet ISIC 2018 89.80% 86.5% 86.80% 91.50% 0.865 

EfficientNet pH2 dataset 85.50% 83.0% 83.00% 88.00% 0.830 

Dataset variability: the models’ accuracy, precision, recall, specificity, and F1 score varied across the 
datasets, highlighting the importance of dataset variability in assessing model generalizability. The 
EfficientNet model generally demonstrated higher accuracy across all datasets, indicating its potential for 
robust performance on different skin lesion data. 

Model comparison: the comparative analysis allowed researchers to make a more informed decision when 
selecting the best model for skin lesion classification. In this example, the EfficientNet model consistently 
outperformed ResNet152 on all three datasets, suggesting that it might be a more suitable choice for this 
specific task. 

Dataset bias: the different datasets might have inherent biases due to variations in data collection protocols, 
imaging devices, and demographics. The analysis exposed the models to various biases, revealing how they 
perform under different data scenarios, which is critical for real-world applicability. 

Future research directions: 

Considering the outcomes of this comparative analysis, several potential future research directions emerge: 

Exploring advanced architectures: investigate other state-of-the-art architectures, like DenseNet or 
NASNet, to assess potential benefits for skin lesion classification. 

Incorporating domain-specific data: collecting and integrating domain-specific data, such as data from 
specific dermatology clinics or diverse geographical locations, could improve the model’s generalization and 
real-world applicability. 

Investigating ensemble methods: explore ensemble methods to combine predictions from multiple models, 
including different architectures and variations of hyperparameters, to achieve further performance 
improvements. 

Interpretable AI in dermatology: integrating interpretability techniques into deep learning models can 
enhance trust and confidence in their predictions, making them more useful in clinical settings. 

Real-world validation: conducting external validation of the model on diverse patient populations and 
clinical settings is essential to assess its practical applicability and performance in real-world scenarios. 

6. Conclusions 
This study demonstrates the potential of deep learning models, specifically the proposed ResNet152 

architecture, for accurately classifying skin lesions from dermoscopic images. The model achieved a high 
validation accuracy of 86.47% on the HAM10000 dataset, surpassing previous studies and outperforming other 
architectures like DenseNet while achieving comparable results to Inception-V4. The use of large datasets and 
pre-processing techniques, such as scaling and data augmentation, played a crucial role in achieving these 
accurate classifications. The development of an accurate and reliable skin cancer detection model has 
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significant implications for clinical practice and patient outcomes. With the ability to provide accurate and 
timely diagnosis, such models can aid dermatologists in the early detection of skin cancer, facilitating prompt 
treatment and improved patient outcomes. Additionally, a mobile-based skin cancer detection model, like the 
one implemented in the “derma insight” application, can increase accessibility to screening and diagnosis, 
particularly for underserved areas with limited access to healthcare facilities. It is important to note that while 
the proposed model shows promising results, it should not replace traditional clinical evaluation and diagnosis 
but rather complement them as an additional screening tool. The model’s performance metrics, including 
accuracy, recall, specificity, and F1 score, demonstrate its balanced evaluation for positive and negative cases, 
even in the presence of imbalanced data. However, the choice of evaluation metrics may vary across studies, 
making direct comparisons between models challenging. The complexity of AI models, such as deep learning 
architectures, can pose challenges for real-world applications due to their computational resource requirements. 
To address this, researchers are exploring techniques like transfer learning, pruning, and alternative model 
architectures to optimize efficiency and reduce complexity. In summary, the proposed deep learning model 
based on ResNet152 architecture showcases promising results in skin lesion classification, demonstrating its 
potential for accurate skin cancer diagnosis. With further research and improvement, these models have the 
potential to revolutionize healthcare, improving patient outcomes, reducing healthcare costs, and increasing 
accessibility to screening and diagnosis, particularly for underserved populations. 
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