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ABSTRACT

The rapid growth of distributed generation (DG) units has necessitated their optimization to address the increasing

complexity of power grids and reduce power losses. The need for optimization of distributed generation (DG) units has

been growing rapidly over the past few years. To minimize such losses, the optimal allocation of DG units needs to be

correctly identified and applied. On the other hand, Garra Rufa optimization (GRO) is a mathematical optimization

technique that is used to determine the high effective and efficient way to solve very complex problems to achieve optimal

results. In this work, Garra Rufa optimization is used to identify the optimal placement and size of DG units in order to

meet specific power loss requirements. A comparison between genetic algorithm (GA), particle swarm optimization

(PSO), and GRO is done using MATLAB to validate the proposed method. The comparison shows that GRO is better

than the other methods in DG allocation, especially in more than two DGs. The optimization techniques are evaluated

using the IEEE standard power system case, specifically the 30-bus configuration.
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1. Introduction

Although Artificial Intelligence (AI) optimization can be used to

achieve acceptable solutions to most engineering problems, there are

several challenges associated with the optimization process[1–3]. One of

the main challenges is that the optimization process can be time-

consuming and computationally intensive, depending on the complex

problems[4]. Additionally, the optimization process can be hampered

by the availability of data, as it requires accurate and up-to-date

information in order to identify the most efficient way to identify the

solution[5–8]. Generally, intelligent methods are inspired by nature,

whether a physical phenomenon or the movement of a primitive or

highly evolving being[9–13]. The latest developments in software

engineering related to AI offer new opportunities and challenges for

scientists to address extremely complicated problems that are

challenging to answer using traditional methods[14–16].

On the other hand, the power system is one of the most complex

issues that need solving with fast with accurate results[17–20]. Problems

like losses, stability, economic dispatch, voltage profile, reliability, or

control, in addition to the huge number of buses and branches, are the

sector behind the complexity of the power system[21–25]. For acceptable

power system quality, all the above indices must be in a specific limits.

The active power losses played an essential role in power system
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transmission efficiency and economic operation[26,27]. The proper DG allocation in the distribution system leads 

to reduce the power losses in to the minimum value[28,29]. Several AI methods have been used for power losses 

reduction in last decade. For example, Adepoju et al.[28] used MATLAB to simulate the DG location effecting 

on the total power losses by particle swarm optimization (PSO) optimization. A part of Nigerian electricity 

distribution system of 34 bus and 11 kV was the application to prove the losses reduction. GA is also examined 

for estimation the DG implementation to save more power with acceptable minimum and maximum voltage 

values. Four cases of IEEE-34 standard were used to validate the GA algorithm[29]. Muthukumar and 

Jayalalitha[30] reduced the power losses using a hybrid between harmony search and bee colony algorithms. 

Two systems were tested which were 33 and 119 buses for determining the optimal DG placement. 

Accipitridae prey was the base of the optimization technique that introduced by Kanagasabai for power losses 

reduction[31]. The power loss of the IEEE 30 bus system was improved using the method that proposed by 

Kanagasabai. Particle swarm optimization with enhanced pseudo gradient pursuit was used by Polprasert et 

al.[32] to tackle the issue. The problem was resolved by an Operational Metaheuristic Method by Duong et al.[33]. 

For optimizing the D-STATCOM by finding the location of the DGs, by GA method with a fuzzy controller 

approach have been examend[34]. Three of the power system’s indexes were being improved using the fuzzy-GA 

method in a 33-bus radial distribution standard system. The Dragonfly approach was used by Suresh and 

Belwin[8] to determine the ideal DG size for a multi-objective function. The algorithm performance was 

examined by IEEE 15, 33, and 69. Using the IEEE 30 bus standard’s and analysis program and electrical 

transient model and increasing the active power loss and volt-age profile, Ogunsina et al.[9] identified the DG 

impact. Artificially intelligent colony optimization was the technique adopted. Marimuthu et al.[35] used a 

combination of time varying acceleration coefficients and PSO to determine the ideal size and placement of 

DGs. The aim was to improve a 69-node power system’s voltage stability while still achieving the other four 

objectives. Montoya et al.[36] proposed a master slave approach using a GA modification known as the Chu 

Beasley GA as a solution for the DGs allocation. Sayed et al.[37] created a PSO technique for deciding where 

to place and how big to make the DG. To validate the development of the swarm technique for lowering losses 

and enhancing busses voltage stabilities, the IEEE14 standard system was applied. Using the 52-bus of 

Hamadan’s power networks, the strategy was evaluated. 

However, varieties of optimum algorithms are treated in the literature, each of which has its own 

disadvantages. For instance, GA has issues with slow convergence, problematic parameter determination and 

premature dependence convergence[38,39]. The last iterations converge of PSO gradually and quickly reach a 

solution of locally optimal[23,38]. The bee colony’s slow convergence rate and PSO of the local optimal point 

issue are both present. The ant colony convergence typically depends on parameter selection and is hilly[38]. 

The system becomes more complex as a result of the modified and hybrid approaches[23]. These restrictions 

are mostly caused by the GRO technique used to choice the best location and size of DGs. 

In this paper, GRO technique is used to minimize power losses by allocating the optimal amount of DG 

units to meet specific power requirements. The principles of the optimization process are treated to identify 

the size and location of the DG. To predict the optimal size and location of DGs in distribution network, it’s 

using Garra Rufa optimization (GRO) technique, the proposed technique, with used system is introduced, 

applying important factor in single objective function which is real power losses minimization. The applied 

method used the 30-bus standard system with five cases of DG. GRO intelligent technique is compared with 

two nature inspired techniques in order to clarify the tracking performances via the real losses. By checking 

the best allocation of three techniques, the performance validation is completed using power losses of the 

above standard system. 
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2. Related work 

2.1. GA algorithm 

GA algorithm reflects the processes of natural selection where the best individuals are selected for 

reproduction to produce the next generation’s offspring. 

A string population representing a number of practical solutions of problems enhances the next generation 

used by the population search method defined as GA[13]. Generally, when using GA to solve optimization 

problems, this method has similarity that improves its seeking ability and speeds up the finding of the optimal. 

In order to find the global best functions, parameters, GA has an effective way to determine the point based on 

optimization techniques that have been generally applied in several technical problems[4,29]. 

GA is better from basic methods of search steps and optimization as shown: 

1) GA generally activates with parameter coding instead of the parameter itself. 

2) It uses objective functions methods instead of using information such as their derivatives. 

3) GA depends on the probabilistic transference principles, not deterministic principles. 

The advantages of GA are: 

1) No need for learning of gradient data about the response. 

2) GA usually resistant to becoming restricted in local optimal then could be used for a set of issues. 

3) It can speedily search a great set of solution. 

4) No good suggestions do not affect the end of set solution badly as they are clearly neglected. 

5) It doesn’t have to learn any basics of the issues. It acts by its own internal basics. For the characteristics 

of searching mechanism, parallel screening and robust screening based on the base of normal evolution, GA 

has found uses in many fields and has become one of the large effective optimization techniques. 

2.2. PSO algorithm 

PSO has been inspired by the behaviors of birds in wildlife. In several issues, PSO is generally described 

as a clearly searching algorithm, naturally in the particle’s movement, and computationally perfect method. 

The advantages of PSO as shown below. 

1) According to the techniques of swarm intelligence, PSO can be used into engineering, medical, 

economic, and other scientific researches. 

2) PSO has a characteristic of a very speed convergence rate in comparison with GA. 

3) The PSO process is done without mutation calculation and overlapping. The seeking can be achieved 

by the velocity of the particle, such as in comparison with GA technique. 

4) Through the development of the next generations, only the more optimist particle can send data on to 

the other particles, and the probable velocity of the researching is fast. 

5) Calculations in PSO is easy. Compared with the exiting developing calculations, it occupies a perfect 

optimization capability. 

6) The code number taken by PSO is real, and it is determined by the problem resolution. The dimension 

number is equal to the solution constant. 

The main problems of PSO are: 

1) The method readily suffers from the small optimism, due to the less right at the regulation of its 

direction and the speed. 

2) The method may not active out exactly the issues of the non-coordinate method, such as the solution 

to the electric power and the basic important rules in moving of the particles in the electric power area. 

Both of the previous algorithms could be largely used to inspect optimal DG positioning. The complex 
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model of the distribution generation systems has settled the problems of discontinuity and irregularity. The 

single objective functions that organized by the GA have a better feature of adaptability compared to other 

nature inspired algorithms[40]. PSO is more efficient compared to GA and has a balanced technique to develop 

global and local reconnaissance abilities[41,42]. 

2.3. GRO algorithm 

The optimization method which was introduced by Jaber et al.[43], is a process that involves the use of 

mathematical principles and algorithms to identify the optimal way to find problem solutions. The process 

begins by defining an objective function, which is typically related to several engineering issues[4,10,44,45], then 

determining a set of constraints and parameters that must be met in order to achieve the desired result. Once 

these have been defined, the software can then start the optimization process, which involves the use of 

mathematical algorithms to identify the most effective and efficient parameter value to solve the problem. The 

optimization process is iterative, meaning that it will adjust the allocation of resources until the optimal solution 

is found. The GRO process can be done by three parts, which are GRO initialization, leaders’ crossover, and 

followers’ crossover. 

2.3.1. GRO initialization 

The fundamental tenet of GRO is to separate each particle into many groups, each of which has a unique 

set of guides for both the global and local optimal group positions. The GRO approach also requires the use of 

starting assumptions, such as the notion that each fish may act as a follower or a guide depending on the 

associated global optimal point for each group. A portion of the followers will switch the very weak leader to 

the strong leader who achieves the greater ideal value before the following iteration. It is necessary to first 

assume this maximum portion of the followers as a percentage. Additional initial parameters must be assuming 

like the acceleration coefficients (c1, c2) and the inertia weight (ω). As can be seen, the initialization Equation 

(1) is stated[4,43–45]. 

𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟𝑠 𝑛𝑢𝑚𝑏𝑒𝑟 =
𝑡𝑜𝑡𝑎𝑙 𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑡𝑐𝑙𝑒𝑠 − 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑟𝑜𝑢𝑝𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑟𝑜𝑢𝑝𝑠
 (1) 

2.3.2. Leaders crossover of GRO 

The GRO technique involves two leader crossover processes that need to be considered. The first process 

entails selecting new leaders for each group, while the second process involves choosing the superior leader 

who can lead the maximum number of followers. These phases serve as guiding principles that establish the 

method’s crucial attribute, providing flexibility to this technique. 

2.3.3. Followers crossover of GRO 

The likelihood of finding the best solution in the problem space is great because of the flexible motion 

between the groups. Any optimization strategies that have an inflexible nature to going between one search 

spaces to another one may become confused by the extremely complicated problems. This issue arises as a 

result of the numerous parameters and high deferential equation order in complex issues. GRO employed a 

method to continue searching in the larger field space of the issue, using the follower crossover between the 

groups. A random selection of fish from every group will first move to the strong leader. Second, one step 

must be taken in the direction of each leader by calculating the velocity (vi) and position (Xi) using the standard 

Equations (2) and (3), respectively. 

𝑣𝑖(𝑡 + 1) = 𝜔𝑣𝑖(𝑡) + 𝑐1𝑟1(𝑝𝑖(𝑡) − 𝑋𝑖(𝑡)) + 𝑐2𝑟2(𝐺𝑖(𝑡) − 𝑋𝑖(𝑡)) (2) 

𝑋𝑖(𝑡 + 1) = 𝑋𝑖(𝑡) + 𝑣𝑖(𝑡 + 1) (3) 

The fitness function from the group figures will be recalculated include all leaders and followers. 

Equations (4) and (5) represent new technique steps of GRO. 
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𝑚𝑜𝑣𝑖𝑛𝑔 𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟𝑠𝑖 = 𝑖𝑛𝑡𝑒𝑔𝑒𝑟(£ ∗ 𝑟𝑎𝑛𝑑𝑜𝑚) (4) 

𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟𝑠𝑖𝑗 = 𝑀𝑎𝑥 ((𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟𝑠𝑖𝑗−1 − 𝑚𝑜𝑣𝑖𝑛𝑔 𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟𝑠𝑖), 0) (5) 

where £ is highest probable of moving fish. 

2.3.4. GRO implementation steps 

1) Choose the initial values (particles initialization number of this technique, leaders number, limits of 

fitness function) 

2) Followers number = n/leaders number 

3) Calculate fitness function for n of particles, with sort fitness function 

4) While t < iteration do 

5) For i = 1 to number of leaders 

6) Update particles for the followers for leaders (i) using optimization method 

7) End for 

8) i = 2 to number of leaders 

9) Random × £ = fishes of mobile (i) 

Followers (i) = Max (0, followers (i) − mobile fishes(i)) 

10) Total number of mobile fishes = total number mobile fishes + fishes of mobile (i) 

11) End for 

12) Followers (1) = total number of mobile fishes + Followers (1) 

13) Determine the solution of sub global for every leader 

14) Calculate the solution of global 

15) End while 

In this work, PSO and GA optimization techniques are used for finding the optimal DG location and size 

compared to GRO. The fundamental equations for PSO, GA, and GRO from Kennedy and Eberhart (PSO)[46], 

Abedini and Saremi (GA)[17], and Jaber et al. (GRO)[43] are implemented without any additional adjustments. 

3. Proposed model 

A large number of parameters with equations for a nonlinear high-order system makes up the power 

system model and its networks, according to the work cited above. Thus, an evident objective function is 

required in order to solve the DGs problem of predicting their location and size. Every DG allocation’s 

objective function could be one or more. Using the formulation based on the load flow and many types of 

power system variables. The quality of the electrical power system has been improved with the presentation 

of significant indices. The location and size of each DG are chosen to be two of the most significant issues in 

the endeavor of power loss reduction. The base index formula for the objective function is represented by the 

active power losses index. 

3.1. Objective function 

A precise evaluation for the objective function has been chosen. The main goal of the proposed method 

is to determine the best locations and size for DG resources by minimizing function, related to project aims. 

The main goal is taken into considerations to calculate the objective formula that is used in point of start. The 

main objective of the problem is to reduce the real power losses. Furthermore, the fitness function is determined 

as in Equation (6). 
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𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒(𝑃𝐿) (6) 

3.2. Power losses minimization 

The overall power losses have a significant impact on the total amount of power generated, which could 

increase the benefits to the economy and environment. The most significant objective function, PL, which is 

represented by these currents and has a mathematical model as an Equation (7), is the total power losses as 

following. 

𝑃𝐿 = ∑ 𝐺𝑙𝑖𝑛𝑒

𝑁𝑢

𝑙𝑖𝑛𝑒=1

(𝑉𝑖
2 + 𝑉𝑠

2 − 2𝑉𝑖𝑉𝑠 𝑐𝑜𝑠 𝑐𝑜𝑠(𝛼𝑖 − 𝛼𝑠)) (7) 

where Vs and Vi are the absolute values of the receiving and transmitting ends voltage, Nu is the total number 

of transmission lines in the system, G line is the conductance of the line, and αi, αs are angles of the end voltages. 

The computation of the objective function using the AI method is shown in Figure 1. 

 

Figure 1. The objective function. 

4. Result and discussion 

The authors of this work were obviously motivated to use the algorithm to determine the size and position 

of DGs in order to minimize actual power losses by the high flexibility and high efficiency of GRO in solving 

extremely complicated problems. 

MATLAB has simulated tests and methods to carry out the outcomes and performances of the prepared 

scenario. The 30 bus IEEE standards are used to test the optimization techniques as well. 

Also, according to the problem case and system as stated in Table 1, the objective function is built using 

GA, PSO, and GRO with the same varied number of iterations and amount of population for fair comparisons. 

Table 1. Algorithm parameters. 

DGs-number 1 2 3 4 5 

Particles 25 30 40 40 40 

Iterations 30 30 35 40 40 

To determine the effectiveness of the DG of the objective function, one to five DGs are supposed to be 

added to the chosen IEEE 30 bus system. Different numbers of DG are added to construct situations with 

multiple levels of complexity. Moreover, the Newton-Raphson method was used to calculate the load flow in 

all circumstances. Table 2 shows the three approaches’ dimensions and placement. 
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Table 2. Location and size of selected system. 

DGs-

number 

One-DG Two-DGs Three-DGs Four-DGs Five-DGs 

Methods GRO PSO GA GRO PSO GA GRO PSO GA GRO PSO GA GRO PSO GA 

Location 27 15 2 13, 25 7, 20 28, 3 17, 22, 7 9, 18, 

14 

21, 9, 

4 

2, 27, 

18, 11 

4, 20, 

2, 20 

20, 15, 

15, 3 

5, 8, 

23, 6, 

14 

22, 2, 

4, 22, 

12 

3, 24, 

19, 15, 

10 

Size 78.7 80.85 80.85 76.14, 

49.49 

80.85, 

50.96 

80.84, 

80.84 

52.88, 

36.49, 

66.91 

80.85, 

34.10, 

26.55 

42.58, 

72.40, 

80.47 

64.05, 

35.65, 

41.21, 

65.62 

80.85, 

39.01, 

80.85, 

40.83 

34.31, 

3.74, 

56.65, 

80.73 

80.83, 

49.15, 

28.87, 

74.34, 

8.41 

72.36, 

55.77, 

68.21, 

41.59, 

52.06 

46.28, 

21.33, 

14.86, 

35.16, 

77.46 

Some of the key directories for the three commonly used approaches’ changes in loss saving are listed in 

Table 3. Table 3 shows that all three techniques have an effect on real power losses, albeit to varying degrees. 

The objective value is not much advanced in the cases of a single generator or a pair of generators, whereas 

the solutions to the allocation problems involving three, four, and five DGs clearly demonstrate the efficacy 

of the proposed strategy. 

Table 3. Objective function. 

DGs-

number 

One-DG Two-DGs Three-DGs Four-DGs Five-DGs 

Methods GRO PSO GA GRO PSO GA GRO PSO GA GRO PSO GA GRO PSO GA 

𝑃𝐿𝑂𝑆𝑆 12.45 11.21 13.58 8.85 6.61 7.55 5.32 7.09 5.68 5.53 6.79 8.10 1.69 6.51 6.04 

The precise values that are highlighted in Tables 3 demonstrate the best results for the GRO approach 

with various connections of DG for all classes. Figure 2 shows examples of power systems improving in active 

power losses and compared without DG, helps to highlight the differences between these proposed 

optimization methods to decreased active power with increased number of DG in distribution system. 

There are loss saves in all three ways, as can be seen in Table 3. The largest reduction in the conventional 

system’s active power is 1.69 losses for the 5DGs GRO technique, and the lower benefit is 12.45 losses for 

the 1DG GRO method, indicating that GRO was unable to come up with a workable solution. While the single 

DG of GA and GRO methods both have a worse value, the five DG for the GRO technique has the best 

objective function. 

   
(a) 1DG (b) 2DG (c) 3DG 

  
(d) 4DG (e) 5DG 

Figure 2. Power system improvement active power. (a) 1DG; (b) 2DG; (c) 3DG; (d) 4DG; (e) 5DG. 
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Three of the five examples, representing a multi-level of complexity, were progressed via the new 

objective function utilizing GRO, while other two cases are optimized more effectively using PSO. Also, 

utilizing the suggested strategy, a superior solution was found for all high degrees of complexity. 

In most instances, the proposed optimization approaches outperform the GRO method due to a 

convergence mechanism that involves searching over many regions of the problem space. Figure 3 illustrates 

how each optimization technique converges for the case of 3DG. 

It can be shown from Figure 3, which depicts a new objective function for 3DG utilizing three 

optimization techniques, that in terms of the assumed number of search particles and iterations, GRO 

demonstrates faster convergence compared to the other two methods (GA and PSO), when it comes to 

minimizing the objective function. Nevertheless, even after seven iterations, GRO was still able to improve 

the answer. This suggests that GRO might be able to avoid collapsing into a single optimal location. 

   

(a) GRO (b) PSO (c) GA 

Figure 3. 3DG algorithms convergence. (a) GRO; (b) PSO; (c) GA. 

5. Conclusion 

In conclusion, Garra Rufa optimization is a powerful tool that can be used to minimize power losses and 

improve the efficiency of DG units. By using the principles and algorithms of the optimization process, the 

user can identify the most effective and efficient way to allocate DGs in order to minimize power losses. 

Additionally, it can be used to identify the optimal placement of DG units to meet specific power requirements. 

For comparative purposes, the assigned problem was solved using three algorithms: GA, PSO, and GRO. The 

total active power losses were decreased as a consequence of effective DG allocation utilizing the suggested 

approaches and improved up to 1.6 MW. Additionally, there was one instance in which the GRO was unable 

to come up with a suitable solution, and that involved lowering the in a single DG. It was explained that the 

GRO mechanism’s superior exploitation and exploration capabilities over other swarm optimization 

intelligence approaches make it the best choice for resolving extremely challenging engineering optimization 

problems. In the end, it is anticipated that the GRO will be able to offer effective answers to some of the most 

difficult power engineering problems now in existence, such as load frequency regulation or load forecasting. 

furthermore, the recently proposed technique can be altered to more accurately answer low-complexity issues. 

Author contributions 

Conceptualization, RKC, AS and MBS; methodology, AS; software, ASJ; validation, RKC, AS and MBS; 

formal analysis, RKC; investigation, ASJ, RKC; data curation, ASJ; writing—original draft preparation, RKC; 

writing—review & editing, ASJ, MBS; visualization, AS; supervision, AS; project administration, AS. 

Conflict of interest 

The authors declare no conflict of interest. 

 



9 

References 

1. Kasilingam G, Pasupuleti J, Kasirajan SK, et al. Optimal design of damping control of oscillations in power 

system using power system stabilizers with novel improved BBO algorithm. Indonesian Journal of Electrical 

Engineering and Informatics 2022; 10(4). doi: 10.52549/ijeei.v10i4.4269 

2. Hussein BM, Jaber AS. Unit commitment based on modified firefly algorithm. Measurement and Control (United 

Kingdom) 2020; 53(3–4): 320–327. doi: 10.1177/0020294019890630 
3. Balachander T, Aruna Jeyanthy P, Devaraj D. Short term complex hydro thermal scheduling using integrated 

PSO-IBF algorithm. Indonesian Journal of Electrical Engineering and Informatics 2022; 10(2): 232–245. doi: 

10.52549/ijeei.v10i2.3506 

4. Chillab RK, Jaber AS, Smida MB, Sakly A. Optimal DG location and sizing to minimize losses and improve 

voltage profile using Garra Rufa optimization. Sustainability 2023; 15(2): 1156. doi: 10.3390/su15021156 

5. Afolabi R, Bamidele A, Adoghe AU. Prediction of power consumption utilization in a cloud computing data 

centre using kalman filter parameters with genetic algorithm. Indonesian Journal of Electrical Engineering and 

Informatics 2023; 11(1). doi: 10.52549/ijeei.v11i1.3679 

6. Jaber AS, Satar KA, Shalash NA. Short term load forecasting for electrical dispatcher of Baghdad city based on 

SVM-PSO method. In: Proceedings of 2018 2nd International Conference on Electrical Engineering and 

Informatics (ICon EEI); 16–17 October 2018; Batam, Indonesia. pp. 140–143. 
7. Azrag MAK, Kadir TAA, Jaber AS. Segment particle swarm optimization adoption for large-scale kinetic 

parameter identification of Escherichia Coli metabolic network model. IEEE Access 2018; 6: 78622–78639. doi: 

10.1109/ACCESS.2018.2885118 

8. Suresh MCV, Belwin EJ. Optimal DG placement for benefit maximization in distribution networks by using 

Dragonfly algorithm. Renewables: Wind, Water, and Solar 2018; 5: 4. doi: 10.1186/s40807-018-0050-7 

9. Ogunsina AA, Petinrin MO, Petinrin OO, et al. Optimal distributed generation location and sizing for loss 

minimization and voltage profile optimization using ant colony algorithm. SN Applied Sciences 2021; 3: 248. doi: 

10.1007/s42452-021-04226-y 

10. Prakash A, Shyam Joseph A, Shanmugasundaram R, Ravichandran CS. A machine learning approach-based power 

theft detection using GRF optimization. Journal of Engineering, Design and Technology 2021. doi: 

10.1108/JEDT-04-2021-0216 

11. Abidi MH, Alkhalefah H, Moiduddin K, Al-Ahmari A. Novel improved chaotic elephant herding optimization 
algorithm-based optimal defense resource allocation in cyber-physical systems. Soft Computing 2022; 27: 2965–

2980. doi: 10.1007/s00500-022-07455-4 

12. Jaber AS, Satar KA, Shalash NA. Short-term load forecasting for electrical dispatcher of Baghdad City based on 

SVM-FA. International Journal of Advanced Computer Science and Applications 2018; 9(11): 300–304. doi: 

10.14569/IJACSA.2018.091141 

13. An HK, Awais Javeed M, Bae G, et al. Optimized intersection signal timing: An intelligent approach-based study 

for sustainable models. Sustainability 2022; 14(18): 11422. doi: 10.3390/su141811422 

14. Bora A, Bezboruah T. Performance investigation of software agents in Artificial Intelligence and document object 

model domain. Indonesian Journal of Electrical Engineering and Informatics 2023; 11(1): 97–104. doi: 

10.52549/ijeei.v11i1.3984 

15. Chandel A, Chauhan DS, Singh D. Enriched technique for DG placement and sizing by GA optimization. 
American-Eurasian Journal of Scientific Research 2017; 12(5): 260–270. doi: 10.5829/idosi.aejsr.2017.260.270 

16. Jaber AS, Ahmad AZ, Abdalla AN. A new parameters identification of single area power system based LFC using 

Segmentation Particle Swarm Optimization (SePSO) algorithm. In: Proceedings of 2013 IEEE PES Asia-Pacific 

Power and Energy Engineering Conference (APPEEC); 8–11 December 2013; Hong Kong, China. 

17. Abedini M, Saremi H. A hybrid of GA and PSO for optimal DG location and sizing in distribution systems with 

load uncertainty. Journal of Basic and Applied Scientific Research 2012; 2(5): 5103–5118. 

18. Somefun T, Popoola O, Abdulkareem A, Awelewa A. Review of different methods for siting and sizing 

distributed generator. International Journal of Energy Economics and Policy 2022; 12(3): 16–31. doi: 

10.32479/ijeep.12803 

19. Venkatesan C, Kannadasan R, Alsharif MH, et al. Assessment and integration of renewable energy resources 

installations with reactive power compensator in Indian utility power system network. Electronics 2021; 10(8): 
912. doi: 10.3390/electronics10080912 

20. Chia SJ, Abd Halim S, Rosli HM, Kamari NAM. Power loss minimization using optimal power flow based on 

firefly algorithm. International Journal of Advanced Computer Science and Applications (IJACSA) 2021; 12(9): 

358–364. doi: 10.14569/IJACSA.2021.0120940 

21. Jaber A, Ahmad AZ, Abdalla AN. A new load frequency controller based on parallelization of fuzzy PD with 

conventional PI (FPD-PI). Australian Journal of Basic and Applied Sciences 2014; 373–379. 

22. Izzri N, Mehdi OH, Abdalla AN, et al. Fast prediction of power transfer stability index based on radial basis 

function neural network. International Journal of the Physical Sciences 2011; 6(35): 7978–7984. doi: 

10.5897/IJPS11.1322 

http://section.iaesonline.com/index.php/IJEEI/issue/view/85
http://dx.doi.org/10.52549/ijeei.v11i1.3679


10 

23. Suyarov A, Hasanov M, Boliev A, Nazarov F. Whale optimization algorithm for intogreting distributed generators 

in radial distribution network. Social Science Research Network 2021; 5(9): 44–49. doi: 10.2139/ssrn.3938852 

24. Modarresi J, Gholipour E, Khodabakhshian A. A comprehensive review of the voltage stability indices. 

Renewable and Sustainable Energy Reviews 2016; 63: 1–12. doi: 10.1016/j.rser.2016.05.010 

25. Jaber AS, Mohammad KS, Shalash NA. Optimization of electrical power systems using hybrid PSO-GA 

computational algorithm: A review. International Review of Electrical Engineering 2020; 15(6): 502–511. doi: 

10.15866/iree.v15i6.18599 

26. Yahyia AA, Abbas AA, Jaber AS. Acceleration factor optimization of gauss-seidel numerical analysis for power 
flow using FA. Journal of Physics: Conference Series 2023; 2467(1): 012018. doi: 10.1088/1742-

6596/2467/1/012018 

27. Kanagasabai L. Real power loss reduction by enhanced electromagnetic field and lightning process optimization 

algorithms. Energy Reports 2021; 7: 6615–6625. doi: 10.1016/j.egyr.2021.09.168 

28. Adepoju GA, Aderemi BA, Salimon SA, Alabi OJ. Optimal placement and sizing of distributed generation for 

power loss minimization in distribution network using particle swarm optimization technique. European Journal 

of Engineering and Technology Research 2023; 8(1): 19–25. doi: 10.24018/ejeng.2023.8.1.2886 

29. Gümüş TE, Tirmikçi CA, Yavuz C, et al. Power loss minimization for distribution networks with load tap 

changing using genetic algorithm and environmental impact analysis. Tehnicki Vjesnik 2021; 28(6): 1927–1935. 

doi: 10.17559/TV-20200813105532 

30. Muthukumar K, Jayalalitha S. Optimal placement and sizing of distributed generators and shunt capacitors for 

power loss minimization in radial distribution networks using hybrid heuristic search optimization technique. 
International Journal of Electrical Power & Energy Systems 2016; 78: 299–319. doi: 10.1016/j.ijepes.2015.11.019 

31. Kanagasabai L. Real power loss reduction by accipitridae optimization algorithm. Technology and Economics of 

Smart Grids and Sustainable Energy 2022; 7: 24. doi: 10.1007/s40866-022-00147-w 

32. Polprasert J, Ongsakul W, Dieu VN. Optimal reactive power dispatch using improved pseudo-gradient search 

particle swarm optimization. Electric Power Components and Systems 2016; 44(5): 518–532. doi: 

10.1080/15325008.2015.1112449 

33. Duong TL, Duong MQ, Phan VD, Nguyen TT. Optimal reactive power flow for large-scale power systems using 

an effective metaheuristic algorithm. Journal of Electrical and Computer Engineering 2020; 2020: 6382507. doi: 

10.1155/2020/6382507 

34. Prashant, Siddiqui AS, Sarwar M, et al. Optimal location and sizing of distributed generators in power system 

network with power quality enhancement using fuzzy logic controlled D-STATCOM. Sustainability 2022; 14(6): 
3305. doi: 10.3390/su14063305 

35. Marimuthu A, Gnanambal K, Pooja Eswari R, Pavithra T. Optimal location and sizing of DG units to improve the 

voltage stability in the distribution system using particle swarm optimization algorithm with time varying 

acceleration coefficients. Global Research and Development Journal for Engineering | International Conference 

on Innovations in Engineering and Technology (ICIET) 2016; 366–375. 

36. Montoya OD, Gil-González W, Grisales-Noreña LF, et al. Hybrid optimization strategy for optimal location and 

sizing of DG in distribution networks. Tecnura 2020; 24(66): 47–61. doi: 10.14483/22487638.16606 

37. Sayed EM, Elamary NH, Swief RA. Optimal sizing and placement of distributed generation (DG) using particle 

swarm optimization. Journal of Physics: Conference Series 2021; 2128(1): 012023. doi:10.1088/1742-

6596/2128/1/012023 

38. Zhu Q, Wu H, Fu Z. A review of intelligent optimization algorithm applied to unmanned aerial vehicle swarm 
search task. In: Proceedings of 2021 11th International Conference on Information Science and Technology 

(ICIST); 21–23 May 2021; Chengdu, China. 

39. Abdalla AN, Ju Y, Nazir MS, Tao H. A robust economic framework for integrated energy systems based on 

hybrid shuffled frog-leaping and local search algorithm. Sustainability 2022; 14(17): 10660. doi: 

10.3390/su141710660 

40. Zamani M, Karimi-Ghartemani M, Sadati N. Fopid controller design for robust performance using particle swarm 

optimization. Fractional Calculus and Applied Analysis 2007; 10(2): 169–187. 

41. Sadati N, Zamani M, Mahdavian HRF. Hybrid particle swarm-based-simulated annealing optimization techniques. 

In: Proceedings of IECON 2006—32nd Annual Conference on IEEE Industrial Electronics; 6–10 November 2006; 

Paris, France. 

42. Fogel DB. Evolutionary Computation: Toward a New Philosophy of Machine Intelligence. IEEE; 2006. 

43. Jaber AS, Abdulbari HA, Shalash NA, Abdalla AN. Garra Rufa-inspired optimization technique. International 
Journal of Intelligent Systems 2020; 35(11): 1831–1856. doi: 10.1002/int.22274 

44. Anantha Krishnan V, Senthil Kumar N. Robust soft computing control algorithm for sustainable enhancement of 

renewable energy sources based microgrid: A hybrid Garra rufa fish optimization—Isolation forest approach. 

Sustainable Computing: Informatics and Systems 2022; 35: 100764. doi: 10.1016/j.suscom.2022.100764 

45. Reddy CRSR, Prasanth BV, Chandra BM. Active power management of grid-connected PV-PEV using a Hybrid 

GRFO-ITSA technique. Science and Technology for Energy Transition 2023; 78: 7. doi: 10.2516/stet/2023001 

46. Kennedy J, Eberhart R. Particle swarm optimization. In: Proceedings of ICNN’95—International Conference on 

Neural Networks; 27 November–1 December 1995; Perth, WA, Australia. pp. 1942–1948. 


