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ABSTRACT 

Countries throughout the world were experimenting with novel approaches to prevent the spreading of the 

Coronavirus pandemic illness (COVID-19). The use of IoT and cloud computing for data collection and analysis to 

avoid disease transmission via smartphone applications was a significant hurdle. Existing cloud services that are that 

retain the information of the victim to address severe challenges such as excessive latency and poor spectral 

performance. Furthermore, the likelihood of coverage gaps might result in the loss of genuine data, leading the 

technology to present inaccurate data. Motivated to solve these challenges, this paper addresses a new edge computing 

framework with a coverage hole detection module to detect and prevent the primary spread of pandemics like COVID-

19 in an energy-efficient way. Experimental results exhibit excellent performance in terms of energy consumption 

under edge based and cloud based scenarios in the existence of coverage holes. The experimental findings demonstrate 

that the proposed structure has improved energy economy and reduced time to process while detecting coverage holes 

accurately. 
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1. Introduction 

Coronavirus is a contagious type of virus, causing lesions of 

the nose, sinus, or upper throat[1,2]. A pneumonia cluster in Wuhan, 

Hubei province in China, revealed its source as a novel 

coronavirus in late 2019. The World Health Organization termed 

the virus COVID-19 in February 2020, which stands for 2019 

coronavirus disease leading to its rapid spread and death toll in all 

countries as seen in Figure 1. In their battle against the pandemic, 

world nations have used a wide array of innovations[3,4]. The rising 

demand for high-speed networks for data transfer is accelerating at 

an alarming pace[5]. Aarogya Sethu application monitors the 

whereabouts of the people through the location of the information 

supplied by their phones was vitally important in evaluating where 

the infected person had gone before being quarantined[6,7]. The app 

collects and stores personal data such as name, phone number, age, 

sex, occupation, countries that have been on a visit in the last 30 

days, or smoking and medical status in a cloud during registration 

entered by the person on the app when the app was first run to 

determine the existence of the coronavirus. The framework also 

permanently collects the location coordinates and checks where all 

authorized persons have been contacted. Many customers have 
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incorporated this into their networks with the rise in cloud computing. Any businesses sell clients other 

than cloud computing services. Many programs incorporate broad algorithms such as the translation of 

natural languages, processing of images, and sound classification with these servers. This eliminates the 

bulk of computing pressures on consumer computers from the cloud. But that means the process is too 

centered. The data center then receives this responsibility. Figure 1 illustrates the cases that were 

recovered are much lower than the overall cases, bolstering stress analysis towards discovering a 

successful end to the disease’s spread. 

The application and hardware design of the server now controls the shortcomings of operational 

analysis. Users’ impact on the cloud has proven to be risky. The security of knowledge, effectiveness, 

and efficiency are some of the issues that cloud users might be at risk[4]. Too much reliance on the cloud 

may be risky for all data processes. Again, the rapid proliferation of the IoT and 5G wireless networks 

will have a major impact on the sheer amount of data, resulting in increased latency for conventional 

cloud computing technologies[5,7]. Despite the rapid rise in the amount of mobile devices, conventional 

centralized cloud computing is unable to provide QoS for a wide range of services. With the arrival of 

future 5G technologies, edge computing could be the critical answer to this problem[8]. One of the 

primary challenges related to 5G technologies is the Radio-Access Network (RAN). RAN data is usable 

in authentic mobile edge computing[9]. With the use of RAN data in real-time, network operators can 

increase their end-users quality of experience (QoE) as RAN will deliver real-time knowledge solutions. 

The modern MEC architecture has also been introduced to store, identify, and interpret IoT data sources.  

 

Figure 1. COVID impact during 2021. 

The MEC architecture provides a modern supply chain and efficient mechanism that gives mobile 

operators and apps as well as service providers new opportunities. Making use of an edge computing 

system to overcome all the challenges of COVID detection in the proposed model is shown in Figure 2. 

This is the update of the COVID detection system as shown in Figure 3. The edge computing consists 

of MEC servers to provide wireless users with COVID knowledge and geographical data in real -time 

by utilizing the available edge near to end users. To provide mobile network providers with context-aware 

software and facilities, this actual network awareness can be utilized by meeting end-users quality of 

experience (QoE). By reducing latency and bandwidth usage, the MEC platform delivers excellent value but 
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raises the edge’s obligation to deliver multiple health services in real time to end-users. MEC allows data 

flow acceleration with low latency, even in real-time data analysis. Incorporating deep learning and 

predictive measures along with edge computing can enable the framework to extract valuable information 

and can take adaptive intelligent decisions[9]. 

 

Figure 2. COVID-19 tracking and detection using the edge computer system. 

 

Figure 3. Cloud computing solution for COVID-19 observation. 

The remaining part of the article is organized as follows. Section 2 presents many areas of edge 

computing uses in the healthcare industry. Additionally, the restoration rate in COVID detection utilizing 

cloud-based methods is analyzed by comparing predictive data analysis models. The behavior of edge 

computing apps with coverage holes is described in Section 3. In Section 4, an experimental setup is 

provided. In Section 5, metrics for performance are provided. The conclusion is discussed in Section 6. 
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2. Related works 

All individuals in the private and public sectors have been drawn to new developments in edge 

computing for mobile devices, including the remote monitoring of patients using centralized. Therefore, the 

highest attention should be given to clear visualization, a high level of sensitivity, and improved service 

quality[8]. This new technique is used by numerous systems to understand data flow with higher QoS. While 

live tracking apps are employed for tracking patient whereabouts and recording the propagation of epidemics, 

stable tracking programs are used to maintain a patient’s health information. 

2.1. Static monitoring applications 

Considering the network characteristics like peak-to-mean ratio, delay, and jitters from medical video 

footage is known as Uterine Horn Navigation. Sodhro et al.[10] proposed that the Window-based control rate 

Algorithm (w-RCA) in mobile devices edge-based services would increase medical facility efficiency. w-

RCA findings that are more robust and successful in a small buffer and a window. The outcomes for a long 

data stream are unable to be improved[10]. In an integrated fog-to-cloud structure which incorporates data 

preprocessing, indoor position, and behavior detection processes via a residence gateway while a secure 

cloud acts for storing remote data, some researchers established an intelligent health surveillance atmosphere 

that is centered on the cloud[11–14]. Memory issues and high latency are present. 

2.2. Dynamic monitoring applications 

Dynamical monitoring applications in the diagnosis and management of epidemic diseases are 

becoming a sustainable approach. From this viewpoint, it is always a difficult job to set up real-time to 

transfer and aggravate intelligent data from various sensors. Such systems are successful at diagnosing initial 

infectious diseases so that adequate care can be administered in due course to enable rapid healing[15–18]. If a 

sensor’s capacity to convey data is reached, particularly in continuous tracking and observation, a coverage 

hole results, which can be extremely problematic in medical applications. Approaches for preventing Zika 

virus infection are being described using fog, cloud computing, cell phones, and IoT sensor. According to 

Google Maps, each ZikaV transmission site indicates an individual who has contracted the virus and enables 

public health officials to appropriately monitor such risky locations. Thus, this technique does not reveal an 

exponential range of disorders[19,20]. Using sensing data provided by the many IoT devices, both processes 

are identified and evaluated in a centralized cloud that is presently hampered by latency and security issues. 

The majority of static and dynamic monitoring solutions struggle with latency and data safety concerns[21]. 

To address these difficulties, multiple investigations have been established and put into practice. The issue of 

the sensing devices’ energy consumption, which contains vital medical data, is currently being investigated. 

2.3. Paradigm of predictive analysis 

The paradigm of predictive analysis is probably the most sought-after data analysis model. Predictive 

analysis models are supposed to interpret, determine patterns, classify trends, and use chronological case data 

to calculate the global pandemic spreading and rehabilitation rate. A statistical framework is one of the most 

well-known methods used in mathematical study. It controls metric value forecasts by assessing new values 

based on training from prior data. It is also used where the statistics found in historical documents are not 

available. There are different kinds of statistical models. One of the most commonly used methods of 

prediction research is classification models[21,22]. As shown in Figure 4, the model relies on historical facts to 

identify knowledge. The past data is fed into prediction algorithms that consider patterns and trends. The 

model is then used for current data to forecast the next happenings. 
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Figure 4. Paradigm of predictive analysis. 

Global businesses use classification models so new data can be easily updated and problems can be 

carefully evaluated. Although historical data work in classification and prediction models, abnormal data 

items are utilized for modeling anomalies[23]. It works by identifying exceptional data, individually or 

concerning different categories and numbers. The time-series framework focuses on the data when the 

variables are given periodically. Several metrics that forecast trends in a certain timeframe using multiple 

data points collected from data from the year before are produced using the generalized linear approach[24]. 

The classification model separates data using identical features into distinct groups. In certain 

implementations, splitting data into distinct datasets based on specific characteristics is especially useful. 

Hazard analysis is carried out based on the generalized linear model[25], random forest model[26], decision tree 

model[27], and deep learning model[28]. Those models project how quickly the pandemic is going to recover 

soon. 

2.3.1. Linear model 

The generalized linear model (GLM) extrapolates linear regression, enabling a correlation between the 

linear model and the dependent variables and allowing the degree of variance to be determined by its 

expected value[29,30]. Abdellatief et al. explored in the IoMT system a confidence-based knowledge-sharing 

strategy to deduce the danger of consumer health failure from accessing a given position in compliance with 

its vulnerabilities[31]. The comparison between the total cases and total death is shown in Figure 5.  

 

Figure 5. Descriptive statistics of active cases. 

Figure 6 shows the active case prediction through the generalized linear model. The predictions are 

within +/−16152.702 of the actual number with an accuracy of 95%. The accuracy of the forecasts increases 

with their proximity to the diagonal line. The locations of the points are 95% likely to be within the dotted 

lines. 
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Figure 6. Active case prediction through the generalized linear model. 

2.3.2. Deep learning 

Deep learning models are commonly used to derive high-level spatial information to maximize 

efficiency compared with conventional models enhance estimation accuracy, and also to recognize and 

interpret biological information. Figure 7 shows the predictions vs. the actual values of deep learning model. 

Ideally, all predictions equal the actual values and lie on a diagonal line. The closer they are to the diagonal 

line the better the predictions are. With a 95% probability, the points are between the dashed lines. With 95% 

probability, the predictions do not deviate more than +/−16127.184 from the actual value. 

 

Figure 7. Deep learning model predictions for active instances. 

2.3.3. Decision tree 

An algorithmic approach segmenting the data set in various ways under particular criteria might 

produce decision trees. Probably the most analytical feature of the supervised technique is decision trees. The 

decision tree is a key technique for the analysis of predictions that may be utilized to both explicitly and 

effectively characterize beliefs. It is a graph that uses division techniques to display every possible result, 

notwithstanding limitations. The leaf depicts a choice made after the value of the feature is considered 
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account if an internal decision tree node indicates a feature assessment. 

Figure 8 shows the decision tree visualization of total cases. Ideally, all predictions equal the actual 

values and lie on a diagonal line. The closer they are to the diagonal line the better the predictions are. With 

95% probability, the points are between the dashed lines. With a 95% probability, the predictions do not 

deviate more than +/−16240.53 from the actual value. 

 
Figure 8. Decision tree visualization of total cases. 

2.3.4. Random forest model 

As the name suggests, the random forest contains several different decision-making entities, acting as a 

set. Each tree stretches a classification model in the random forest, and the group with more votes becomes 

the prediction of the model. All forecasts should ideally equal the actual numbers and fall on a diagonal line. 

The more close to the diagonal line and more accurate the forecasts. The boundaries are almost certainly 

within the lines with dashes. These variations influence both the peak timing and magnitude forecasts. 

Figure 9 shows the probability distribution of active cases using random forest classifier. 

 

Figure 9. Probability distribution of active cases using random forest classifier. 

The predictions have a 95% chance of being within +/−16681.614 of the actual number as well. The 

main obstacle in detecting the viruses in persons with COVID-19 symptoms was the lack of correct 

screening evidence and their capacity to screen. This has culminated in an unprecedented flux of information, 

which in turn affects the forecasts. 

The proposed edge computing-based COVID detection for coverage hole detection seeks to identify and 

anticipate the position of a COVID-infected individual while consuming less power and delivering crucial 

information with a short latency. The structure includes the techniques that follow: i) visibility estimating to 

find neighbors; ii) polygon triangulating to iteratively divide segments; and iii) coverage hole detection 

utilizing a point location-based coverage hole detection technique. 
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3. Modeling a framework for energy-efficient edge computing-based 

COVID detection 

The blood pressure, heart rate, non-invasive temperatures of the body, and oxygen level in the 

blood (SpO2) will be collected. The pulse rate of a user having a mobile device integrated with 

wearable sensors. The existing system makes use of a user survey to predict the medical condition 

whereas the proposed system provides medical accuracy using these wearable sensors.  

Let us consider the following notations. 

Φ = Minimum cost of triangulation; 

φ[v, u] = Minimum cost after recursive triangulation; 

D(v, u) = The perimeter of the distance between the edges; 

P < V(v-1) V(v+1), ..., Vu ≥ Polygon formed by connecting the vertices; 

µ(v,u) = Effectiveness function to determine the cost of the triangle. 

Figure 10 shows the edge computing-based framework for COVID detection and prevention. The 

sensor-generated information collected by every user’s smartphone or tablet could be processed privately or 

transferred to the MEC server for processing. MEC servers use the M/M/1 queuing model for the execution 

of data thereby reducing the latency. The processed data will be forwarded to the government cloud data 

center for prediction and tracking through core networks and the Internet. When a user searches for nearby 

corona diagnostic details, information is obtained from the data center in the cloud and sent to the individual 

via the Internet. If sensors ran out of battery or malfunction, incorrect information will be collected, 

presenting a major concern in the event of initial disease propagation. To address this risk, a coverage hole 

detection technique is utilized to locate failing sensors and refresh the data center to ensure users who are 

registered can get accurate data on the likelihood of interaction with a virus-infected person when their 

mobile device sensors are functional. The coverage hole detection technique employs a computational 

geometry-based hole identification methodology that can pinpoint the precise position of the failing sensor 

employing a point location approach. The point location-based hole detection algorithm technique employs a 

minimal cost triangulation solution for each zone. The following is the updated triangulation procedure for a 

convex polygonal structure generated by the distributed sensor nodes. 

 

Figure 10. Edge computing-based framework for COVID detection and prevention. 



9 

Deliberate 𝜑 (v, u) be the cost of an optimal triangulation of the polygon <𝑉𝑣−1, 𝑉𝑣+1, ..., 𝑉𝑢>, then, 𝜑 

(v, u) is the least cost for point v-1 to u. Whenever there is a line segment connecting two points, then <𝑉𝑣−1, 

𝑉𝑢>, so v = u, then 𝜑 (v, u) is 0. Otherwise, <𝑉𝑣−1, 𝑉𝑟, 𝑉𝑢>)} > and all partitions <𝑉𝑣−1… 𝑉𝑟 , > and <𝑉𝑟+1, 𝑉𝑢, > 

and finding the minimum. 

The cost of an edge is calculated by calculating the total length of the distance D across two nodes that 

cause the edges, as shown below. 

𝐷(𝑣, 𝑢) = √((𝑣. 𝑥 − 𝑢. 𝑥) ∗ (𝑣. 𝑥 − 𝑢. 𝑥) + (𝑣. 𝑦 − 𝑢. 𝑦) ∗ (𝑣. 𝑦 − 𝑢. 𝑦)) (1) 

The effectiveness function to determine the cost of the triangles is, 

µ(𝑣, 𝑢) = ∑ 𝐷(𝑣, 𝑢)

𝑢

𝑣−1

 (2) 

To triangulate n possible triangles of a convex polygon of any size the algorithm on the edges is 

performed until all the edges are met. The minimum cost after the recursive triangulation is, 
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Then 𝜑 (1, n) is the least cost of triangulation. The edges triangulation is determined twice a diagonal 

and once for the edge. So the time complexity for triangulation is ( )n
3

 . The monotone polygons can be 

divided into segments. The area between two subsequent segments in a platform corresponds to a single S-

side. As a result, the point location problem can be reduced to two easier ones: because the plane is separated 

into vertical slabs, we can determine which slab holds a sensor node. The query processing time is ( )nlog  

and the space complexity is ( )n . The hole areas are computed by picking sensor nodes that are nearest to 

segment parameters and identifying the exact location of the idle sensing node inside that segment. A hole 

detection technique is used to figure out the hole area, in which the energy level of the node corresponds to a 

threshold value obtained through a probabilistic methodology. Nodes having less energy than the acceptable 

level are detected as failure nodes that cause coverage holes. 

Experimental setup 

The simulation uses a Cayenne Internet of Things (IoT) and Message Queuing Telemetry Transport 

(MQTT) protocol concurrently senses COVID. The application consists of a body temperature sensor unit 

with a microcontroller, storage unit, and transmitter that facilitate wireless communication. The application 

needed to obtain is delivered from the Google Play store if the cell phone is an Android phone. The Nokia 

developer J2ME development platform for a smartphone based on Java is used to build apps. The data 

sensed by the sensors can be communicated to the MEC servers using the MQTT protocol. The sensor data 

are uploaded to Cayenne when a link is formed. The data will be made available to users through the internet 

and core networks. 

4. Results 

To appraise the edge-based coverage hole detection framework, the proposed system compares it with 

the cloud-based detection framework using computational geometry. The proposed framework’s 

performance is demonstrated by monitoring the average number of messages transferred in the network and 

the average amount of energy spent up to the completion of the coverage hole detection procedure for varied 

amounts of installed nodes. 

4.1. Energy consumption rate 

As demonstrated in Figures 11 and 12, an edge-based architecture minimizes the time needed for 
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analyzing data utilizing the edge node, as well as the number of unwanted messages, leading to minimal 

power usage. Although a node must share and get coordinates from its k neighbors, a node’s overall 

consumption of energy throughout data collection, delivery, and receiving could represent the entire energy. 

This research is being conducted in multiple sensor nodes of varied holes, and a greater amount of holes 

improves energy. 

 
Figure 11. Comparison of average energy usage for 50 nodes. 

 
Figure 12. Comparison of average energy usage for 100 nodes. 

The analysis of energy consumption values in Table 1 shows that the F value of Cloud computing hole 

detection has the highest likelihood of node failure, whereas edge-based hole detection has the lowest 

likelihood of node failure. 

Table 1. ANOVA analysis of energy consumption values. 

Category DF Sum of squares Mean square F Prob > F 

Energy consumption in EB (mJ) Model 1 121.39 121.39 0.12 0.71 

Error 98 91817.19 936.91 - - 

Total 99 91938.59 - - - 

Energy consumption in CB (mJ) Model 1 9948.59 9948.59 9.33 0.002 

Error 98 104414.90 1065.45 - - 

Total 99 114363.50 - - - 
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4.2. Delay in processing critical data 

Compared to the cloud computing-based coverage hole detection framework, the edge computing-based 

framework processes data in milliseconds. 

Edge nodes consume a few minutes of calculation time, causing the computation latency to decrease. 

The time needed to analyze data lowers as the range of edge nodes grows. As a consequence, the delay is 

reduced in comparison to a cloud-based architecture, leading to a low P-value, shown in Table 2 and Figure 

13. 

Table 2. 2-way Anova analysis of delay values. 
 

DF Sum of Squares Mean sq F value P-value 

EB 9 8546.8996 949.6555 1.37608 0.21316 

CB 11 8078.42945 734.4027 1.06417 0.40059 

Model 20 28805.92582 1440.296 2.08704 0.01134 

Error 79 54519.07418 690.1149 - - 

Corrected total 99 83325 - - - 

 
Figure 13. Processing delay for 100 nodes. 

5. Conclusion 

To prevent the COVID-19 pandemic, the COVID early detection and avoidance system headquartered 

at edge is supporting a broad, integrated healthcare infrastructure. Both medical instruments are wired to the 

Internet and instantly relay a message to the healthcare workers in any crucial condition. In a distant location, 

asymptotic situations of embedded IoT devices must be treated appropriately. To provide patient and 

emergency services with quality support, all urgent situations are intelligently managed. The monitoring and 

avoidance framework edge focused on COVID appears to be an outstanding way of tracking the 

compromised patient compared with cloud providers. This technology is helpful in current crucial times to 

ensure proactive maintenance with reliable real-time data. The edge-based COVID detection and prevention 

framework is successful through the use of a calculation-based geometry approach to forecasting the 

emerging situation with low latencies and high energy efficiencies. Researchers and health professionals may 

build better conditions to fight this epidemic by properly exercising this capability. 
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