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ABSTRACT 

An essential step in the drug development process is the accurate detection of drug-target interactions (DTI). The 

importance of binding affinity values in understanding protein-ligand interactions was previously disregarded, and DTI 

prediction was only seen as a binary classification problem. In this regard, we introduced the DFDTA-MultiAtt model for 

predicting the drug target binding affinity in two stages using the structural and sequential information. The first step of 

the first stage involves retrieving features from sequence data using a bi-directional long short term memory (Bi-LSTM) 

architecture together with a multi-attention module and dilated convolutional neural network (dilated-CNN) architecture, 

and the second step features are learnt from structure representation once again using a dilated-CNN. To predict the 

binding affinity, the second stage uses an ensemble learning model. The proposed model also produces findings with a 

greater overall accuracy when compared to contemporary state-of-the-art methods. The model generates an enormous 

+0.006 concordance index (CI) score on the Davis dataset and reduces the mean square error (MSE) by 0.174 on the 

KIBA dataset. 
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1. Introduction 

Physiology of the living being is a complex equilibrium 

maintained by a nexus of chemical activities involving a number of 

organic and inorganic compounds and biomolecules. Proteins, in their 

diverse shape and size, are responsible for performing these 

physiological activities. The activity of proteins, in turn, is affected 

by the organic and inorganic compounds in their vicinity. These 

compounds bind to the active or regulatory sites on the proteins 

thereby changing its activity. Proper physiology of the body is 

essential for healthy life. However, due to the multiple factors like life 

style, environmental changes, pathogens, the physiological 

equilibrium gets disturbed. Drugs are the compounds that are 

administered to the living beings to bring the imbalanced 

physiological equilibrium back on track. In order to identify the drug 

effective for a particular physiological condition, it is essential to 

identify the protein responsible for the condition as well as its 

functional mechanism. Drugs usually bind to these proteins and alter 

their activities in desired ways. These proteins are known as the 

“targets”. 

Recently, drug target interaction prediction has been employed 

as one of the early phases in drug development, drug repurposing, and 
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drug side effect prediction research. The primary goal here is to identify new compounds that interact with the 

predetermined targets. Chemical compounds that make up the building blocks of drugs act as a key object in 

drug discovery, allowing researchers to understand how these compounds interact with the target proteins. 

Target profiles and therapeutic benefits of a large number of compounds are yet to be discovered. For instance, 

while there are almost 90 million chemicals in the PubChem library, most of them lack distinct target 

interaction characteristics. 

In addition to assembling several massive raw data sets, researchers investigating chemical compounds 

have access to enormous amounts of data on a variety of compound features, properties, and target proteins. 

Due to the time and resource-intensive nature of purely biological experiments, researchers in the field of drug 

development are turning to in-silico drug-target interaction prediction algorithms. These algorithms enable 

them to effectively manage and understand the vast, intricate data with high-dimensional complexity and also 

prove valuable in accelerating the development of new drugs. 

Traditionally, the identification of drug targets has been seen as a binary classification problem. Binary 

classifiers fail to distinguish between high- and low-affinity interactions because they consider all binding 

events identically. This ignores important information on the variety of affinities that may direct drug 

development. Beyond this, the gold standard datasets produced by Yamanishi et al. in 2008[1] have been utilized 

in the great majority of DTI literature performed during the previous 10 years. These datasets comprised 

combinations of medications and targets with ambiguous binding information; these combinations were 

referred to as negative samples. In DTI research, however, more recently, datasets with a higher level of realism 

have started to be used. These datasets are made using predetermined binding threshold values[2]. The predicted 

values for drug-target binding affinity from the regression model are also useful for finding innovative 

medicines with the required interaction characteristics. 

Identifying a drug’s binding affinity to its target is crucial in contemporary biological research. The 

similarity-based method and feature-based method are two computational techniques that are often used for 

this purpose. The similarity-based approach is predicated on the idea that equivalent targets are often targeted 

by similar medicines, which is validated by previous studies[3–5]. As shown in multiple studies[1,6,7], the feature-

based technique, on the other hand, entails creating feature vectors using known descriptors of the drug and 

target. 

KronRLS[8] and SimBoost[9] are two well-known statistical machine learning algorithms for predicting 

drug-target binding affinity. Protein-protein and drug-drug similarity data are fed into the similarity-based 

KronRLS method[8]. SimBoost[9], in contrast, analyses the drug-target network to assess each drug and target 

combination and creates drug-target features using similarity networks. It then employs a regression tree model 

with larger gradients for performing regression tasks. 

With the increasing application scenarios in deep learning, deep learning models have shown great 

success in addressing various bioinformatics problems[10–14] particularly in drug discovery. When it comes to 

removing characteristics from high-throughput data, deep learning approaches beat statistical machine learning 

algorithms. DeepDTA[15] builds a three-layer CNN module to predict binding affinity by label embedding drug 

Simplified Molecular Input Line Entry System (SMILES) and protein sequences. First, it uses two deep CNN-

based architectural blocks—one for protein sequences and one for SMILES—to learn the latent properties of 

the target and drug independently. Finally, the model was tested for binary classification. WideDTA[16] encodes 

drug SMILES and protein sequences using a text-based technique with four separate textual components. It 

has a CNN-based architecture and employs four input representations. Deep neural networks are used to 

estimate the binding affinity using feature information. Maha et al.[17] introduced Affinity2Vec, a regression-

based strategy that frames the entire endeavor as a graph-based problem. They use data from several sources, 

such as drug-drug similarity, target-target similarity, and drug-target binding affinities, to produce a weighted 
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heterogeneous network. Next, the regression task is carried out using this network. Further, by using the 

neighbor connection of similarity and sharing to extract features, Ru et al.[18] proposed a ranking framework 

using regression features that predict affinity values. GANsDTA[19] is a generative adversarial network 

(GANs)-based technique to predict binding. Utilizing the GANs’ generator module to extract features and the 

regression module for prediction. It gives the model the ability to learn the characteristics of proteins and drugs, 

improving feature representation. Additionally, state-of-the-art DeepFusionDTA[20] uses an ensemble learning 

strategy to anticipate regression and analysis module-based deep learning to construct a feature map of a 

probable protein and drug combination employing sequencing and structural data. This model fails to illustrate 

the effectiveness of the attention mechanism for this problem as the attention mechanism may help to 

concentrate on significant molecular interactions for better affinity prediction. 

In this study, we use a multi-attention-based deep learning ensemble fusion network called DFDTA-

MultiAtt to obtain an approximate binding affinity value. The network is made up of a dilated-CNN  block and 

a Bi-LSTM block with a multi-attention module. With the help of this proposed architecture, it is possible to 

learn the structural and sequential data needed to predict binding affinity. A neural network is also used to 

combine feature maps for potential drug-target combinations. Through the employing of multiple modules, the 

structure and sequence data were examined to build this feature map. Finally, lightGBM is used for predicting 

the binding affinity utilizing the generated merged feature map. 

Additionally, drugs are represented using SMILES sequences and Morgan Fingerprint descriptors 

whereas target proteins are represented as amino acid sequences and secondary structures, generated using 

SPIDER3. For learning the sequential information, Bi-LSTM with multi-attention module with dilated-CNN 

is employed where, as for the structure data, only deep dilated-CNN with varying convolution layer with 

different dilation rates is employed. This proposed framework provides sequence shorter as well as longer 

amino acid interaction information while applying more weightage to the relevant amino acid using the multi-

attention mechanism in case sequence information. Beyond this, multi-attention module improved drug target 

affinity prediction by concentrating on significant molecular interactions. It also provides an understanding of 

the reasons behind predictions and aids better model accuracy in drug development. Moreover, a deep dilated 

network will produce the local as well as global relations using different dilated rates and deep networks. 

The rest of the paper is as follows: In Section 2, proposed method is elaborated. Section 3 consists of 

experimental details along with dataset descriptions. Section 4 described the produced results and overall 

comparison with state-of-the-methods. Finally, Section 5 concludes the paper. 

2. Material and methods 

2.1. Drug-target interaction framework 

 
Figure 1. End-to-end framework. 
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In this work, deep learning-based architectures are employed to generate fusion feature maps for both 

protein and drug data, encompassing both structure and sequence information. These fused feature maps 

effectively represent the combinations of drugs and targets. Subsequently, dimensionality reduction techniques 

are applied to decrease the dimensionality of these fused feature maps. Finally, lightGBM regression module 

is utilized to determine the binding affinity value utilizing the reduced features. The proposed framework is 

shown in Figure 1, and the different modules comprising the framework are discussed in Sections 2.1 to 2.4. 

2.1.1. Input data representation 

This is the first phase of the end-to-end framework shown in Figure 1. Here, two different pair 

representations of the dataset are fed for the training of the proposed deep learning-based architecture. These 

pairs are molecular and protein representation and their effectiveness in combination with drug target 

interaction prediction are employed. Molecular (drug) representation consists of compound smiles and 

molecular fingerprint whereas Proteins consists of primary structure—a sequence of amino acids and 

secondary structure—sequential arrangement of the backbone atoms extracted using SPIDER3. These 

representations are discussed next in Section 2.2. 

2.1.2. Deep learning-based architecture 

This is the second phase of this end-to-end framework as shown in Figure 1. The proposed architectures 

take the embedding of data (discussed in Section 2.1.1) as input and produce the final features (represented as 

Extracted Features in Figure 1). For extracting the intermediate features, we have (i) Sequence Analysis 

Module and (ii) Structure Analysis Module as shown in Figure 1. Sequence analysis module consists of two 

blocks (a) Dilated-CNN block, and (b) Bi-LSTM with multi-attention module as shown in Figure 2. Structure 

analysis module consist of only dilated-CNN block as shown in Figure 3. Whereas, sequence analysis module 

takes sequential information of the protein (sequence) and drug (SMILES) whereas structural analysis module 

takes structure information of the protein (secondary) and drug (molecular) and produces two sets of feature 

maps. These feature maps are merged and fed to the dense layer for dimensionality reduction and further fed 

to the downstream network. These architectures are deeply described in Section 2.3. 

 
Figure 2. Sequence analysis module. 

 

Figure 3. Structure analysis module. 
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2.1.3. Affinity prediction module 

This is the last module mainly used to estimate the binding affinity. Here, an ensemble bagging-based 

lightGBM regression module receives input as features, which represent the drug-target interaction pair. 

Further, this module produces the binding affinity value as output. This prediction module is elaborated in 

Section 2.4. 

2.2. Data representation 

2.2.1. Molecular representation 

Compound SMILES: SMILES (Simplified Molecular Input Line Entry System), represents chemical 

structures as text, also called compound SMILES. Here, to represent SMILES inputs, we used label encoding, 

which employs extracted 64 unique letters integers as a category to embed the compound SMILES sequences. 

Molecular Fingerprint: A molecule’s fingerprint is a numerical representation of its chemical 

constituents. It provides a more informative feature description and is also easier to analyze the role of sequence 

and structure in predicting the interaction of drug and target. Here, RDKit[21] is used to generate the Morgan 

fingerprint. Next, the substructure information is converted into dense feature vector representation using 

embedding method. 

2.2.2. Protein representation 

Protein Sequence: Protein Sequence is represented using the chain of essential amino acids. Here, each 

amino acid is represented by a distinct number, and with the following representation, the label encoding 

technique is used to embed each protein sequence. 

Protein Secondary Structure: The secondary structure is extracted from the protein sequence using 

SPIDER3, represented as a sequence of characters. The secondary structure of the protein is shown by the 

three characters “H” for alpha-helix, “E” for beta-strand, and “C” for coil in this depiction. The information 

about the amino acids’ short- and long-range interactions is encoded in each character of the secondary 

structure sequence. This sequence is then transformed into dense feature representations using label encoding. 

2.3. Deep learning-based architecture 

This phase takes embeddings (molecular and protein representation) as input and extracts the features 

using sequence analysis module (shown in Figure 2) and structure analysis module (shown in Figure 3) and 

fed to the downstream network after concatenating these features using merge layer. 

2.3.1. Dilated-CNN block 

Convolutional Neural Networks (CNNs) are effective weight-sharing techniques that perform well in 

spotting patterns in a variety of contexts. It can acquire local representations with a comparatively small 

number of parameters. Convolutional layer after stacking allows CNN to collect both local and global data, 

allowing for a more comprehensive interpretation of the data. It’s vital to keep in mind, too, that adding more 

convolutional layers also increases the overall number of trainable parameters. So, we have incorporated the 

dilated-CNN block which learns short- and long-range interaction with varying dilation rates and lowers the 

overall trainable parameter[22]. 

In order to capture both local and global interactions while minimizing the number of parameters, a deep 

dilated-CNN architecture made up of three layers of dilated convolution is used in this work. The dilated 

convolution operates by translating the input region to the filter with dilation constant, 𝑘. Since each input unit 

is separated from neighboring units in both vertical-and-horizontal dimensions, there is a wider receptive field 

and the capacity to integrate more contextual information. The receptive field are increased using different 

dilation rate, and convolution operation is calculated as Equation (1).  
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𝐶𝑜𝑛𝑉(𝑋)𝑖,𝑘 = 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 { ∑ 𝑊𝑚

𝑀−1

𝑚=0

∙ 𝑋𝑖.𝑠𝑡𝑒𝑝+𝑘} (1) 

where 𝑀 is the length of the filter, and 𝑘 is the dilation rate. 

Next, the outputs are given to non-linear activation function (Equation (2)) for learning the complex 

information. 

𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑥) = {
𝑥,
𝑥

𝑎
,
𝑥 ≥ 0

𝑥 < 0
 (2) 

As output of this block, it produces important features context across larger receptive field and also 

minimize the overall trainable parameter. 

2.3.2. Bi-LSTM block 

Bidirectional LSTM is another sequence processing model, which learns the interaction in both forward 

and backward directions. Forward LSTM learns the interaction in forward direction whereas Backward LSTM 

learns the interaction from backward direction. Additionally, it gains knowledge of short- and long-range 

interactions, efficiently enhances the network’s data availability, and broadens the context. Bi-LSTM is more 

suited to sequence information on drugs and targets since it can capture long-term dependence and identify 

contextual links. There are three gates in each LSTM unit: (i) an input gate, (ii) a forget gate, and, (iii) an 

output gate. These gates are stated as follows: 

𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓𝑏{𝑡−1} + 𝑏𝑓) 

𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑡 + 𝑈𝑖𝑏{𝑡−1} + 𝑏𝑖) 

𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡 + 𝑈𝑜𝑏{𝑡−1} + 𝑏𝑜) 

𝐶𝑡 = 𝑖𝑡 ⋅ 𝑡𝑎𝑛ℎ(𝑊𝑐𝑥𝑡 + 𝑈𝑐𝑏{𝑡−1} + 𝑏𝑐) + 𝑓𝑡 ⋅ 𝐶{𝑡−1} 

ℎ𝑡 = 𝑜𝑡 ⋅ 𝑡𝑎𝑛ℎ(𝐶𝑡 ) 

where 𝑊, 𝑈 are parameter matrices and 𝑏 is bias. 

Here, input gate ‘𝑖𝑡’ add more relevant information to the current memory state ‘𝐶𝑡’, whereas forget gate 

‘𝑓𝑡’ removes the irrelevant information from the memory state and the output gate ‘𝑜𝑡’ produces the selective 

output to increase the efficiency of the model. 

2.3.3. Multi-attention module 

The attention mechanism is a technique that can assist a neural network in memorizing extended 

sequences of information or data. Here we are using multi-attention module. A multi attention module is a 

group of M-attention layers. In our experiment, we have considered (M = 4) four attention layers and summed 

up the output of each attention layer. It takes input from the Bi-LSTM and assign the weights to input. The 

output of multi-attention is concatenated with the output of Bi-LSTM for better feature mapping as all the 

inputs are responsible for mapping to corresponding output. The architecture of the multi-attention module is 

shown in Figure 1. 

The attention layer calculates set of attention weights denoted by 𝛼(𝑡1), α(t2), . . . , α(tt) . The context 

vector 𝑐𝑖 for the output word 𝑦𝑖 is generated using the weighted sum as shown in Equation (3). 

𝑐𝑖 = ∑ 𝛼𝑖𝑗 ℎ𝑗

𝑇𝑥

𝑗=1

 (3) 

By normalizing the output score defined by the function that captures the alignment between input at 𝑗 

and output at 𝑖 the attention weights are generated as shown in Equation (4). 
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𝛼𝑖𝑗 =
exp (𝑒𝑖𝑗)

∑ exp (𝑒𝑖𝑘)
𝑇𝑧
𝑘=1

 (4) 

𝑒𝑖𝑗 = 𝑎𝑖𝑗(𝑠𝑖−1, ℎ𝑗) (5) 

Finally, the attention weights are multiplied with the output of the Bi-LSTM and the generated output 

(shown in Equation (5)) is given downstream network i.e., merge layer. 

2.3.4. Merge module 

In Figure 1, Sequence analyses module consists of two deep learning-based architectures, (i) Bi-LSTM 

with multi-attention layer and (ii) Dilated-CNN block. Both short- and long-range interaction information is 

captured using Bi-LSTM and dilated-CNN block. Bi-LSTM captures temporal information whereas dilated-

CNN extracts local patterns and correlations from sequential data. Both the architecture is trained parallels, so 

merge the output of both the architecture, a merge layer is used. Merge layer merges the output of both the 

architecture in sequence analyses module and final feature map is given as output from this module. 

Again, the output of each analysis module is combined using a merge layer to create the final feature 

maps, which include data on the protein and drug combination. Therefore, high dimensional features are 

generated in the final feature map after the final merging layer. Therefore, three dense connected layers with 

1024, 1024, and 512 neurons on each layer are used to map the features to the lower dimensions. The regression 

module uses the output of the last layer to estimate affinities. 

2.4. Affinity prediction module 

Regression performance can be increased by integrating different weak learning methods, which has two 

key advantages. Due to the limited quantity of data, the real distribution of data is often impossible to describe 

with a single hypothesis. Therefore, weighing many hypothetical models can aid in lowering the probability 

of making the wrong choice. Instead of using a single model-based approach, such as a decision tree or neural 

network architecture, the ensemble approach achieves regression value by combining a number of weak 

models from several starting points. Here, we use ensemble learning to increase the regression’s accuracy and 

predict binding affinity values using the fully connected layer’s 512-dimensional feature vector. Bagging 

approach averages the results for the final prediction after combining the outputs from numerous lightGBM 

models produced by diverse subsets of the input characteristics. LightGBM is excellent in fusing weak and 

simple learners into a strong learner. 

3. Experiment Details 

In this section, we discuss the benchmarked datasets used to evaluate the proposed model. The 

benchmarked datasets are described in Section 3.1, and the evaluation metric are discussed in Section 3.2. We 

have implemented the proposed model using Python with Keras and TensorFlow. The efficiency of the various 

strategy described in this study are examined. Finally, we compared our results with the contemporary state-

of-the-art methods. 

3.1. Dataset 

We have used two benchmarked binding affinity prediction datasets, (i) Davis[22], and (ii) KIBA[8]. The 

detailed description of these two datasets is given in the Table 1. Davis[22] consists of 68 drugs and 442 proteins 

whereas KIBA[8] consists of 2111 drugs and 229 proteins as given in Table 1. Figure 4 shows the frequency 

distribution between the drugs and their length and protein sequences and their length. So, Davis consists of a 

maximum drug length of 103 and 64 as the average length whereas protein sequences consist of maximum 

2549 amino acids and 788 amino acids as average length. Similarly, the KIBA dataset has maximum drug 

length of 590 and 58 as average length whereas protein sequences consist of maximum 4128 amino acids and 
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728 amino acids as average length. 

Moreover, the Davis dataset includes selectivity assays for the kinase protein-family as well as the 

relevant inhibitors, along-with their dissociation constant 𝐾𝑑  values. The KIBA dataset, on the other hand, 

came from a method known as KIBA, which included kinase inhibitor bioactivities from several data sources 

such as 𝐾𝑖, 𝐾𝑑 , and IC50[8]. By utilizing the statistical information contained in 𝐾𝑖, 𝐾𝑑 , and IC50, KIBA scores 

were created to optimize the degree of coherence amongst them. 

 
Figure 4. Analysis of the datasets. 

Table 1. Dataset description. 

Dataset Protein Compound Interactions 

Davis (𝐾𝑑) 442 68 30,056 

KIBA 229 2111 118,254 

In contrast to Pahikkala et al.[23], where the binding affinity score of the Davis dataset were used directly 

as 𝐾𝑑  values, our approach involves transforming these values into log space, known as 𝑝𝐾𝑑  similar to the 

methodology employed in He et al.[9]. This transformation is outlined in Equation (6). 

𝑝𝐾𝑑 = − log10 (
𝐾𝑑

1𝑒9
) (6) 

As illustrated in Figure 4, the protein sequence may be as long as 4128 characters, with an average length 

of 728 characters, whereas the longest drug SMILES in the KIBA dataset had a maximum length of 590 

characters and an average length of 58 characters. 

3.2. Evaluation matrices 

Affinity prediction comes in category of regression problem. In this regard, we used two well-known 

evaluation metrics to evaluate our proposed architecture: (i) mean squared error and (ii) concordance index. 

These are briefly described below. 

3.2.1. Mean squared error 

In regression tasks, MSE is widely used to determine how accurately the predicted values are 

differentiated from the actual values. Equation (7) illustrates the MSE formula, where 𝑃  stands for the 

anticipated output, 𝑌 for the actual outputs, and 𝑛 for the sample size. Performance of the regression modal 

increases as MSE drops. 
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𝑀𝑆𝐸 =
1

𝑛
∑(𝑃𝑖 − 𝑌𝑖)2

𝑛

𝑖=1

 (7) 

3.2.2. Concordance index 

A variant of the receiver operating characteristic curve is the concordance index, often known as the C-

index or CI. It is a summary evaluation of the model’s ability to distinguish between various drug-target 

combinations and score them appropriately. Using a set of data’s concordance index, which takes into account 

each data pair independently, one may estimate the probability that the predicted labels are in the same order 

as the real label values. Equation (8) displays the CI formula as follows: 

𝐶𝑖 =
1

𝑍
∑ 𝑠(𝑏𝑥 − 𝑏𝑦)

𝛿𝑥>𝛿𝑦

 (8) 

where 𝑏𝑥 is the predicted value with respect to higher affinity 𝛿𝑥, 𝑏𝑦 is the predicted value against the 

higher affinity 𝛿𝑦, 𝑍 is standardization constant, 𝑠(𝑏) is the step function shown in Equation 9. 

𝑠(𝑏) = {

1, 𝑖𝑓 𝑏 > 0
0.5, 𝑖𝑓 𝑏 = 0
0, 𝑖𝑓 𝑏 < 0

 (9) 

3.3. Baselines 

We have compared our work with the contemporary state-of-the-art approaches, namely: KronRLS[8], 

SimBoost[9], DeepDTA[15], WideDTA[16] and DeepFusionDTA[20]. 

3.3.1. KronRLS 

The regularized least squares model (RLS)-based method KronRLS[8] can predict binding values that may 

be binary or continuous. It trains the function 𝒇(𝒙) for all the probable drug-target pairs 𝒙 ∈ {𝒅𝒊 ×  𝒕𝒋} . Here, 

𝒅𝒊  and 𝒕𝒋 denote the set of chemical compounds and their target biological receptors respectively. For 

calculating the difference between two pairs, one must learn an objective function. Therefore, 𝒇 is framed as the 

problem of optimizing the minimizer of an associated objective function. 

3.3.2. SimBoost 

For the purpose of creating features for each drug, target, and drug-target pair, SimBoost[9] is a gradient 

enhancement machine-based technique. Each drug-target pair has a feature vector associated with it in SimBoost. 

Drug-drug resemblance, target-target analogy, and drug-target binding are the three networks that SimBoost 

employs. In the latter case, a node may represent a drug as well as a target, and binding affinity values connect 

the drug and target nodes. Latent vectors obtained through matrix-factorization are also used in this network. 

Gradient boosting regression trees, a supervised learning technique, are utilized for DTI prediction. 

3.3.3. DeepDTA 

A deep learning-based model that uses CNN-based architecture is called DeepDTA[15]. To learn the latent 

features of the target and drug separately, it employs two deep CNN-based architecture blocks—one for protein 

sequences and one for SMILES—before pooling layers are used to reduce the size. The KIBA and Davis 

datasets were used to assess DeepDTA’s performance. Despite being designed for continuous value prediction; 

it was evaluated for binary classification. 

3.3.4. WideDTA 

In order to improve DeepDTA results, WideDTA[16] additionally makes use of CNN-based architecture 

and four input representations. Drug SMILES and protein sequences are represented by WideDTA as word 

groupings rather than whole sequences. Drugs and proteins often have word counts of three and eight, 

respectively. From each of the input data, features are extracted using four identical models. To predict binding 
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affinity, the collected characteristics from each model are aggregated and supplied into downstream densely 

connected network. 

3.3.5. DeepFusionDTA 

To carry out Drug-target identification, DeepFusionDTA[20] employs a two-step design. An analysis 

module-based deep learning fusion feature map of a potential protein and drug combination is initially created 

using sequencing and structural data. The second step involves using a bagging-based ensemble learning 

approach to forecast regression. For assessment, it additionally makes use of the Davis and KIBA datasets. 

3.4. Hyperparameter dtails 

The feature extraction phase uses grid-search to find the ideal filter size parameters for proteins and 

medicines because their input lengths differ. We choose two lengths for chemicals and proteins in the grid search, 

i.e., 4 and 8 for chemicals and 8 and 12 for proteins. Three 1D dilated-CNN with corresponding number of 

filters as 32, 64, and 96 respectively with varying dilation rate as 2, 3, and 4 are used. Utilizing an averaging 

method, 48 hidden units are employed to preserve the Bi-LSTM/Bi-GRU layer and the final dimension of the 

convolution layer while concatenating the output of the convolution layer. 

Table 2. The average CI and MSE scores using the different hyper parameter of the test Davis dataset. (RNN – Recurrent Neural 
Network) 

S.No. RNN D-CNN #Attention Layer CI MSE 

1 Bi-LSTM 1,1,1 1-Att layer 0.884 0.255 

2 Bi-GRU 1,1,1 1-Att layer 0.888 0.248 

3 Bi-LSTM 2,3,4 1-Att layer 0.887 0.247 

4 Bi-LSTM 2,3,4 4-Att layer 0.893 0.247 

Four attention layers are utilized to account for the inputs’ varying degrees of relevance. The bagging-

based lightGBM module section builds 800 base learners, with a learning rate of 0.01, and trains the model 

using 80 leaves. The maximum depth is 150 in order to prevent overfitting. We use 800 estimators to do 

regression while bagging learning. 

Table 3. The average CI and MSE scores using the different hyper parameter of the test KIBA dataset. (RNN – Recurrent Neural 

Network) 

S.No. RNN D-CNN #Attention Layer CI MSE 

1 Bi-LSTM 1,1,1 1-Att layer 0.854 0.002 

2 Bi-GRU 1,1,1 1-Att layer 0.865 0.002 

3 Bi-LSTM 2,3,4 1-Att layer 0.864 0.002 

4 Bi-LSTM 2,3,4 4-Att layer 0.874 0.002 

4. Results and discussion 

On the Davis and KIBA datasets, respectively, Tables 2 and 3 present the findings we obtained using the 

suggested technique with various parameter settings. For the Davis dataset findings provided in Table 2, the 

top-performing models are the Bi-LSTM with 4-attention layer and the dilated-CNN with dilatation rates of 2, 

3, and 4. Our model yields the result of 0.893 CI and 0.247 MSE. On the KIBA dataset, results are reported in 

Table 3 and all models have the same MSE value, which is very low and the best CI value found is 0.874. By 

substituting the Bi-LSTM with Bi-GRU and applying a different dilation rate to the various dilated-CNN 

architectures, as shown in Tables 2 and 3, we have additionally assessed the suggested model. Then, we 

contrasted the outcomes with cutting-edge techniques. 

The result of the proposed model, shown (as asterisk (*)) in Table 4 and Table 5, named as DFDTA-Att* 
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and DFDTA-MultiAtt*, are compared with the contemporary state-of-the-art methods. Here DFDTA-Att* is 

based on single attention whereas DFDTA-MultiAtt* is based on multi-attention with 4 attention layers. The 

proposed model attains lowest MSE score on both the dataset and highest CI score on Davis dataset whereas 

comparable CI score on KIBA dataset. The MSE is dropped to a significant value due to the addition of multi-

attention module in the end-to-end architecture as it concentrates on significant molecular interactions. 

Table 4. The average CI and MSE scores of the test Davis dataset (The proposed model is indicated with asterisk (*) and best values 

are in bold style, Rep – Representation, PS&PDM – Protein sequence & Protein domain motif, and LS&LMCS – Ligand smile & 
Ligand Maximum Common Substructure).  

Models Target Rep Drug Rep CI MSE 

KronRLS[8] Smith-Waterman Pubchem-Sim 0.871 0.379 

SimBoost[9] Smith-Waterman Pubchem-Sim 0.872 0.282 

DeepDTA[15] Smith-Waterman Pubchem-Sim 0.790 0.608 

DeepDTA[15] Smith-Waterman CNN 0.886 0.420 

DeepDTA[15] CNN Pubchem-Sim 0.835 0.419 

DeepDTA[15] CNN CNN 0.878 0.261 

WideDTA[16] PS&PDM LS&LMCS 0.886 0.262 

DeepFusionDTA[20] SeqM&StruM SeqM&StruM 0.887 0.253 

DFDTA-Att* SeqM&StruM SeqM&StruM 0.885 0.255 

DFDTA-MultiAtt* SeqM&StruM SeqM&StruM 0.893 0.247 

Table 5. The average CI and MSE scores of the test KIBA (The proposed model is indicated with asterisk (*) and best values are in 
bold style, Rep – Representation, PS&PDM – Protein sequence & Protein domain motif, and LS&LMCS – Ligand smile & Ligand 

Maximum Common Substructure).  

Models Target Rep Drug Rep CI MSE 

KronRLS[8] Smith-Waterman Pubchem-Sim 0.782 0.411 

SimBoost[9] Smith-Waterman Pubchem-Sim 0.836 0.222 

DeepDTA[15] Smith-Waterman Pubchem-Sim 0.710 0.502 

DeepDTA[15] Smith-Waterman CNN 0.854 0.204 

DeepDTA[15] CNN Pubchem-Sim 0.718 0.571 

DeepDTA[15] CNN CNN 0.863 0.194 

WideDTA[16] PS&PDM LS&LMCS 0.875 0.179 

DeepFusionDTA[20] SeqM&StruM SeqM&StruM 0.876 0.176 

DFDTA-Att* SeqM&StruM SeqM&StruM 0.866 0.002 

DFDTA-MultiAtt* SeqM&StruM SeqM&StruM 0.874 0.002 

5. Conclusion 

We proposed a deep learning-based architecture to predict the drug and target binding affinity using 

structural, protein and drug sequence, and similar data. We use two concurrent deep learning-based architectures 

for the sequence feature. It uses a dilated-CNN block and Bi-LSTM with a multi-attention module. Also used 

for structural data is a single dilated-CNN block. For the purpose of forecasting the binding affinity, the acquired 

characteristics are combined and given to the lightGBM regression model after dimension reduction. In order 

to compare the performance of the recommended model, we additionally make use of various parameters during 

feature selection in end-to-end framework. 

Our findings show that multi-attention aids in producing better feature maps, which improves accuracy. 

Additionally, when the dilation rate rises, the receptive field expands and interaction data from farther distances 

helps to provide a better Concordance index and reduce mean square error. 
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