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ABSTRACT 

This research investigates statistical methods for estimating the reliability in a complex system composed of non-

identical components with varying strengths in the presence of upper record ranked set samples. To model the behavior 

of these components, a specialized distribution in the shape of a bathtub is assumed. This distribution offers flexibility 

with adjustable levels of asymmetry, enabling its adaptation to different reliability scenarios. The study focuses on 

estimating the reliability of the system’s bathtub-shaped distribution by employing two different approaches: classical 

and Bayesian. In the classical approach, the system’s reliability is estimated using a maximum likelihood technique, and 

a simulation study is conducted to evaluate the accuracy of the estimates. The Bayesian approach, on the other hand, 

considers the use of the standard linear exponential (LINEX) loss function as an asymmetric loss function, as well as 

the squared error loss function as a symmetric loss function. Bayesian estimates of the system’s reliability are obtained 

by utilizing two independent gamma prior distributions. Due to the complexity of these estimates, the Markov chain 

Monte Carlo method is employed since closed-form solutions cannot be obtained. Extensive simulations reveal that as 

the number of records increases, the measurement accuracy decreases. In most cases, the Bayesian estimates obtained 

using the LINEX loss function yield the lowest values. The theoretical findings are illustrated through examples drawn 

from real-world datasets, specifically focusing on a dataset concerning the timing of consecutive failures in aircraft air 

conditioning systems to demonstrate the proposed methodologies. 

Keywords: non-identical component strength system; bathtub-shaped model; upper record ranked set sampling; Markov 

chain Monte Carlo; real data applications 
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1. Introduction 

The stress-strength (SS) model plays a critical role in reliability 

testing. It measures the reliability of a component by comparing the 

stress (Y) it experiences to its strength (X). If the stress remains 

below the component’s strength, ℜ = 𝑃(𝑌 < 𝑋) , the system will 

continue to function. The concept of the SS model was first 

introduced by Birnbaum[1] who originally proposed this idea, and it 

was further developed by Birnbaum and McCarty[2]. Various 

techniques and assumptions about distributions have been explored 

in numerous studies to make inferences based on this model. For 

recent works on this topic, for some recent works, see Sadeghpour et 

al.[3], Hassan et al.[4], Alsadat et al.[5], and, Hassan et al.[6]. 
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The fundamental concept of ℜ can be adapted to form a system with two or more components. The 

research of Bhattacharyya and Johnson[7] investigated the multi-component SS (MSS) model under the 

concept that 𝑞 out of 𝑝 system components, where (1 ≤ 𝑞 ≤ 𝑝) components resist a common random stress 

Y. This model is relevant to a variety of industries, including manufacturing, and logistical operations. An 

electrical power plant, for instance, can only generate the right amount of energy if at least six out of its eight 

generating units are running. The deck of suspension bridges is held up by a number of vertical cables that 

are suspended from the towers. Consider a suspension bridge made up of p pairs of vertical cables. Only a 

minimum number of vertical cables running through the deck that are not destroyed when put under stress 

from wind loading, high traffic, corrosion, etc. will ensure the survival of the bridge. 

In a system consisting of 𝑝 similar components, the system will continue to operate if a certain number 

q  (1 ≤ 𝑞 ≤ 𝑝) or more of the components are functioning. Stress applied to the system, denoted as Y, 

follows a random variable with a cumulative distribution function (CDF) 𝐺𝑌(𝑥) . The strengths of the 

components, which represent the minimum stress required for failure, are independent and identically 

distributed (iid) random variables 𝑋1, 𝑋2, . . . , 𝑋𝑝 with a CDF 𝐹(𝑥). To capture the realistic behavior of these 

CDFs, it is assumed that the derived functions have flexible shapes with varying levels of asymmetry. Then, 

according to Bhattacharyya and Johnson[7], the reliability of the 𝑞-out-of-𝑝 system, denoted by ℜ𝑞,𝑝 , is given 

by 

ℜ𝑞,𝑝 = 𝑃[at least 𝑞 of (𝑋1, 𝑋2, . . . , 𝑋𝑝) exceed 𝑌] = ∑ (
𝑝
𝑎

) ∫ [1 − 𝐹(𝑥)]𝑎
∞

0

𝑝

𝑎=𝑞

𝐹(𝑥)𝑝−𝑎d𝐺𝑌(𝑥). 

The evaluation of MSS models’ reliability using different SS distributions and sampling techniques was 

a topic of study for many academics, for instance, Hassan and Basheikh[8], Rao et al.[9], Rao et al.[10], Dey et 

al.[11], Kızılaslan[12], Pak et al.[13], Kayal et al.[14], Hassan et al.[15], Kotb and Raqab[16], Jana and Bera[17], 

Azhad et al.[18], Hassan et al.[19], Yousef and Almetwally[20], Almetwally et al.[21] , and, Haj Ahmad et al.[22]. 

Due to the varied structures of system components, many real-world situations may invalidate the 

assumption that the strength distributions are identical. This often happens with systems that contain backup 

components. Even when formed of the same material, different things might have different strengths. For 

example, a metal that has been heat treated to provide acceptable mechanical properties may break in a 

variety of ways when it is quenched. The strengths of the components differ as a result. It appears that a 

more realistic model is one that at least includes non-identical random strengths for system components (see 

Kotz et al.[23]). 

The mathematical setting is now described. Suppose that a system possesses multiple components of 

various kinds, say 𝑝 components, of which 𝑝1 are of kind 1, 𝑝2 are of kind 2, …, and the remainder 𝑝𝑛 =

𝑝 − ∑ 𝑝𝑖
𝑛−1
𝑖=1  components are of kind 𝑛. Suppose that the random strengths for the components of the i-th 

kind have a CDF 𝐹𝑖(𝑥) with 𝑖 = 1, 2, . . . , 𝑛. In addition, suppose that Y is a common stress with CDF 𝑄𝑌(𝑥). 

It is assumed that all the involved components are subjected to this stress. As long as the 𝑞-out-of-the-𝑝 

components can resist the stress, the system will be operational. The research of Johnson[24] described the 

system reliability ℜ𝑞1,...,𝑞𝑛,𝑝1,...,𝑝𝑛
 with non-identical component strengths as follows: 

ℜ𝑞1,...,𝑞𝑛,𝑝1,...,𝑝𝑛
= ∑ . . .

𝑝1

𝑗1=𝑞1

∑ (∏ (
𝑝𝑖

𝑗𝑖
)

𝑛

𝑖=1

) ∫ (1 − 𝐹𝑖(𝑥))𝑗𝑖 (𝐹𝑖(𝑥))𝑝𝑖−𝑗𝑖

∞

0

𝑑𝑄𝑌(𝑥),

𝑝𝑛

𝑗𝑛=𝑞𝑛

 (1) 

where the summation is applied to all combinations (𝑗1, 𝑗2, . . . , 𝑗𝑛) with 0 ≤ 𝑗𝑖 ≤ 𝑝𝑖 for 𝑖 = 1, 2, . . . , 𝑛 such 

𝑞 ≤ ∑ 𝑗𝑖
𝑛
𝑖=1 ≤ 𝑝. For a system to operate, each 𝑞𝑖 specifies the minimal number of components of the thi type. 
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When examining a system with two distinct types of components, the model Equation (1) can be stated 

as follows: 

ℜ𝑞1,𝑞2,𝑝1,𝑝2
= ∑ ∑ (

𝑝1

𝑗1
) (

𝑝2

𝑗2
)

𝑝2

𝑗2=𝑞2

𝑝1

𝑗1=𝑞1

∫ (1 − 𝐹1(𝑥))𝑗1(𝐹1(𝑥))𝑝1−𝑗1(1 − 𝐹2(𝑥))𝑗2(𝐹2(𝑥))𝑝2−𝑗2

∞

0

𝑑𝑄𝑌(𝑥). (2) 

In many practical fields, including hydrology, sports, medicine, life testing, etc., record values (RVs) 

have recently become an important area of research. Chandler[25] proposed the fundamental concept of RVs. 

In statistics, records are defined as the extremes that follow one another in a series of random variables. The 

greatest (respectively smallest) number derived from a series of random variables is referred to as an upper 

(respectively lower) RV. The RVs have the advantage of requiring fewer measures than a whole sample, 

which is particularly advantageous for damaging studies when expensive measurements must be conducted 

(see Wu[26]). 

The mathematical foundation of ranked set sampling (RSS) was developed in McIntyre[27],and Dell and 

Clutter[28], who demonstrated that this sampling technique yields an effective estimate of the population 

mean. Numerous studies have proven the effectiveness of RSS and its variants in calculating a variety of 

population indicators (see Jiang and Gui[29] and, Alotaibi et al.[30]). 

A new sampling strategy for generating record-breaking data was developed, called record-ranked set 

sampling (RRSS). In Salehi and Ahmadi[31], the RRSS system was established to help scientists in situations 

when the only observations that would be used are the most recent record-breaking data, such as athletic data, 

meteorological data, and Olympic data. Assuming there are 𝑛  independent sequential sequences of 

continuous random variables, the thi
 sequence sampling is stopped when the thi  RV is achieved. Only the last 

RV in each sequence is used as an observation for analysis. The last RV of the thi  sequence in this plane is 

denoted by 𝑈𝑖,𝑖 , then the available observations are 𝑈̱𝑖,𝑖 = (𝑈1,1, 𝑈2,2, ,2𝑈𝑛,𝑛)𝑇. The following diagram can be 

used to illustrate this observational process: 
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where 𝑈(𝑖)𝑗 is the thi ordinary upper (lower) record in the thj sequence. It is worth noting that these 𝑈𝑖,𝑖’s are 

independent random variables but aren’t always arranged in order. 

Building more realistic models requires the Bayesian estimation of ℜ𝑞1,𝑞2,𝑝1,𝑝2
 implying diverse 

distributions. See, for instance, Pandey et al.[32] and Paul and Uddin[33] for the Weibull and exponential 

distributions on the strength and stress variates, respectively. Also, Hassan and Basheikh[34] estimated 

ℜ𝑞1,𝑞2,𝑝1,𝑝2
 for the non-identical MSS using the exponentiated Pareto distribution. Karam et al.[35] examined 

the estimation of ℜ𝑞1,𝑞2,𝑝1,𝑝2
 when the component strengths and stress follow the inverse version of the 

Lomax distribution based on complete samples. A non-identical MSS system’s estimation under adaptive 

hybrid progressive censoring samples was examined by Kohansal et al.[36], who considered the estimation of 

ℜ𝑞1,𝑞2,𝑝1,𝑝2
 when the component strengths and stress follow the bathtub-shaped distribution (BShD). The 

choice of this distribution is motivated by its ability to capture diverse skewness properties in the reliability-

type random variables. Çetinkaya[37] proposed an estimation of ℜ𝑞1,𝑞2,𝑝1,𝑝2
 when component strengths and 

stress follow Weibull distributions in a generalized progressive hybrid censoring system. Under adaptive 

Type-II hybrid progressive censoring samples, Arshad et al.[38] created an estimation of the p-type non-

identical MSS model from the proportional reversed hazard rate (PRHR) family using records. Hassen et 
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al.[39] discussed an estimation of ℜ𝑞1,𝑞2,𝑝1,𝑝2
 when component strengths and stress follow expoentiated Pareto 

using lower record data. 

It is crucial to remember that much of the MSS reliability estimation research done so far has focused 

on complete or censored samples, and RVs have not been used frequently. Currently, there is no proof that 

an RRSS scheme exists, especially when it comes to the estimation of MSS systems with non-identical 

component strengths. In this study, we investigate the non-identical component strengths situation, where 

component strengths and stress follow a BShD, and we are interested in developing MSS models within the 

RRSS scheme. A maximum likelihood estimate (MLE) of ℜ𝑞1,𝑞2,𝑝1,𝑝2
 is created for the upper RRSS 

(URRSS), and a simulation study is investigated. Linear exponential (LINEX) and squared error (SE) loss 

functions are used to build the Bayesian estimate (BE) of ℜ𝑞1,𝑞2,𝑝1,𝑝2
. For ℜ𝑞1,𝑞2,𝑝1,𝑝2

, the BEs cannot be 

reduced to simple closed forms; thus, we employ the Markov chain Monte Carlo (MCMC) approach. We 

also looked at actual data sets to demonstrate the applicability of our research. 

The structure of the paper is organized as follows: A formulation of ℜ𝑞1,𝑞2,𝑝1,𝑝2
 and its MLE under the 

URRSS, as well as a numerical analysis, are presented in Section 2. Section 3 discusses the BEs of 

ℜ𝑞1,𝑞2,𝑝1,𝑝2
, under SE and LINEX loss functions. Section 4 of this article presents the MCMC method. For 

demonstration reasons, real data sets are provided in section 5. Section 6 has concluding observations. 

2. Determination and classical estimation of 𝕽𝒒𝟏,𝒒𝟐,𝒑𝟏,𝒑𝟐
 

In this part, a model description of ℜ𝑞1,𝑞2,𝑝1,𝑝2
 is provided. The MLE of ℜ𝑞1,𝑞2,𝑝1,𝑝2

is obtained in the 

presence of the URRSS. Additionally, a numerical analysis is done. 

2.1. Expression of 𝕽𝒒𝟏,𝒒𝟐,𝒑𝟏,𝒑𝟐
 

When the strength and stress random variables follow the BShD, the formula for the MSS reliability is 

available. Before expressing it, a retrospective on the BShD is necessary. 

The BShD, developed in Chen[40], has been regarded as one of the most significant distributions among 

the others in lifetime data analysis. It is a significant model that may be applied to research a wide range of 

issues in experiments on reliability and life testing. This significance is because of the shape properties of the 

related functions, demonstrating attractive asymmetric, skewness, and kurtosis levels. Several researchers 

discussed the BShD’s studies and applications; for instance, see Wu[41], Rastogi et al.[42], Sarhan et al.[43], and, 

Ahmed[44]. The CDF of the BShD, for 𝑥 > 0, with scale and shape parameters 𝜃 > 0, and 𝜆 > 0 is provided 

by: 

𝐺(𝑥) = 1 − exp [𝜃 (1 − 𝑒𝑥𝜆
)]. 

The probability density function (PDF) of the BShD is: 

1( ) exp 1 .
  −   

= − +    

xg x x e x

 

The associated survival function and hazard function (HF) are as follows, respectively: 

( ) exp (1 ) ,


 = −
  

xS x e
 

and 

1 .( )
 −= xx eh x  

Figure 1 illustrates some of the possible shapes of the PDF for selected parameters. It can be decreasing 

or unimodal. In addition, asymmetric shapes from the left to the right are observed, which is not so common 

in two-parameter lifetime distributions. 
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Figure 2 illustrates some of possible shapes of the HF for selected values of the parameters. 

Asymmetric bathtub shapes are observed. 

 
Figure 1. Some PDF representations of the BShD. 

 
Figure 2. Some HF representations of the BShD. 

Overall, based on its interesting features, and the existing work on the BShD, it is ideal to consider in 

our reliability setting. 

From all of the 𝑝 system components in the model Equation (2), we suppose that the first 𝑝1 of first 

kind component strengths follow the BShD(𝜆, 𝜃1), while the remaining 𝑝2 = 𝑝 − 𝑝1 of kind 2 component 

strengths follow the BShD(𝜆, 𝜃2). In addition, we suppose that 𝑌 follows the BShD(𝜆, 𝜃3), independently. 

The respective CDFs are described as 

( ) 1 exp 1 ,  , , 0, 1,2,  


  
  

= − −  =  
  

x

i i iF x e x i  (3) 

( )3 3( ) 1 exp 1 ,  , 0, 0.


   = − −  
  

y
YQ x e y  (4) 

Based on the expressions in Equation (2) by Equations (3) and (4), the formula of ℜ𝑞1,𝑞2,𝑝1,𝑝2
 for such a 

system is as follows: 

1 1 1 21 2

1 2 1 2

1 1 2 2

2 2

1

3

( )
1 2

, , ,
1 2 0

)

1 2

(
1

2 3

exp (1 ) 1 exp (1 ) exp (1 )

1 exp (1 ) exp (1 )

  

  

  

   −

−

= =

−

        
 =       

     − − − −     
     





   − − − +    

 
   

  

 








  
j p j jp p

q q p p

j

x x x

p
x

q j q

j
x

e e e

e x e x d

p p

j j

.x

 

Let us now work on the integral term. To this end, let 𝑧 = exp (1 − 𝑒𝑥𝜆
), 𝑑𝑧 = −𝜆𝑥𝜆−1𝑒𝑥𝜆

exp (1 −

𝑒𝑥𝜆
) 𝑑𝑥, and then inserting in previous equation, we get 

ℜ𝑞1,𝑞2,𝑝1,𝑝2
= ∑ ∑ (

𝑝1

𝑗1
) (

𝑝2

𝑗2
)

𝑝2

𝑗2=𝑞2

𝑝1

𝑗1=𝑞1

𝜃3 ∫ 𝑧𝜃1𝑗1(1 − 𝑧𝜃1)(𝑝1−𝑗1)𝑧𝜃2𝑗2(1 − 𝑧𝜃2)(𝑝2−𝑗2)𝑧𝜃3−1𝑑𝑧
1

0

. 
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Using the classical binomial expansion two times, the following expression is established: 

ℜ𝑞1,𝑞2,𝑝1,𝑝2
= 𝑀𝑗1,𝑗2,𝑖1,𝑖2

𝜃3 ∫ 𝑧𝜃1(𝑖1+𝑗1)+𝜃2(𝑖2+𝑗2)+𝜃3−1
1

0

𝑑𝑧 =
𝑀𝑗1,𝑗2,𝑖𝑖,𝑖2

𝜃3

𝜃1(𝑖𝑖 + 𝑗1) + 𝜃2(𝑖2 + 𝑗2) + 𝜃3
, (5) 

where, 

𝑀𝑗1,𝑗2,𝑖1,𝑖2
= ∑ ∑ (

𝑝1

𝑗1
) (

𝑝2

𝑗2
)

𝑝2

𝑗2=𝑞2

𝑝1

𝑗1=𝑞1

∑ ∑ (
𝑝1 − 𝑗1

𝑖1
)

𝑝2−𝑗2

𝑖2=0

(
𝑝2 − 𝑗2

𝑖2
) (−1)𝑖1+𝑖2

𝑝1−𝑗1

𝑖1=0

. 

Note that the expression in Equation (5) depends on 𝜃1, 𝜃2 and 𝜃3. 

2.2. MLE of 𝕽𝒒𝟏,𝒒𝟐 ,𝒑𝟏,𝒑𝟐
via URRSS 

In this part, we investigate the MLE of ℜ𝑞1,𝑞2,𝑝1,𝑝2
 using the URRSS data from the BShD. To compute 

the MLE of ℜ𝑞1,𝑞2,𝑝1,𝑝2
, denoted by ℜ̂𝑞1,𝑞2,𝑝1,𝑝2

, the MLEs of 𝜃1 , 𝜃2, 𝜃3 and 𝜆, denoted by 𝜃1, 𝜃2 , 𝜃3 and 𝜆̂, 

must be computed first. 

Suppose that 𝑟𝑖,𝑖 = (𝑟1,1, . . . , 𝑟𝑛,𝑛)
𝑇

represents the 𝑛 observed random vector 𝑅̱𝑖,𝑖 = (𝑅1,1, . . . , 𝑅𝑛,𝑛)𝑇  of 

the URRSS from BShD(𝜆, 𝜃1).  Let 𝑡𝑗,𝑗 = (𝑡1,1, . . . , 𝑡𝑚,𝑚)
𝑇

 be the observed 𝑚  random vector of URRSS 

𝑇𝑗,𝑗 = (𝑇1,1, . . . , 𝑇𝑚,𝑚)
𝑇

from BShD(𝜆, 𝜃2). Also, suppose that 𝑠𝑢,𝑢 = (𝑠1,1, . . . , 𝑠𝑤,𝑤)
𝑇

is the observation of 

the random vector 𝑆̱𝑢,𝑢 = (𝑆1,1, . . . , 𝑆𝑤,𝑤)
𝑇
of size w from the URRSS obtained from BShD(𝜆, 𝜃3). Note that 

𝑅̱𝑖,𝑖, 𝑇̱𝑗,𝑗 and 𝑆̱𝑢,𝑢 are independent. 

The joint PDF of the URRSS of size n, according to Arnold et al.[45], is defined by: 

𝐿 (𝑢𝑖,𝑖|𝜂) = ∏
[− 𝑙𝑛( 1 − 𝐻(𝑢𝑖,𝑖; 𝜂))]

𝑖−1

(𝑖 − 1)!

𝑛

𝑖=1

ℎ(𝑢𝑖,𝑖; 𝜂);       𝜂 ∈ 𝛩, (6) 

where, 𝑢𝑖,𝑖 = (𝑢1,1, 𝑢2,2, . . . , 𝑢𝑛,𝑛)𝑇  is the observed values of 𝑈𝑖,𝑖 , 𝜂 is real valued parameter and 𝛩 is the 

parameter space, ℎ(𝑢𝑖,𝑖; 𝜂) is the PDF of the URRSS and 𝐻(𝑢𝑖,𝑖; 𝜂) is CDF of the URRSS. Hence, the 

observed URRSS data 𝑟𝑖,𝑖 , 𝑡𝑗,𝑗and𝑠𝑢,𝑢, given 𝜂, based on Equation (6), are given as below: 

𝐿1 (𝑟𝑖,𝑖|𝜆, 𝜃1) = (𝜆𝜃1)𝑛 ∏
[−𝜃1𝜏𝑖,𝑖]

𝑖−1

(𝑖 − 1)!
exp(𝜃1𝜏𝑖,𝑖 + (𝑟𝑖,𝑖)𝜆) (𝑟𝑖,𝑖)𝜆−1

𝑛

𝑖=1

, 

𝐿2 (𝑡𝑗,𝑗|𝜆, 𝜃2) = (𝜆𝜃2)𝑚 ∏ exp(𝜃2𝜑𝑗,𝑗 + (𝑡𝑗,𝑗)𝜆) (𝑡𝑗,𝑗)𝜆−1
[−𝜃2𝜑𝑗,𝑗]

𝑗−1

(𝑗 − 1)!

𝑚

𝑗=1

, 

𝐿3 (𝑠𝑢,𝑢|𝜆, 𝜃3) = (𝜆𝜃3)𝑤 ∏
[−𝜃3𝛿𝑢,𝑢]

𝑢−1

(𝑢 − 1)!
exp(𝜃3𝛿𝑢,𝑢 + (𝑠𝑢,𝑢)𝜆) (𝑠𝑢,𝑢)𝜆−1

𝑤

𝑢=1

, 

where 𝜏𝑖,𝑖 = 1 − 𝑒(𝑟𝑖,𝑖)𝜆
, 𝜑𝑗,𝑗 = 1 − 𝑒(𝑡𝑗,𝑗)𝜆

, 𝛿𝑢,𝑢 = 1 − 𝑒(𝑠𝑢,𝑢)𝜆
, 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝑚, 𝑢 = 1, . . . , 𝑤. 

The joint likelihood function (LF) of 1 2 3( , , ),   = based on the URRSS, is given by: 

𝐿 (𝑟𝑖,𝑖 , 𝑡𝑗,𝑗 , 𝑠𝑢,𝑢|𝜂) = 𝜃1
𝑛𝜃2

𝑚𝜃3
𝑤𝜆𝑛+𝑚+𝑤 ∏

[−𝜃1𝜏𝑖,𝑖]
𝑖−1

(𝑖 − 1)!
exp(𝜃1𝜏𝑖,𝑖 + (𝑟𝑖,𝑖)𝜆) (𝑟𝑖,𝑖)𝜆−1

𝑛

𝑖=1

 

× ∏
[−𝜃2𝜑𝑗,𝑗]

𝑗−1

(𝑗 − 1)!
exp(𝜃2𝜑𝑗,𝑗 + (𝑡𝑗,𝑗)𝜆) (𝑡𝑗,𝑗)𝜆−1

𝑚

𝑗=1
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× ∏
[−𝜃3𝛿𝑢,𝑢]

𝑢−1

(𝑢 − 1)!
exp(𝜃3𝛿𝑢,𝑢 + (𝑠𝑢,𝑢)𝜆) (𝑠𝑢,𝑢)𝜆−1

𝑤

𝑢=1

, 

Consequently, the joint log-LF, denoted by ln ℓ, is derived as: 

ℓ ∝ 𝑛 ln 𝜃1 + 𝑚 ln 𝜃2 + 𝑤 ln 𝜃3 + (𝑛 + 𝑚 + 𝑤) ln 𝜆 + ∑((𝑖 − 1) ln( − 𝜃1𝜏𝑖,𝑖) + (𝜆 − 1) 𝑙𝑛 𝑟𝑖,𝑖)

𝑛

𝑖=1

 

+ ∑(𝜃1𝜏𝑖,𝑖 + (𝑟𝑖,𝑖)𝜆)

𝑛

𝑖=1

+ ∑((𝑗 − 1) ln( − 𝜃2𝜙𝑗,𝑗) + (𝜆 − 1) ln 𝑡𝑗,𝑗 + 𝜃2𝜙𝑗,𝑗 + (𝑡𝑗,𝑗)𝜆)

𝑚

𝑗=1

 

+ ∑((𝑢 − 1) ln[−𝜃3𝛿𝑢,𝑢] + (𝜆 − 1) ln 𝑠𝑢,𝑢 + 𝜃2𝛿𝑢,𝑢 + (𝑠𝑢,𝑢)𝜆)

𝑤

𝑢=1

. 

(7) 

Given that 𝜆 is known, the partial derivatives of log-LF Equation (7), for 𝜃1, 𝜃2 and 𝜃3, are: 

𝜕ℓ

𝜕𝜃1
= 𝑛𝜃1

−1 + ∑ [
(𝑖 − 1)

𝜃1
+ 𝜏𝑖,𝑖]

𝑛

𝑖=1

, (8) 

𝜕ℓ

𝜕𝜃2
= 𝑚𝜃2

−1 + ∑ [
(𝑗 − 1)

𝜃2
+ 𝜑𝑗,𝑗]

𝑚

𝑗=1

, (9) 

𝜕ℓ

𝜕𝜃3
= 𝑤𝜃3

−1 + ∑ [
(𝑢 − 1)

𝜃3
+ 𝛿𝑢,𝑢]

𝑤

𝑢=1

. (10) 

Then, the MLEs of 𝜃1, 𝜃2 and 𝜃3 , denoted by 𝜃1, 𝜃2 and 𝜃̂3, are obtained by setting Equations (8)−(10)  

to be zero and solving them numerically using optimization algorism as conjugate-gradient optimization. 

Therefore, based on invariance property, we obtain the MLE of ℜ𝑞1,𝑞2,𝑝1,𝑝2
, say ℜ̂𝑞1,𝑞2,𝑝1,𝑝2

, by inserting 

𝜃1, 𝜃̂2 and 𝜃3in Equation (5) as follows: 

1 2 2

1 2 1 2
1 2 31 1 2 2

, , , 3

, , ˆˆ,
)ˆ( ) (

ˆ
ˆ .ij j i i

q q p p
ij ji

M

 



++ + +
 =  (11) 

Note that ℜ̂𝑞1,𝑞2,𝑝1,𝑝2
 obtained in Equation (11) dependes on MLEs of parmaters 𝜃1, 𝜃2 and 𝜃3 .  

2.3. Simulation study 

In this part, the numerical efficiency of the MLEs for the MSS system are analyzed. Absolute biases 

(ABs) and mean squared errors (MSEs) are used as measurements to evaluate the precision of the estimates 

for several arbitrary parameter values and record numbers. The numerical research is carried out in the 

manner described below: 

• Create the URRSS from the BShD, where (n, m, w) = (3, 3, 3), (3, 3, 5), (3, 5, 3), (5, 5, 5), (5, 5, 6), (6, 

5, 5), (7, 7, 7) and (7, 8, 7). 

• The parameters values of (𝜃1, 𝜃2 , 𝜃3) = (2, 1, 3), (1, 0.3, 2), (2, 0.2, 3) and (2, 0.2, 2) for 𝜆 = 3 in all 

situations. 

• The real values of ℜ𝑞1,𝑞2,𝑝1,𝑝2
 have the following values at 

a. (q1, q2, p1, p2) = (2, 2, 3, 3) are 0.563, 0.67, 0.615 and 0.495. 

b. (q1, q2, p1, p2) = (1, 2, 3, 3) are 0.725, 0.852, 0.838 and 0.737. 

c. (q1, q2, p1, p2) = (2, 1, 3, 3) are 0.611, 0.7, 0.618 and 0.499. 

d. (q1, q2, p1, p2) = (3, 3, 3, 3) are 0.25, 0.339, 0.559 and 0.233. 

• We use 10,000 repetitions to compute the ABs and MSEs of ℜ̂𝑞1,𝑞2,𝑝1,𝑝2
. 
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• The results are presented in Table 1 and are displayed in Figures 3–8. 

• The MSEs and ABs of MSS reliability estimates at (𝑞1, 𝑞2, 𝑝1, 𝑝2) = (1, 2, 3, 3)  are the smallest 

compared to others for different values of (𝑞1, 𝑞2, 𝑝1, 𝑝2)  (Table 1). The MSEs of ℜ̂𝑞1,𝑞2,𝑝1,𝑝2
 at 

(𝜃1, 𝜃2, 𝜃3) = (2, 1, 3) are the smallest in almost all cases (Table 1). 

• As the URRSS numbers increase, the MSEs of ℜ̂𝑞1,𝑞2,𝑝1,𝑝2
for all values of (𝜃1, 𝜃2, 𝜃3) decrease (Figure 

3). 

• Figure 4 demonstrates that the set of values (2, 1, 3) has the smallest MSEs at different sample sizes for 

(𝑞1, 𝑞2, 𝑝1, 𝑝2) = (2, 2, 3, 3). 

 
Figure 3. MSEs of ℜ̂𝑞1,𝑞2,𝑝1,𝑝2

for different (𝜃1 , 𝜃2 , 𝜃3) values at (𝑞1 , 𝑞2 , 𝑝1 , 𝑝2) = (1, 2, 3, 3) and n = m = w. 

 

Figure 4. MSEs of ℜ̂𝑞1,𝑞2,𝑝1,𝑝2
 for different (𝜃1, 𝜃2 , 𝜃3) values at (𝑞1 , 𝑞2 , 𝑝1 , 𝑝2) = (2, 2, 3, 3). 

• Figure 5 indicates that, as the numbers of n, m and w increase, the ABs of ℜ̂𝑞1,𝑞2,𝑝1,𝑝2
decrease for all 

actual values of (𝜃1, 𝜃2, 𝜃3). 

• Figure 6 demonstrates that the MSEs of MSS reliability estimates at (𝑞1, 𝑞2, 𝑝1, 𝑝2) = (3, 3, 3, 3) are 

larger than the MSEs of ℜ̂𝑞1,𝑞2,𝑝1,𝑝2
 for other values of (𝑞1, 𝑞2, 𝑝1, 𝑝2) at (𝜃1, 𝜃2 , 𝜃3) = (2, 1, 3). 

 
Figure 5. ABs of ℜ̂𝑞1,𝑞2,𝑝1,𝑝2

 for different (𝜃1 , 𝜃2 , 𝜃3) values at (q1, q2, p1, p2) = (3, 3, 3, 3) and n = m = w. 
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Figure 6. MSEs of ℜ̂𝑞1,𝑞2,𝑝1,𝑝2

for different values of n, m, w at (𝜃1 , 𝜃2 , 𝜃3) = (2, 1, 3). 

• Figure 7 illustrates that the ABs of MSS reliability estimates at (𝑞1, 𝑞2, 𝑝1, 𝑝2) = (1, 2, 3, 3) are smaller 

than the ABs of ℜ̂𝑞1,𝑞2,𝑝1,𝑝2
 for others values of (𝑞1, 𝑞2, 𝑝1, 𝑝2) for all true parameter values. 

• Figure 8 illustrates that the MSEs of ℜ̂𝑞1,𝑞2,𝑝1,𝑝2
 decrease when the true value of ℜ𝑞1,𝑞2,𝑝1,𝑝2

 increases 

for all values of (𝑞1, 𝑞2, 𝑝1, 𝑝2). 

 
Figure 7. ABs of ℜ̂𝑞1,𝑞2,𝑝1,𝑝2

 for different (𝜃1, 𝜃2 , 𝜃3) and (𝑞1 , 𝑞2 , 𝑝1 , 𝑝2) values at n = m = w = 3. 

 
Figure 8. MSEs of ℜ̂𝑞1,𝑞2,𝑝1,𝑝2

for (𝜃1, 𝜃2 , 𝜃3) = (2, 0.2, 3) at n = m = w = 5. 

Table 1. Numerical results of ℜ̂𝑞1,𝑞2,𝑝1,𝑝2
 for different values of (𝜃1, 𝜃2 , 𝜃3). 

(𝜽𝟏, 𝜽𝟐, 𝜽𝟑) = (𝟐, 𝟏, 𝟑) (𝜽𝟏, 𝜽𝟐, 𝜽𝟑) = (𝟏, 𝟎. 𝟑, 𝟐) 

(𝒒𝟏, 𝒒𝟐, 𝒑𝟏,𝒑𝟐) Real 𝕽𝒒𝟏,𝒒𝟐,𝒑𝟏,𝒑𝟐
 (𝒏, 𝒎, 𝒘) AB MSE (𝒒𝟏, 𝒒𝟐, 𝒑𝟏,𝒑𝟐) Real 𝕽𝒒𝟏,𝒒𝟐,𝒑𝟏,𝒑𝟐

 (𝒏, 𝒎, 𝒘) AB MSE 

(1, 2, 3, 3) 0.725 (3, 3, 3) 0.0193 0.0003 (1, 2, 3, 3) 0.852 (3, 3, 3) 0.0711 0.0048 

(3, 3, 5) 0.2079 0.0432 (3, 3, 5) 0.2139 0.0888 

(3, 5, 3) 0.0585 0.0034 (3, 5, 3) 0.0177 0.0008 

(5, 5, 5) 0.0120 0.0001 (5, 5, 5) 0.0611 0.0031 

(5, 5, 6) 0.1406 0.0197 (5, 5, 6) 0.1150 0.0137 

(6, 5, 5) 0.0249 0.0006 (6, 5, 5) 0.0981 0.0090 

(7, 7, 7) 0.0054 0.0001 (7, 7, 7) 0.0312 0.0013 

(7, 8, 7) 0.0099 0.0001   (7, 8, 7) 0.1518 0.0237 
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Table 1. (Continued). 

(𝜽𝟏, 𝜽𝟐, 𝜽𝟑) = (𝟐, 𝟏, 𝟑) (𝜽𝟏, 𝜽𝟐, 𝜽𝟑) = (𝟏, 𝟎. 𝟑, 𝟐) 

(𝒒𝟏, 𝒒𝟐, 𝒑𝟏,𝒑𝟐) Real 𝕽𝒒𝟏,𝒒𝟐,𝒑𝟏,𝒑𝟐
 (𝒏, 𝒎, 𝒘) AB MSE (𝒒𝟏, 𝒒𝟐, 𝒑𝟏,𝒑𝟐) Real 𝕽𝒒𝟏,𝒒𝟐,𝒑𝟏,𝒑𝟐

 (𝒏, 𝒎, 𝒘) AB MSE 

(2, 1, 3, 3) 0.611 (3, 3, 3) 0.0605 0.0036 (2, 1, 3, 3) 0.7 (3, 3, 3) 0.0742 0.0066 

(3, 3, 5) 0.0720 0.0066 (3, 3, 5) 0.3001 0.0911 

(3, 5, 3) 0.0941 0.0088 (3, 5, 3) 0.0833 0.0064 

(5, 5, 5) 0.0323 0.0010 (5, 5, 5) 0.0648 0.0044 

(5, 5, 6) 0.0477 0.0032 (5, 5, 6) 0.1166 0.0143 

(6, 5, 5) 0.0289 0.0008 (6, 5, 5) 0.1990 0.0391 

(7, 7, 7) 0.0185 0.0003 (7, 7, 7) 0.0319 0.0010 

(7, 8, 7) 0.0284 0.0008 (7, 8, 7) 0.2632 0.0680 

(2, 2, 3, 3) 0.563 (3, 3, 3) 0.0988 0.0097 (2, 2, 3, 3) 0.66 (3, 3, 3) 0.0774 0.0061 

(3, 3, 5) 0.2378 0.0565 (3, 3, 5) 0.3221 0.0917 

(3, 5, 3) 0.0926 0.0085 (3, 5, 3) 0.2910 0.0870 

(5, 5, 5) 0.0729 0.0053 (5, 5, 5) 0.0658 0.0044 

(5, 5, 6) 0.1456 0.0212 (5, 5, 6) 0.1875 0.0326 

(6, 5, 5) 0.0401 0.0016 (6, 5, 5) 0.3571 0.1281 

(7, 7, 7) 0.0307 0.0009 (7, 7, 7) 0.0451 0.0013 

(7, 8, 7) 0.0387 0.0014 (7, 8, 7) 0.2760 0.0759 

(3, 3, 3, 3) 0.25 (3, 3, 3) 0.1644 0.0270 (3, 3, 3, 3) 0.339 (3, 3, 3) 0.1910 0.0369 

(3, 3, 5) 0.1746 0.0304 (3, 3, 5) 0.3471 0.1212 

(3, 5, 3) 0.1326 0.0175 (3, 5, 3) 0.3110 0.0873 

(5, 5, 5) 0.1033 0.0106 (5, 5, 5) 0.1832 0.0332 

(5, 5, 6) 0.2007 0.0321 (5, 5, 6) 0.1888 0.0393 

(6, 5, 5) 0.0481 0.0023 (6, 5, 5) 0.3669 0.1418 

(7, 7, 7) 0.0695 0.0048 (7, 7, 7) 0.1391 0.0210 

(7, 8, 7) 0.0663 0.0043 (7, 8, 7) 0.2798 0.0801 

(𝜽𝟏, 𝜽𝟐, 𝜽𝟑) = (𝟐, 𝟎. 𝟐, 𝟑) (𝜽𝟏, 𝜽𝟐, 𝜽𝟑) = (𝟐, 𝟎. 𝟐, 𝟐) 

(𝒒𝟏, 𝒒𝟐, 𝒑𝟏,𝒑𝟐) Real 𝕽𝒒𝟏,𝒒𝟐,𝒑𝟏,𝒑𝟐
 (𝒏, 𝒎, 𝒘) AB MSE (𝒒𝟏, 𝒒𝟐, 𝒑𝟏,𝒑𝟐) Real 𝕽𝒒𝟏,𝒒𝟐,𝒑𝟏,𝒑𝟐

 (𝒏, 𝒎, 𝒘) AB MSE 

(1, 2, 3, 3) 0.838 (3, 3, 3) 0.0770 0.0059 (1, 2, 3, 3) 0.737 (3, 3, 3) 0.0444 0.0019 

(3, 3, 5) 0.2815 0.0792 (3, 3, 5) 0.3023 0.0131 

(3, 5, 3) 0.0968 0.0093 (3, 5, 3) 0.0188 0.0079 

(5, 5, 5) 0.0359 0.0012 (5, 5, 5) 0.0312 0.0011 

(5, 5, 6) 0.2560 0.0655 (5, 5, 6) 0.0510 0.0029 

(6, 5, 5) 0.2732 0.0746 (6, 5, 5) 0.2870 0.0813 

(7, 7, 7) 0.0176 0.0009 (7, 7, 7) 0.0199 0.0007 

(7, 8, 7) 0.2673 0.0714 (7, 8, 7) 0.2303 0.0651 

(2, 1, 3, 3) 0.618 (3, 3, 3) 0.0828 0.0068 (2, 1, 3, 3) 0.499 (3, 3, 3) 0.0505 0.0025 

(3, 3, 5) 0.4055 0.1644 (3, 3, 5) 0.3030 0.0923 

(3, 5, 3) 0.0975 0.0098 (3, 5, 3) 0.0591 0.0071 

(5, 5, 5) 0.0712 0.0041 (5, 5, 5) 0.0432 0.0017 

(5, 5, 6) 0.2115 0.0701 (5, 5, 6) 0.0549 0.0041 

(6, 5, 5) 0.2750 0.0776 (6, 5, 5) 0.3001 0.0901 
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Table 1. (Continued). 

(𝜽𝟏, 𝜽𝟐, 𝜽𝟑) = (𝟐, 𝟎. 𝟐, 𝟑) (𝜽𝟏, 𝜽𝟐, 𝜽𝟑) = (𝟐, 𝟎. 𝟐, 𝟐) 

(𝒒𝟏, 𝒒𝟐, 𝒑𝟏,𝒑𝟐) Real 𝕽𝒒𝟏,𝒒𝟐,𝒑𝟏,𝒑𝟐
 (𝒏, 𝒎, 𝒘) AB MSE (𝒒𝟏, 𝒒𝟐, 𝒑𝟏,𝒑𝟐) Real 𝕽𝒒𝟏,𝒒𝟐,𝒑𝟏,𝒑𝟐

 (𝒏, 𝒎, 𝒘) AB MSE 
  

(7, 7, 7) 0.0165 0.0012 
  

(7, 7, 7) 0.0398 0.0010 

(7, 8, 7) 0.2801 0.0732 (7, 8, 7) 0.2413 0.0677 

(2, 2, 3, 3) 0.615 (3, 3, 3) 0.1088 0.0118 (2, 2, 3, 3) 0.495 (3, 3, 3) 0.3014 0.0908 

(3, 3, 5) 0.4611 0.1823 (3, 3, 5) 0.3050 0.0951 

(3, 5, 3) 0.1113 0.0112 (3, 5, 3) 0.0611 0.0092 

(5, 5, 5) 0.1053 0.0091 (5, 5, 5) 0.2617 0.0712 

(5, 5, 6) 0.2981 0.0921 (5, 5, 6) 0.0560 0.0097 

(6, 5, 5) 0.3011 0.0812 (6, 5, 5) 0.3010 0.0923 

(7, 7, 7) 0.0859 0.0032 (7, 7, 7) 0.2501 0.0619 

(7, 8, 7) 0.2855 0.0749 (7, 8, 7) 0.2610 0.0710 

(3, 3, 3, 3) 0.559 (3, 3, 3) 0.2307 0.0532 (3, 3, 3, 3) 0.233 (3, 3, 3) 0.3101 0.0968 

(3, 3, 5) 0.4801 0.1897 (3, 3, 5) 0.3270 0.1201 

(3, 5, 3) 0.1210 0.0134 (3, 5, 3) 0.200 0.0231 

(5, 5, 5) 0.2169 0.0306 (5, 5, 5) 0.2415 0.0065 

(5, 5, 6) 0.4101 0.1023 (5, 5, 6) 0.0760 0.0975 

(6, 5, 5) 0.4151 0.1249 (6, 5, 5) 0.3111 0.0618 

(7, 7, 7) 0.1279 0.0172 (7, 7, 7) 0.2211 0.0652 

(7, 8, 7) 0.3101 0.0802 (7, 8, 7) 0.4012 0.0135 

3. Bayesian estimate of 𝕽𝒒𝟏,𝒒𝟐,𝒑𝟏,𝒑𝟐
 

In this part, we look in this section at the BE of ℜ𝑞1,𝑞2,𝑝1,𝑝2
 under the assumption that 𝜃1, 𝜃2 , and 𝜃3 are 

random variables. It can be constructed that the suggested prior distributions for 𝜃1,  𝜃2,  and 𝜃3 follow 

gamma distributions, defined with the following PDF: 

π𝑖(𝜃𝑖) ∝ 𝜃𝑖
𝑎𝑖−1𝑒−𝑏𝑖𝜃𝑖 , 𝑖 = 1, 2, 3, 

where 𝑎𝑖 , 𝑏𝑖 are hyperparameters. For the independence of the parameters, the joint prior distribution of 𝜂 =

(𝜃1, 𝜃2 , 𝜃3) is given as 

π(𝜂) ∝ 𝜃1
𝑎1−1𝜃2

𝑎2−1𝜃3
𝑎3−1𝑒−(𝑏1𝜃1+𝑏2𝜃2+𝑏3𝜃3). 

Based on the URRSS samples, the joint PDF of 𝜂 = (𝜃1 , 𝜃2, 𝜃3) is 

π∗(𝜂|𝑟𝑖,𝑖 , 𝑡𝑗,𝑗, 𝑠𝑢,𝑢)

∝ 𝜃1
𝑛+𝑎1−1𝜃2

𝑚+𝑎2−1𝜃3
𝑤+𝑎3−1𝜆𝑛+𝑚+𝑤𝑒−(𝑏1𝜃1+𝑏2𝜃2+𝑏3𝜃3) ∏

[−𝜃1𝜏𝑖,𝑖]
𝑖−1

(𝑖 − 1)!
𝑒𝜃1𝜏𝑖,𝑖+(𝑟𝑖,𝑖)𝜆

(𝑟𝑖,𝑖)𝜆−1

𝑛

𝑖=1

 

× ∏
[−𝜃2𝜑𝑗,𝑗]

𝑗−1

(𝑖 − 1)!

𝑚

𝑗=1

𝑒𝜃2𝜑𝑗,𝑗+(𝑡𝑗,𝑗)𝜆
(𝑡𝑗,𝑗)𝜆−1 ∏

[−𝜃3𝛿𝑢,𝑢]
𝑢−1

(𝑢 − 1)!
𝑒𝜃3𝛿𝑢,𝑢+(𝑠𝑢,𝑢)𝜆

(𝑠𝑢,𝑢)𝜆−1

𝑤

𝑢=1

. 

As a result, we may formulate the posterior PDF of 𝜂 = (𝜃1, 𝜃2, 𝜃3) as: 

π∗ (𝜂|𝑟𝑖,𝑖 , 𝑡𝑗,𝑗 , 𝑠𝑢,𝑢) =
𝐿 (𝑟𝑖,𝑖 , 𝑡𝑗,𝑗, 𝑠𝑢,𝑢|𝜂) π(𝜂)

∫ ∫ ∫ 𝐿 (𝑟𝑖,𝑖 , 𝑡𝑗,𝑗 , 𝑠𝑢,𝑢|𝜂) π(𝜂)𝑑𝜃1𝑑𝜃2𝑑𝜃3
∞

0

∞

0

∞

0

. 

The BE of ℜ𝑞1,𝑞2,𝑝1,𝑝2
, denoted by ℜ̑𝑞1,𝑞2,𝑝1,𝑝2

, is its posterior mean, which results from the SE loss 

function assumption. It is defined as 
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ℜ̑𝑞1,𝑞2,𝑝1,𝑝2
= 𝐸(ℜ𝑞1,𝑞2,𝑝1,𝑝2

) = ∫ ∫ ∫ ℜ𝑞1,𝑞2,𝑝1,𝑝2
π∗ (𝜂|𝑟𝑖,𝑖 , 𝑡𝑗,𝑗 , 𝑠𝑢,𝑢) 𝑑𝜃1𝑑𝜃2𝑑𝜃3

∞

0

∞

0

∞

0

. (12) 

Additionally, the BE of ℜ𝑞1,𝑞2,𝑝1,𝑝2
 for the LINEX loss function indicated by ℜ̆𝑞1,𝑞2,𝑝1,𝑝2

, is as follows: 

( ), , , , , ,1 2 1 2 1 2 1 2

1 2 1 2

*
, , , , , 1, 3

0

2

00

|
1 1

log ( ) lo ., ,gq q p p q q p p

i i j j u u

v v

q q p p r t s dE e e
v

d
v

d    


−  −  − −
 = =  

  
   (13) 

Due to the posterior PDF π∗ (𝜂|𝑟𝑖,𝑖 , 𝑡𝑗,𝑗, 𝑠𝑢,𝑢) possesses a composite structure, it is challenging to derive 

an explicit formula for Equations (12) and (13). Hence, we compute these integrations using the Metropolis-

Hastings (M-H) method and the MCMC methodology to derive the BEs. 

4. Methodology 

The MCMC simulation is implemented to investigate the efficiency of ℜ𝑞1,𝑞2,𝑝1,𝑝2
’s MSS. The BEs 

under different loss functions are produced using gamma priors. Using the ABs and MSEs, the ℜ𝑞1,𝑞2,𝑝1,𝑝2
’s 

BE results were evaluated. The various URRSS options are (n, m, w) = (3, 3, 3), (3, 3, 5), (3, 5, 3), (5, 5, 5), 

(5, 5, 6), (6, 5, 5), (7, 7, 7) and (7, 8, 7). The different choices of (q1, q2, p1, p2) = (2, 2, 3, 3), (1, 2, 3, 3), (2, 1, 

3, 3) and (3, 3, 3, 3). 

The values of hyper-parameter are prior I: (1, 1, 1, 2, 2, 2) and prior II: (3, 3, 3, 1, 1, 1). Considering (v 

= −2, 2), and the obtained results are based on 5000 replications. 

The key challenge with the MCMC is getting the BEs of ℜ𝑞1,𝑞2,𝑝1,𝑝2
 specified loss functions using the 

M-H technique after simulating samples based on the posterior PDF. It is known to converge to the intended 

distribution using acceptance/rejection criteria. According to Arshad et al.[38], the M-H algorithm functions as 

follows: 

a) Put an initial parameter value of ℜ0
𝑞1,𝑞2,𝑝1,𝑝2

 and the sample number N. Then choose an arbitrary 

probability density 𝑔(. |𝜃), where 𝜃 is the vector of fixed parameters. 

b) For i = 2 to N, set ℜ𝑞1,𝑞2,𝑝1,𝑝2
= ℜ𝑖−1

𝑞1,𝑞2,𝑝1,𝑝2
. 

c) Obtain u via the uniform (0, 1) distribution. 

d) Determine a candidate parameter ℜ∗
𝑞1,𝑞2,𝑝1,𝑝2

 from the proposal PDF. 

e) If 
* *

*

( ) ( | )

( ) ( | )

g
u

g

   

   
 , then set ℜ𝑖

𝑞1,𝑞2,𝑝1,𝑝2
= ℜ∗

𝑞1,𝑞2,𝑝1,𝑝2
; otherwise, set ℜ𝑖

𝑞1,𝑞2,𝑝1,𝑝2
= ℜ𝑞1,𝑞2,𝑝1,𝑝2

. 

f) Go to step (b) and repeat the previous steps N times with i = i + 1. 

The following findings are drawn from the study’s outputs, which are shown by Figures 9–14 and are 

provided in Tables 2 and 3: 

• The MSEs and ABs of BEs via the SE and LINEX decrease when the record numbers n, m, w increase 

for all true values of (q1, q2, p1, p2) (Tables 2 and 3). 

• The ABs of ℜ̆𝑞1,𝑞2,𝑝1,𝑝2
 and ℜ̑𝑞1,𝑞2,𝑝1,𝑝2

 via the SE and LINEX loss functions have the smallest values at 

(q1, q2, p1, p2) = (1, 2, 3, 3) (Tables 2 and 3). 

• At true value ℜ𝑞1,𝑞2,𝑝1,𝑝2
= 0.611, the MSEs of BEs decrease as the number of records increases (see 

Figure 9). 

• At true value ℜ𝑞1,𝑞2,𝑝1,𝑝2
= 0.611, the ABs of ℜ̆𝑞1,𝑞2,𝑝1,𝑝2

 and ℜ̑𝑞1,𝑞2,𝑝1,𝑝2
 decrease when the number of 

records increases via prior I (see Figure 10). 
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Figure 9. MSEs of BEs at (q1, q2, p1, p2) = (1, 2, 3, 3) for prior I. 

 

Figure 10. ABs of BEs at (q1, q2, p1, p2) = (2, 1, 3, 3) for prior I. 

• At true value ℜ𝑞1,𝑞2,𝑝1,𝑝2
= 0.5639, the MSEs of 

1 2 1 2, , ,q q p p  under the LINEX (−2), take the smallest 

value via prior I (see Figure 11). 

• At true value ℜ𝑞1,𝑞2,𝑝1,𝑝2
= 0.5639 , the ABs of ℜ̆𝑞1,𝑞2,𝑝1,𝑝2

 under the LINEX (−2), are the least for 

varied record numbers, except at (n, m, w) = (3, 3, 5) via prior I (see Figure 12). 

 
Figure 11. MSEs of BEs at (q1, q2, p1, p2) = (2, 2, 3, 3) for prior II. 

 

Figure 12. ABs of BEs at (q1, q2, p1, p2) = (2, 1, 3, 3) for prior II. 

• The MSEs of ℜ̆𝑞1,𝑞2,𝑝1,𝑝2
 inside the LINEX loss function, as opposed to the similar MSEs of ℜ̑𝑞1,𝑞2,𝑝1,𝑝2

 

via the SE loss function, possess the smallest values in nearly all situations (see Figure 13). 

• At true value ℜ𝑞1,𝑞2,𝑝1,𝑝2
= 0.25, the ABs of ℜ̆𝑞1,𝑞2,𝑝1,𝑝2

 within v = −2 are the least for the records n = m 

= w via prior II (see Figure 14). 
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Figure 13. MSEs of BEs at (q1, q2, p1, p2) = (2, 2, 3, 3) for prior I. 

 
Figure 14. ABs of BEs at (q1, q2, p1, p2) = (3, 3, 3, 3) for prior II. 

Table 2. Numerical results of BEs for prior I. 

(𝒒𝟏, 𝒒𝟐, 𝒑𝟏,𝒑𝟐) = (𝟏, 𝟐, 𝟑, 𝟑) (𝒒𝟏, 𝒒𝟐, 𝒑𝟏,𝒑𝟐) = (𝟐, 𝟏, 𝟑, 𝟑) 

Loss function Real 𝕽𝒒𝟏,𝒒𝟐,𝒑𝟏,𝒑𝟐
 (𝒏, 𝒎, 𝒘) AB MSE Real 𝕽𝒒𝟏,𝒒𝟐,𝒑𝟏,𝒑𝟐

 (𝒏, 𝒎, 𝒘) AB MSE 

SE 0.725 (3, 3, 3) 0.0324 0.0024 0.611 (3, 3, 3) 0.0157 0.0022 

LINEX (2) 0.0214 0.0014 0.0147 0.0011 

LINEX (−2) 0.0189 0.001 0.0134 0.0008 

SE (3, 3, 5) 0.0359 0.003 (3, 3, 5) 0.0143 0.0025 

LINEX (2) 0.0245 0.0027 0.0121 0.0031 

LINEX (−2) 0.0224 0.0026 0.0111 0.0023 

SE (3, 5, 3) 0.0131 0.0034 (3, 5, 3) 0.0121 0.003 

LINEX (2) 0.0121 0.0028 0.0164 0.0026 

LINEX (−2) 0.0341 0.0021 0.0147 0.0019 

SE (5, 5, 5) 0.0301 0.0021 (5, 5, 5) 0.0142 0.0019 

LINEX (2) 0.0201 0.0011 0.0137 0.0007 

LINEX (−2) 0.0177 0.0008 0.0129 0.0008 

SE (5, 5, 6) 0.0301 0.0041 (5, 5, 6) 0.014 0.0045 

LINEX (2) 0.0288 0.0043 0.0112 0.0034 

LINEX (−2) 0.0211 0.0033 0.0103 0.0032 

SE (6, 5, 5) 0.0471 0.0047 (6, 5, 5) 0.0131 0.004 

LINEX (2) 0.0376 0.0041 0.0129 0.0038 

LINEX (−2) 0.0478 0.0043 0.0111 0.004 

SE (7, 7, 7) 0.0271 0.0018 (7, 7, 7) 0.0135 0.0013 

LINEX (2) 0.0187 0.0011 0.0132 0.0007 

LINEX (−2) 0.0165 0.0007 0.0115 0.0005 

SE (7, 8, 7) 0.0132 0.0023 (7, 8, 7) 0.0321 0.0078 

LINEX (2) 0.0214 0.0011 0.0137 0.0028 

LINEX (−2) 0.0139 0.0025 0.0197 0.0041 
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Table 2. (Continued). 

(𝒒𝟏, 𝒒𝟐, 𝒑𝟏,𝒑𝟐) = (𝟐, 𝟐, 𝟑, 𝟑) (𝒒𝟏, 𝒒𝟐, 𝒑𝟏,𝒑𝟐) = (𝟑, 𝟑, 𝟑, 𝟑) 

Loss function Real 𝕽𝒒𝟏,𝒒𝟐,𝒑𝟏,𝒑𝟐
 (𝒏, 𝒎, 𝒘) AB MSE Real 𝕽𝒒𝟏,𝒒𝟐,𝒑𝟏,𝒑𝟐

 (𝒏, 𝒎, 𝒘) AB MSE 

SE 0.5636 (3, 3, 3) 0.0514 0.0067 0.25 (3, 3, 3) 0.0654 0.0071 

LINEX (2) 0.0501 0.0059 0.0512 0.0068 

LINEX (−2) 0.0439 0.006 0.0539 0.0064 

SE (3, 3, 5) 0.0475 0.006 (3, 3, 5) 0.0499 0.0065 

LINEX (2) 0.0361 0.0034 0.0487 0.0048 

LINEX (−2) 0.035 0.0035 0.0412 0.0061 

SE (3, 5, 3) 0.0314 0.0038 (3, 5, 3) 0.0367 0.0044 

LINEX (2) 0.0411 0.0047 0.0497 0.0058 

LINEX (−2) 0.0377 0.0062 0.0391 0.0055 

SE (5, 5, 5) 0.0531 0.0062 (5, 5, 5) 0.0614 0.006 

LINEX (2) 0.0477 0.0043 0.0507 0.0063 

LINEX (−2) 0.0433 0.0038 0.0529 0.0057 

SE (5, 5, 6) 0.0399 0.0054 (5, 5, 6) 0.0415 0.0061 

LINEX (2) 0.0378 0.0042 0.0412 0.0052 

LINEX (−2) 0.0279 0.0049 0.03 0.0069 

SE (6, 5, 5) 0.0192 0.0028 (6, 5, 5) 0.0267 0.0037 

LINEX (2) 0.0149 0.0054 0.0139 0.0064 

LINEX (−2) 0.0113 0.0008 0.0412 0.0037 

SE (7, 7, 7) 0.0478 0.003 (7, 7, 7) 0.0601 0.0051 

LINEX (2) 0.0314 0.004 0.0502 0.0049 

LINEX (−2) 0.0217 0.0032 0.0431 0.0049 

SE (7, 8, 7) 0.0285 0.0046 (7, 8, 7) 0.0357 0.0058 

LINEX (2) 0.0312 0.0032 0.0345 0.006 

LINEX (−2) 0.0147 0.0068 0.0214 0.0037 

Table 3. Numerical results of BEs for prior II. 

(𝒒𝟏, 𝒒𝟐, 𝒑𝟏,𝒑𝟐) = (𝟏, 𝟐, 𝟑, 𝟑) (𝒒𝟏, 𝒒𝟐, 𝒑𝟏,𝒑𝟐) = (𝟐, 𝟏, 𝟑, 𝟑) 

Loss function Real 𝕽𝒒𝟏,𝒒𝟐,𝒑𝟏,𝒑𝟐
 (𝒏, 𝒎, 𝒘) AB MSE Real 𝕽𝒒𝟏,𝒒𝟐,𝒑𝟏,𝒑𝟐

 (𝒏, 𝒎, 𝒘) AB MSE 

SE 0.725 (3, 3, 3) 0.0137 0.0039 0.610 (3, 3, 3) 0.0144 0.005 

LINEX (2) 0.0277 0.005 0.028 0.005 

LINEX (−2) 0.0101 0.0024 0.0112 0.003 

SE (3, 3, 5) 0.0198 0.0041 (3, 3, 5) 0.02 0.004 

LINEX (2) 0.0231 0.0058 0.024 0.006 

LINEX (−2) 0.0181 0.004 0.019 0.005 

SE (3, 5, 3) 0.0327 0.0067 (3, 5, 3) 0.033 0.007 

LINEX (2) 0.0258 0.0054 0.026 0.007 

LINEX (−2) 0.0209 0.0043 0.021 0.005 

SE (5, 5, 5) 0.013 0.0034 (5, 5, 5) 0.0142 0.005 

LINEX (2) 0.0241 0.0048 0.0245 0.006 

LINEX (−2) 0.0097 0.0009 0.0107 0.002 
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Table 3. (Continued). 

(𝒒𝟏, 𝒒𝟐, 𝒑𝟏,𝒑𝟐) = (𝟏, 𝟐, 𝟑, 𝟑) (𝒒𝟏, 𝒒𝟐, 𝒑𝟏,𝒑𝟐) = (𝟐, 𝟏, 𝟑, 𝟑) 

Loss function Real 𝕽𝒒𝟏,𝒒𝟐,𝒑𝟏,𝒑𝟐
 (𝒏, 𝒎, 𝒘) AB MSE Real 𝕽𝒒𝟏,𝒒𝟐,𝒑𝟏,𝒑𝟐

 (𝒏, 𝒎, 𝒘) AB MSE 

SE 
 

(5, 5, 6) 0.0408 0.0082 
 

(5, 5, 6) 0.0411 0.009 

LINEX (2) 0.0378 0.0067 0.039 0.007 

LINEX (−2) 0.0214 0.005 0.0218 0.005 

SE (6, 5, 5) 0.0417 0.0086 (6, 5, 5) 0.042 0.009 

LINEX (2) 0.04 0.0081 0.0406 0.009 

LINEX (−2) 0.0312 0.0047 0.0319 0.005 

SE (7, 7, 7) 0.0127 0.0027 (7, 7, 7) 0.0135 0.003 

LINEX (2) 0.0211 0.0041 0.0226 0.004 

LINEX (−2) 0.0069 0.0007 0.0098 0.001 

SE (7, 8, 7) 0.0601 0.0074 (7, 8, 7) 0.0613 0.008 

LINEX (2) 0.0517 0.0068 0.0523 0.008 

LINEX (−2) 0.0411 0.0031 0.042 0.005 

(𝒒𝟏, 𝒒𝟐, 𝒑𝟏,𝒑𝟐) = (𝟐, 𝟐, 𝟑, 𝟑) (𝒒𝟏, 𝒒𝟐, 𝒑𝟏,𝒑𝟐) = (𝟑, 𝟑, 𝟑, 𝟑) 

Loss function Real 𝕽𝒒𝟏,𝒒𝟐,𝒑𝟏,𝒑𝟐
 (𝒏, 𝒎, 𝒘) AB MSE Real 𝕽𝒒𝟏,𝒒𝟐,𝒑𝟏,𝒑𝟐

 (𝒏, 𝒎, 𝒘) AB MSE 

SE 0.5636 (3, 3, 3) 0.0149 0.0053 0.250 (3, 3, 3) 0.0152 0.006 

LINEX (2) 0.0291 0.0059 0.03 0.006 

LINEX (−2) 0.013 0.0037 0.0141 0.005 

SE (3, 3, 5) 0.0213 0.0048 (3, 3, 5) 0.0246 0.005 

LINEX (2) 0.0248 0.0071 0.0252 0.007 

LINEX (−2) 0.0198 0.0054 0.0207 0.006 

SE (3, 5, 3) 0.0358 0.008 (3, 5, 3) 0.037 0.008 

LINEX (2) 0.027 0.0075 0.0285 0.008 

LINEX (−2) 0.0218 0.0062 0.0224 0.007 

SE (5, 5, 5) 0.0146 0.005 (5, 5, 5) 0.0149 0.005 

LINEX (2) 0.0266 0.0059 0.0274 0.006 

LINEX (−2) 0.0117 0.0023 0.0119 0.003 

SE (5, 5, 6) 0.0421 0.0092 (5, 5, 6) 0.0432 0.01 

LINEX (2) 0.0397 0.0076 0.0411 0.008 

LINEX (−2) 0.0224 0.0067 0.023 0.007 

SE (6, 5, 5) 0.0432 0.0094 (6, 5, 5) 0.0444 0.01 

LINEX (2) 0.0412 0.0092 0.0439 0.01 

LINEX (−2) 0.0321 0.002 0.0338 0.003 

SE (7, 7, 7) 0.0142 0.0037 (7, 7, 7) 0.0144 0.004 

LINEX (2) 0.0237 0.0048 0.025 0.005 

LINEX (−2) 0.0113 0.0016 0.0111 0.002 

SE (7, 8, 7) 0.0614 0.0085 (7, 8, 7) 0.0632 0.009 

LINEX (2) 0.0536 0.0094 0.0539 0.01 

LINEX (−2) 0.0431 0.005 0.0439 0.006 
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5. Actual data implementation 

We use a data set on the timing of successive air conditioning system failures in a fleet of Boeing 720 

jet aircraft in order to illustrate the approaches suggested in the preceding sections. The information given 

above is compiled in Table 4 and can be found in Chen[40]. 

Table 4. Intervals between failures. 

7907 7908 7909 8044 7911 8045 7915 7917 7916 

194 
15 
41 
29 
33 

181 

413 
14 
58 
37 
100 

65 
9 
169 
447 
184 
36 
201 
118 

90 
10 
60 
186 
61 

49 
14 
24 
56 
20 
79 
84 
44 

59 
29 
118 
25 
156 
310 
76 
26 

44 
23 
62 

487 
18 
100 
7 
98 

5 
85 
91 
43 
230 
3 
130 

55 
320 
56 
104 
220 

239 
47 
246 
176 
182 
33 

102 
209 
14 
57 
54 

32 
67 
59 
134 
152 
27 
14 
230 

66 
61 
34 

438 
9 
12 
270 
63 

3 
104 
2 
359 

130 
493 

50 
254 
5 
283 
35 
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Based on the information in Table 4 and a separate BShD fit using the Kolmogorov-Smirnov goodness-

of-fit test, the URRSS for these groups is calculated as follows (Table 5). 

Table 5. The selected records from Intervals between failures. 

Data group I Data group II Data group III 

194 
413     447 
90       186        310 

487 
55         320 
102       209        230 

438 
130      493 
50        254        283 

According to the above, the URRSS of groups I, II III are, respectively, as follows 

(𝑟1,1, 𝑟2,2, 𝑟3,3) = (194, 447, 310),
 
(𝑡1,1, 𝑡2,2, 𝑡3,3) = (487, 320, 230), and (𝑠1,1, 𝑠2,2, 𝑠3,3) =

(438, 493, 283), 

then we calculate the estimates of ℜ𝑞1,𝑞2,𝑝1,𝑝2
 using the ML and Bayesian approaches within SE and LINEX 

loss functions for (𝑞1, 𝑞2, 𝑝1, 𝑝2) = (1, 2, 3, 3). Using the above URRSS, the MLEs and BEs of ℜ𝑞1,𝑞2,𝑝1,𝑝2
, 

are calculated in Table 6. 

Table 6. ℜ𝑞1,𝑞2,𝑝1,𝑝2
 estimates based on real data. 

MLE BE:SE BE:LINEX (2) BE:LINEX (−2) 

0.4892 0.5603 0.5711 0.5534 
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6. Concluding remarks 

In the current work, the reliability of an MSS system with non-identical component strengths based on 

upper record ranked set samples is investigated. Both the stress and strength variables are assumed to follow 

the BShD. This choice was motivated by its ability to model versatile lifetime variables, primarily due to the 

asymmetric forms of the PDF and bathtub-shaped HF. The reliability of the system was examined using two 

estimation techniques. The measurements of the strength and stress distribution samples were displayed in 

the context of URRSS. MCMC techniques were used to assess the validity of the proposed BEs. According 

to the simulation analysis, based on four choices of (𝑞1, 𝑞2, 𝑝1, 𝑝2), the MSEs and ABs decrease with the 

number of records increases. This supports the MLE’s consistency characteristic of ℜ𝑞1,𝑞2,𝑝1,𝑝2
. Additionally, 

as the true value of ℜ𝑞1,𝑞2,𝑝1,𝑝2
 increases, the MSEs of ℜ̂𝑞1,𝑞2,𝑝1,𝑝2

 decrease. Regarding the MCMC approach, 

we deduce that the MSEs and ABs of ℜ̆𝑞1,𝑞2,𝑝1,𝑝2
 via LINEX-LF typically hold the lowest values. The 

application of real data reveals that the reliability estimates of our model are quite near one, demonstrating 

its applicability. 
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