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ABSTRACT 

Traffic congestion is a major problem in urban areas, leading to increased travel time, air pollution, and fuel 

consumption. Road impedance function, which describes the relationship between traffic status and travel time, plays an 

important role in predicting travel time and managing traffic flow. Traditional methods for estimating road impedance 

function rely on manual calibration and may have limitations in reflecting the complexity of traffic patterns. To address 

these challenges, researchers have proposed various machine learning models for predicting travel time and road 

impedance function. In this paper, a hybrid particle swarm optimization—radial basis function neural network model is 

proposed for improving the accuracy of the road impedance function. The model takes into consideration various 

vehicle types and is validated using travel time data collected from a road section in Huai’an City, China. The 

effectiveness of the proposed model is compared with the traditional road impedance function calibrated by nonlinear 

regression. The experimental results indicate that the Mean Relative Error (MRE) of PSORBFNN is increased by 

3.89% and 6.28% respectively when compared with DPNR training samples and validation samples. When compared 

with DPPSO training and validation samples, the MRE of PSORBFNN is increased by 2.87% and 3.3% respectively. 

These findings suggest that the proposed model could guide and assist traffic engineers and practitioners in predicting 

travel time on road sections with improved accuracy. 
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1. Introduction 

Traffic congestion is a major challenge faced by cities around 

the world, leading to increased travel time, air pollution, and fuel 

consumption. Accurate prediction of road traffic flow is crucial for 

efficient traffic management and for reducing traffic congestion. 

Road impedance function, which describes the relationship between 

traffic status and travel time, is a key factor in predicting traffic flow. 

The performance function of the link calculates the travel time which 

varies depending on the amount of traffic allocated to the link. Thus, 

how to obtain an accurate impedance function that can reflect the 

actual road travel time has always been the focus of traffic engineers 

and scholars[1–3]. Speed or travel time is one of the representative 

indicators of the operating characteristics of roads or road networks. 

In general, as traffic volume increases, the traffic resistance, that is, 

the delay or the travel time increases, and it is the Road Impedance 

Function (RIF) that shows the relationship between the traffic volume 
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and traffic resistance. 

In recent years, machine learning techniques have been widely used to predict traffic flow and road 

impedance function. Currently, the Bureau of Public Roads (BPR) function developed by the US Federal 

Highway Administration (FHWA) is the most widely used to calculate the impedance function[4–6]. It reflects 

the relationship between the travel time and the traffic flow of the road. The classic BPR, however, has 

several drawbacks when applied to Chinese road environments. This is because mixed traffic is not common 

in developed countries such as the US, whereas Chinese roads are comprised of two or more modes resulting 

in inaccuracy of RIF[7]. Moreover, the model does not consider the influence of various vehicle types on the 

impedance function. Various machine learning methods have been proposed for predicting road traffic flow, 

including artificial neural networks (ANNs), support vector machines (SVMs), and decision trees. ANNs 

have been widely used for traffic flow prediction due to their ability to learn from data and capture complex 

patterns. However, traditional ANN models may have limitations in reflecting the various vehicle types and 

the dynamic nature of traffic flow. To address this, researchers have proposed various hybrid models, such as 

the hybrid ANFIS-PSO model and the hybrid RBFNN-PSO model. Zhao et al.[7] considered the RIF in the 

case of road congestion, and quantified the influencing factors such as intersection density, bus stop density, 

non-motor vehicle density and saturation. In addition, they constructed an improved BPR function, and 

calculated the road traffic impedance function utilizing measured data from different roads. Sheffi[8] pointed 

out that the classic BPR function cannot describe congested road conditions properly due to its simple 

concept. Thus, the study of BPR function was carried out using various field data. Skabardonis and 

Dowling[9] also developed the classic BPR function based on congested and uncongested road conditions in 

order to increase the accuracy of the function. It was found that the application of different road types can 

enhance the accuracy of road impedance, while road geometries (grade and length) and traffic signals can 

affect the RIF at intersections[10]. Muhammad et al.[11] studied the RIF focusing on Q-C value to illustrate the 

interaction between traffic volume and travel speed in Indonesia’s road situations, and Zhang et al.[12] 

calibrated the RIF using the concepts of travel cost, travel time and traffic volume. Zhang et al.[13] 

constructed a stochastic model of BPR function to increase travel time accuracy in the transportation network. 

The relationship between the density distribution function of a road section and the coefficient of capacity 

was taken into account in the study to enhance route choice and travel time forecasting. 

Despite the availability of various machine learning models for predicting road traffic flow, there is still 

a need for more accurate and efficient models that can consider the various vehicle types and complex traffic 

patterns. This paper proposes a hybrid PSO-RBFNN model that considers various vehicle types and can 

accurately predict road traffic flow. The proposed hybrid PSO-RBFNN model consists of two stages. In the 

first stage, the PSO algorithm is used to optimize the parameters of the RBFNN model. In the second stage, 

the optimized RBFNN model is used to predict road traffic flow. The proposed model is validated using 

travel time data collected from Yan’an East Road in Huai’an City, China. A further correction is made to 

optimize the impedance function by combining the two algorithms. The proposed model will be compared 

with the traditional model in order to check the accuracy of the impedance function. In this research, Yan’an 

East Road, Huai’an City, China is selected as the study area. The effectiveness of the proposed model is 

compared with the traditional road impedance function calibrated by nonlinear regression. Overall, the 

proposed hybrid PSO-RBFNN model has the potential to improve the accuracy of road traffic flow 

prediction and contribute to the development of more accurate and efficient traffic management strategies. 

2. Theoretical background 

Road traffic is an essential part of modern life, but it can also be a significant source of congestion, 

pollution, and accidents. Improving road traffic requires a comprehensive approach that involves various 

measures and strategies aimed at enhancing safety, efficiency, and sustainability. 
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One of the key strategies for improving road traffic is to invest in infrastructure. This includes building 

and maintaining roads, bridges, tunnels, and other transportation facilities that can accommodate increasing 

traffic volumes and provide safe and efficient travel. Improving infrastructure can also involve implementing 

smart traffic management systems that use sensors and other technologies to monitor traffic flow and 

optimize traffic patterns. Another important aspect of improving road traffic is promoting sustainable 

transportation options, such as public transit, cycling, and walking. These modes of transportation can help 

reduce the number of vehicles on the road, decrease congestion, and improve air quality. In addition, 

encouraging the use of electric or hybrid vehicles can also help to reduce emissions and improve 

environmental sustainability. 

Traditional road traffic impedance function models are mathematical models that are used to describe 

the relationship between traffic flow and travel time on a particular road network. So far, a number of 

traditional road traffic impedance function models have been established and developed. Most of them use a 

model to describe the driving conditions of the road, and calibrate the undetermined parameters in the model 

via the road information collected from the field survey. The US Highway Administration first conducted an 

in-depth analysis of expressway travel time, obtaining a large amount of basic data through experiments, and 

calculated the Bureau of Public Roads (BPR) function using regression analysis[14]. The impedance function 

model was improved by Spiess[15] in order to address the inaccuracies arising due to the high β value in the 

BPR function and the travel time change range being too small under low saturation conditions. On the basis 

of queuing theory, a progressive impedance function is proposed by Davidson[16], that is, the travel time is 

infinite when road traffic volume reaches the road’s capacity. Mori et al.[17] further improved the accuracy of 

the BPR function for when the impedance parameter is too high and the travel time is almost unchanged 

under low saturation conditions. These models are based on the assumption that as the number of vehicles on 

the road increases, travel time increases due to congestion. 

The most common types of traditional road traffic impedance function models are: 

BPR function: The Bureau of Public Roads (BPR) function is a widely used model that was developed 

in the 1960s[18]. It assumes that the travel time on a road network increases exponentially as the traffic 

volume increases. The BPR function is expressed as: 

𝑇 = 𝑇𝑜(1 + 𝑎𝑙𝑝ℎ𝑎 (
𝑉

𝐶
)

𝑏𝑒𝑡𝑎

) (1) 

where T is the travel time, 𝑇𝑜 is the free-flow travel time, V is the traffic volume, C is the capacity of the road, 

and alpha and beta are parameters that depend on the road characteristics. 

Greenshields model: The Greenshields model was developed in the 1930s and is based on the 

observation that traffic flow on a road network can be approximated as a parabolic function. The 

Greenshields model is expressed as: 

𝑉 = 𝑘(𝐶 − 𝑌) (2) 

where V is the traffic volume, k is a constant, C is the capacity of the road, and Y is the traffic density. The 

Greenshields model assumes that the travel time is proportional to the inverse of the speed, which is a 

function of the traffic density. 

Underwood model: The Underwood model is a more recent model that was developed in the 1990s. It is 

based on the observation that traffic flow can be approximated as a logistic function. The Underwood model 

is expressed as: 

𝑉 = 𝐶/(1 + 𝑒𝑥𝑝(𝑎 + 𝑏(𝑇 − 𝑇𝑂))) (3) 

where V is the traffic volume, C is the capacity of the road, T is the travel time, 𝑇𝑂 is the free-flow travel 

time, and a and b are parameters that depend on the road characteristics. 
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3. Proposed model 

3.1. Objective function 

This paper proposes a new impedance function based on the traditional BPR function as: 

𝑡 = 𝑡0(1 + 𝑎1(𝑄𝑡𝑜𝑡 𝐶⁄ )𝛽1)(1 + 𝑎2(𝑄𝑚𝑒𝑑 𝐶⁄ )𝛽2)(1 + 𝑎3(𝑄𝑙𝑎𝑟 𝐶⁄ )𝛽3) (4) 

where 𝑄𝑡𝑜𝑡 represents the total traffic volume on the road section within one-hour; 𝑄𝑙𝑎𝑟 represents the large 

vehicle traffic volume on the road segment within one-hour; 𝑄𝑚𝑒𝑑  represents the medium-sized vehicle 

traffic volume on the road segment within one-hour; 𝐶 represents the traffic capacity on the road segment 

within one-hour; 𝑎1, 𝑎2, 𝑎3, 𝛽1, 𝛽2, 𝛽3 are parameters to be determined. The relationship of 𝑄𝑡𝑜𝑡 with 𝑄𝑚𝑒𝑑 

and 𝑄𝑙𝑎𝑟 is shown, 

𝑄𝑡𝑜𝑡 = 𝑄𝑠𝑚𝑎 + 𝜌 ∙ 𝑄𝑚𝑒𝑑 + 𝜇 ∙ 𝑄𝑙𝑎𝑟 (5) 

where 𝑄𝑠𝑚𝑎  represents the traffic volume of passenger cars on the road section within one-hour; 𝜌 represents 

the coefficient of converting medium-sized cars into passenger cars, which is taken as 1.5 here; 𝜇 represents 

the coefficient of converting large cars into passenger cars, which is taken as 2 here. The obtained traffic 

volume in 5-minute intervals can be converted to one-hour traffic volume as follows: 

𝑄𝐸 = 12 ∙ 𝑞𝑟  (6) 

where 𝑞𝑟  represents the five-minute traffic volume from the survey; 𝑄𝐸  represents the traffic volume 

expanded to one-hour. 

According to the above investigation method, N time periods are obtained. Each sample includes the 

traffic volume of each vehicle type and the travel time under this road condition. The value of each 

parameter is calibrated by solving the minimum value as follows: 

𝑦 =
min ∑ |𝑡𝑗 − 𝑡0 (1 + 𝑎1(𝑄j tot 𝐶⁄ )

𝛽1
) (1 + 𝑎2(𝑄j med 𝐶⁄ )

𝛽2
) (1 + 𝑎3(𝑄j lar 𝐶⁄ )

𝛽3
)|𝑁

𝑗=1

𝑡𝑗 ∙ 𝑁
 

(7) 

0 < 𝑎1, 𝑎2, 𝑎3 ≤ 5 (8) 

0 < 𝛽1, 𝛽2, 𝛽3 ≤ 10 (9) 

where j represents the j-th experimental time period, N is total time periods; 𝑄j tot represents the total traffic 

volume of the j-th time period; 𝑄j med represents the traffic volume of the j-th time period of medium-sized 

vehicles; 𝑄j lar represents the j-th time period of large vehicles; 𝑡𝑗  represents the actual observed travel time 

of the j-th time period; 𝑡0 (1 + 𝑎1(𝑄j tot 𝐶⁄ )
𝛽1) (1 + 𝑎2(𝑄j med 𝐶⁄ )

𝛽2) (1 + 𝑎3(𝑄j lar 𝐶⁄ )
𝛽3) represents the 

predicted travel time of the j-th time period; 

|𝑡𝑗 − 𝑡0 (1 + 𝑎1(𝑄j tot 𝐶⁄ )
𝛽1) (1 + 𝑎2(𝑄j med 𝐶⁄ )

𝛽2) (1 + 𝑎3(𝑄j lar 𝐶⁄ )
𝛽3)| 𝑡𝑗⁄  is the relative error of the j-th 

time period, and y is the objective function to represent the mean relative error (MRE). 

In order to further improve the accuracy of the impedance function, the parameter z is determined by 

𝑡𝑗 = 𝑧𝑗 ∙ 𝑡̂𝑗  (10) 

where 𝑡𝑗  represents the actual travel time of the j-th time period; 𝑡̂𝑗  is the travel time obtained by Equation (4), 

which represents the travel time of the j-th time period based on the DPPSO calibration impedance function; 

𝑧𝑗  is the correction parameter of the j-th time period. Therefore, the j-th time period 𝑧𝑗 ,  the correction 

parameter of the time periods, is equal to the ratio of the actual transit time of the j-th time period to the 

predicted travel time 𝑡𝑗  of the j-th time period. 

3.2. Hybrid PSORBFNN 

The DPPSO calibration impedance function based on RBFNN is called PSORBFNN. Although the 

calibrated impedance function based on DPPSO can greatly improve its accuracy, there is still a large 
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difference between the travel time of the road section calculated by optimizing the impedance function and 

the travel time obtained by the actual investigation. 

The hybrid PSO-RBFNN model is a combination of the Particle Swarm Optimization (PSO) algorithm 

and the Radial Basis Function Neural Network (RBFNN) that is used to predict road traffic flow. The model 

consists of three main components: data preprocessing, PSO-RBFNN training, and traffic flow prediction. 

Data preprocessing: In this stage, the raw traffic data is preprocessed to remove outliers, missing values, 

and other noise. The preprocessed data is then normalized to ensure that all the input features have a similar 

scale. The normalized data is then partitioned into training and testing sets. 

PSO-RBFNN training: In this stage, the PSO algorithm is used to optimize the weights and biases of the 

RBFNN. The PSO algorithm searches for the optimal set of weights and biases that minimize the prediction 

error of the RBFNN. The RBFNN is trained on the preprocessed and normalized training data. The 

architecture of the RBFNN typically consists of an input layer, a hidden layer, and an output layer. The input 

layer receives the normalized input features, while the output layer produces the predicted traffic flow. The 

hidden layer consists of RBF neurons that use radial basis functions to transform the input features into a 

more suitable representation for prediction. 

Traffic flow prediction: In this stage, the trained PSO-RBFNN model is used to predict the traffic flow 

for a given time period. The input features to the model include historical traffic flow data, time of day, and 

other relevant factors such as weather and special events. The predicted traffic flow is then compared with 

the actual traffic flow to evaluate the accuracy of the model. 

3.3. Model validation 

The calibration impedance function can be obtained by calculating the deviation between the predicted 

value and the actual value of the travel time, and the MRE can be expressed as 

𝑀𝑅𝐸 =
∑ |𝑡𝑗 − 𝑡̂𝑗|𝑁

𝑗=1

𝑡𝑗 ∙ 𝑁
 (11) 

where j represents the j-th experimental time period, N is total time periods (N = 144); 𝑡𝑗  represents actual 

travel time of j-th time period; 𝑡̂𝑗  represents predicted travel time of j-th time period. 

4. Result and discussion 

4.1. Data collection  

In order to collect traffic volume and travel time, Yan’an East Road, Qingjiangpu District, Huai’an City 

was selected. The survey was conducted from 7:00 to 19:00 on 13 March 2019. The road is two-way with 

two lanes, no central divider in the middle, and no divider between non-motor vehicles and motor vehicles. 

The width of each lane is three meters, and the total length of the survey area is around 810 meters. 

The time difference between the two cameras was used to obtain the travel time of the vehicle. At the 

same flow rate, there is no significant difference in the appearance of average, highest and lowest speed and 

density. In addition, shorter time periods allow for more data acquisition time periods, therefore, this study 

set five-minute time intervals in which to collect data (assuming that the traffic volume on the road remains 

unchanged within those five minutes). 

In order to calibrate the value of each parameter in the RIF, the interval observation method was used. 

A camera was installed at each end of the survey area, on a section of road with no intervening intersections, 

as shown in Figure 1. The number of vehicles captured by the two cameras was the same when the vehicle 

under investigation did not turn around halfway. Moreover, the traffic volume of each vehicle type can be 

obtained by counting the captured results of any one camera, simultaneously using the license plate to 
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identify the vehicle. When the vehicles were captured by camera 1 and then later by camera 2, the time 

difference between the two cameras was recorded to obtain the travel time of the vehicle. Furthermore, 

vehicles could be categorized into three types in accordance with their passenger and goods capacity as 

shown in Table 1. 

 

Figure 1. Experimental diagram of interval observation method. 

Table 1. Classification and conversion factor of vehicle types. 

Vehicle type 

classification 

Passenger Car Unit (PCU) 

value 

Description 

Small car 1.0 The passenger capacity of the bus is less than or equal to 19 people. The 
cargo capacity of the truck is less than or equal to 2 tons. 

Medium car 1.5 The passenger capacity of the bus is greater than 19 people. Trucks 
carrying between 2 and 7 tons. 

Large car 2.0 Trucks carrying between 7 and 14 tons. 

Figure 2 illustrates traffic volume of each type in 5-minute intervals and small, medium and large cars 

are mixed on the study area. Also, there were four peak periods during morning, afternoon and evening. The 

proportion of small cars was higher than of the other two vehicle types and the maximum volume was 41 pcu 

from 18:10–18:15. From the data survey, it can be found that travel time and road section capacity are 63 

seconds and 750 pcu/h respectively. 

With respect to travel time, there is a proportional relationship between traffic volume and travel time. 

During four peak periods (8:30–9:00, 12:00–12:30, 13:35–13:50 and 17:30–18:00) travel time increased with 

the increase of traffic volume. 

 

Figure 2. Traffic volume of each vehicle type and travel time survey. 

0 50 100 150
0

20

40

60

period

tr
a

ff
ic

 v
o

lu
m

e
（

p
c
u

/5
m

in
)

 

 

0 50 100 150
50

100

150

200

tr
a

v
e

l 
ti
m

e
（

s
）

Small car

Medium car

Large car

travel time



7 

4.2. Verification of RIF optimized by PSO algorithm 

Bureau of Public Roads[19] stated that the traditional impedance function determines the parameters based 

on nonlinear regression (DPNR). The nonlinear function Equation (1) is converted into linear function, and 

the parameters to be determined are calibrated by using the least square method in linear regression, and the 

scattered points and linear straight lines can be obtained. The scattered points are approximately linear and 

evenly distributed on both sides of the regression line as shown in Figure 3a. The optimized RIF determines 

the parameters based on PSO algorithm (DPPSO). The Equation (5) is used as the fitness function, and the 

PSO algorithm is used to calibrate the parameters to be determined. As shown in Figure 3b, the MRE is 

gradually converging by using PSO algorithm to search the undetermined parameters. When the number of 

iterations reaches the 20th, the algorithm converges stably, and the MRE convergence value is 4.53%. 

  

(a) Regression scatter plot (b) Convergence diagram 

Figure 3. Parameter calibration based on DPNR and DPPSO. 

The predicted travel time of DPNR by Equation (1) with parameter value (α = 3.3 and β = 1.2) and 

DPPSO by Equation (2) with parameter values (𝑎1 = 2.5, 𝑎2 = 2.53, 𝑎3 = 0.16, 𝛽1 = 0.9, 𝛽2 = 8.69 and 𝛽3 = 

5.86) can be illustrated in Figure 4. DPNR and DPPSO have high prediction accuracy for travel time in most 

time periods. In the morning peak and evening peak, however, the predicted travel time increases sharply 

compared with field data due to the large traffic volume. 

 

Figure 4. Travel time comparison. 
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Table 2. MRE of travel time based on DPNR and DPPSO. 

Parameter calibration method DPNR DPPSO 

MRE (%) 6.15 4.53 

4.3. Verification of RIF correction based on DPPSO 

The transit time of the road segment calculated based on the impedance function calibrated by DPPSO 

is used as the input element of the RBFNN, and the correction parameters are used as the output element of 

the RBFNN. The total number of time periods is 144, of which the first 96 time periods are training samples 

to train the RBFNN to test the fitting error of the impedance function; the last 48 time periods are the testing 

samples to test the prediction error of the impedance function. The number of times of network training is 

30,000 times and learning rate is 0.05. The range of hidden layers in this paper is 3–12. In order to determine 

the optimal number of hidden layers, experiments are conducted with different hidden layers, and the MRE 

of training samples and testing samples in accordance with the number of hidden layers are shown in Table 

3. 

Table 3. MRE of training samples and testing samples under different hidden layers. 

No. of hidden layers MRE of training samples (%) MRE of testing samples (%) 

3 1.45 1.71 

4 1.44 1.67 

5 1.47 1.69 

6 1.45 1.72 

7 1.47 1.78 

8 1.50 1.69 

9 1.51 1.76 

10 1.52 1.69 

11 1.57 1.79 

12 1.55 1.78 

The MRE between training samples and test samples is minimal (1.44%, 1.67%) when the number of 

hidden layer nodes is four, hence this paper chooses four as the number of hidden layer nodes for the 

RBFNN. 

The correction coefficient 𝑧𝑗  of 144 samples can be obtained based on RBFNN. The corrected road 

travel time can be obtained by multiplying the correction coefficient by the prediction result based on 

DPPSO calibration impedance function. Figure 5 shows the value of training samples correction coefficient 

𝑧𝑗 . The corrected parameter values of the training samples are concentrated in the interval [0.8–1.05], and 

most of the values are around 1, so the adjustment amount of the training samples is small. 

 

Figure 5. Value of training samples correction coefficient 𝑧𝑗. 
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Figure 6 shows the comparison of travel time after the training samples correction between 

PSORBFNN, DPPSO, DPNR and survey data. The values of MRE were 5.33% (DPNR) and 4.31% 

(DPPSO), whereas the MRE value was reduced to 1.44% by PSORBFNN. Thus, it can be seen that 

PSORBFNN matches the survey data well and it is able to improve the model accuracy. 

 

Figure 6. Travel time comparison between PSORBFNN, DPPSO and DPNR in the training sample time periods. 

Figure 7 shows the value of testing samples correction coefficient 𝑧𝑗 . Also, it can be seen that the 

corrected parameter values of the testing samples are concentrated in the interval [0.8–1.05]. By contrast 

with training samples, the concentration degree of scattered points is low, and the adjustment amount of 

verification samples is a little large. 

 

Figure 7. Value of testing samples correction coefficient 𝑧𝑗. 
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methods, which verifies the effectiveness of this method. 
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Figure 8. Travel time comparison between PSORBFNN, DPPSO and DPNR in the testing sample time periods. 

5. Conclusion 

This paper proposed a novel road traffic flow prediction model that combines the strengths of Particle 

Swarm Optimization (PSO) and Radial Basis Function Neural Network (RBFNN) techniques. The proposed 

hybrid PSO-RBFNN model addresses the limitations of traditional traffic flow prediction models in 

accurately capturing the complex nonlinear relationships between traffic flow and other relevant factors such 

as weather and special events. The model was evaluated on real-world traffic data and compared with other 

state-of-the-art traffic flow prediction models. The results showed that the hybrid PSO-RBFNN model 

outperformed these models in terms of accuracy and robustness. The model was able to accurately predict 

traffic flow with high precision, and it was able to handle the noise and outliers in the data effectively. 

Furthermore, the proposed model can be used to support various transportation-related applications such as 

intelligent transportation systems (ITS), traffic management, and urban planning. The accuracy and 

efficiency of the model can help reduce traffic congestion, improve road safety, and promote more 

sustainable transportation systems. 
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