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ABSTRACT 

The precise segmentation of lung lesions in computed tomography (CT) scans holds paramount importance for 

lung cancer research, offering invaluable information for clinical diagnosis and treatment. Nevertheless, achieving 

efficient detection and segmentation with acceptable accuracy proves to be challenging due to the heterogeneity of 

lung nodules. This paper presents a novel model-based hybrid variational level set method (VLSM) tailored for lung 

cancer detection. Initially, the VLSM introduces a scale-adaptive fast level-set image segmentation algorithm to 

address the inefficiency of low gray scale image segmentation. This algorithm simplifies the (Local Intensity 

Clustering) LIC model and devises a new energy functional based on the region-based pressure function. The 

improved multi-scale mean filter approximates the image’s offset field, effectively reducing gray-scale 

inhomogeneity and eliminating the influence of scale parameter selection on segmentation. Experimental results 

demonstrate that the proposed VLSM algorithm accurately segments images with both gray-scale inhomogeneity 

and noise, showcasing robustness against various noise types. This enhanced algorithm proves advantageous for 

addressing real-world image segmentation problems and nodules detection challenges. 
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1. Introduction 

In 2020, the global incidence of lung cancer is about 11.4%, and 

the mortality rate is 18%, which has become the leading cause of death 

from malignant tumors[1]. In the classification of lung cancer, non-

small cell lung cancer (NSCLC) accounts for about 85% of the total 

number of lung cancer[2]. For the diagnosis of lung cancer, pathology-

related examinations are still the gold standard; however, tumor biopsy 

is an invasive procedure, and patients cannot obtain tumor tissue due 

to the high risk of obtaining tissue. In addition, tumors are 

heterogeneous in time and space, and the information on tumor tissue 

obtained at a certain site and at a certain time period cannot fully 

represent the information of the tumor. 

Currently, imaging techniques and pathological examinations are 

mainly used to screen lung cancer, but imaging techniques are 

expensive and have poor specificity, and pathological examinations are 

invasive[3]. As the disease progresses, it is often accompanied by 

infection and severe pain in the late stage, which seriously affects the 

health and quality of life of patients[4,5]. At present, pathological biopsy 

is still the gold standard for its diagnosis. Since the disease has not been 

specifically manifested in the early stage, most patients have 
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progressed to the middle and late stage when diagnosed, which adversely affects the treatment effect[6]. 

Therefore, finding specific detection indicators has become a hot spot in clinical practice. The tumor markers 

are substances synthesized and released by tumor cells, which have the advantages of simple collection and 

less trauma, and have many applications in early diagnosis, disease progression and prognosis assessment of 

tumor diseases[7]. Therefore, the heterogeneity between tumors and within tumors brings challenges to guide 

clinical decision-making. Based on this, liquid biopsy is currently attracting attention because of its advantages 

of non-invasiveness, rapidity, and real-time application, and a series of studies on it are in progress. Liquid 

biopsy refers to the collection of non-solid biological tissues such as blood samples to detect biomarkers, 

improve tumor molecular typing, and provide relevant information for the Equation of treatment plans. 

This study presents MODEL-BASED hybrid variational level set method (VLSM) tailored for lung 

cancer detection. Brief a comprehensive review of leave-set detection techniques for pulmonary nodules in 

computerized-tomography (CT) images. The primary objectives are to assess the latest technologies employed 

in developing computational diagnostic tools for biomedical data acquisition, storage, processing, and analysis. 

Additionally, the research evaluates progress made, existing challenges, and future prospects in this domain. 

2. Related works 

Most lung cancers are prone to metastases, and when they are first detected they are already at an 

advanced stage, making them difficult to cure. Therefore, early screening for lung cancer can significantly 

improve survival rates. Tissue imaging techniques remain the mainstay of lung cancer screening, including 

chest X-rays, CT (computed tomography), MRI (magnetic resonance imaging), and PET (positron emission 

tomography)[7–10]. 

2.1. Chest X-ray 

A chest x-ray produces images of the inside of the chest by using very small doses of ionizing radiation[11]. 

It is used to evaluate lung, heart, and chest wall function and to help diagnose symptoms such as shortness of 

breath, persistent cough, fever, chest pain, or injury. It can also be used to help diagnose and monitor various 

lung diseases such as pneumonia, emphysema and lung cancer. Because chest X-ray examination is quick and 

easy, it is widely used in emergency diagnosis and treatment[12]. However, chest x-rays do not give a definitive 

diagnosis and often cannot distinguish cancer from other conditions such as lung abscesses (collections of pus 

that form in the lungs). Lung cancer is often at an advanced stage by the time a tumor is detected on a chest x-

ray[13]. 

2.2. Computed Tomography (CT) 

Computed tomography (CT) is usually done after a chest x-ray in screening for disease. A CT scan uses 

X-rays and a computer to create detailed images of the inside of the body (Figure 1)[14]. Low-dose helical 

computed tomography (LDCT) detects almost six times more nodules than conventional X-rays, research 

shows. LDCT has a resolution of less than 1 cm and the ability to produce a three-dimensional view of the 

lungs, making it a high-quality alternative to X-rays. However, the high sensitivity of LDCT also produces a 

higher false positive rate than traditional mammography, with false positive rates ranging from 20% to 50%. 

To date, there are still no authoritative studies that clearly identify LDCT as the best lung cancer screening 

tool[10,13]. 

2.3. Positron emission tomography (PET) 

Positron emission tomography (PET) is a nuclear medicine functional imaging technique used to observe 

metabolic processes in vivo to aid in the diagnosis of diseases[8]. Over the past few decades, positron emission 

tomography (PET), with its ability to provide functional data using the glucose analog 18F-fluorodeoxyglucose 

(FDG), has evolved from a primary research tool to a fundamental imaging tool for the assessment of lung 
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cancer. Preferential uptake of 18F-FDG into tumor cells produces a high tumor-to-background intensity ratio, 

which facilitates the detection of tumor foci and the cellular characterization of tumor cells[15]. Despite its high 

sensitivity for malignancy detection, PET often cannot be used as a single imaging modality in clinical practice 

due to its limited spatial resolution. Taken together, PET and CT technologies are often combined into a dual-

purpose unit called PET-CT. By providing anatomical and metabolic information, PET-CT scanners can 

provide better results when diagnosing or staging cancer (Figure 2). In addition, PET-CT scans can show the 

location of active cancer cells, and cancer cells before structural changes develop. This method helps identify 

tumors so that we can properly diagnose and stage the disease and focus treatment on the cancerous tissue. 

However, exposure to radiation during a PET-CT scan may increase the risk of future cancer in healthy 

individuals[16]. 

 
Figure 1. CT scan image of the lungs[15]. 

 
Figure 2. CT (left) and PET-CT (right) scan images of the lungs[17]. 

2.4. Magnetic resonance imaging (MRI) 

Magnetic resonance imaging (MRI) is a medical imaging technique used in radiology to create images of 

anatomy (Figure 3). MRI scanners use strong magnetic fields, magnetic field gradients, and radio waves to 

generate images of internal organs[16]. MRI does not involve X-rays or ionizing radiation, unlike CT and PET 

scans. A special dye called a contrast agent is given before the scan to produce a clearer image. The dye can 

be injected into a patient's vein or given as a pill or liquid. MRI scans are not good at taking pictures of moving 

body parts, and the lungs move with breathing. Therefore, this method is rarely used in the observation of lung 

cancer[17]. However, it may be helpful in finding lung cancer that has spread to the brain or bones. Although 

MRI is not currently considered a primary imaging modality for early diagnosis and staging of lung cancer, it 

has some advantages over other imaging modalities, suggesting that the use of this method with other 

techniques should be expanded[10,18,19]. 

3. Proposed method 

The previous part discusses the segmentation method of uneven grayscale images, and does not pay 

attention to the effect of noise on segmentation. In reality, images are often interfered by noise during the 

process of acquisition and transmission, which seriously reduces image quality. The segmentation method 
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based on offset correction level set usually uses Euclidean distance to construct data items, but the noise 

robustness of this measurement method is poor. For an image with gray unevenness and noise at the same time, 

the local grayscale changes in each target area are caused by the gray unevenness and noise. In this way, the 

local image variance cannot be used to measure the degree of gray-scale unevenness of the image. The adaptive 

scale operator proposed by the pervious part will be invalid, affecting the estimation of the offset field and 

reducing the segmentation accuracy of the gray-scale uneven image. 

 
Figure 3. MRI scan image of the lungs[18]. 

As a solution to the issues mentioned above, this technique suggests using a hybrid level-setting method 

that is based on kernel metric (KMHLS). First, an enhanced multi-scale mean filter is put to use in order to 

make an estimate of the picture’s offset field. Then, an offset correction is applied to the image in order to 

lessen the gray level inhomogeneity that the image has. After that, the kernel measurement technique is used 

to construct energy items using local and global information in the appropriate proportions. As an additional 

measure, the local similarity measurement approach has been included in the energy term in order to reduce 

the impact of noise. In order to develop a hybrid energy function, a new weight function is used to adaptively 

alter the weight coefficients of the two different energy components. In conclusion, the count gradient 

regularization term is implemented in order to further lessen the impact that noise has. After first being 

provided in the form of a two-phase level-set segmentation, the suggested method for segmentation is later 

modified to support several phases of the process. 

3.1. Kernel measurement 

The offset correction level set method based on K-means clustering usually uses Euclidean distance to 

construct data items, but this measurement method lacks robustness to noise and outliers, and severely reduces 

the segmentation accuracy of noisy images. Therefore, the 𝐿2 norm can be replaced by a non-linear distance 

metric. Usually, the kernel method is used for nonlinear distance measurement. The commonly used kernel 

function can be expressed as (Wu et al.[20]): 

𝐾(𝒂, 𝒃) = 〈𝜑(𝒂), 𝜑(𝒃)〉 = 𝜑(𝒂)𝑇𝜑(𝒃) (1) 

among them, 𝒂 and 𝒃 are vectors with the same dimension, 𝜑(. ) represents the non-linear mapping from 

the original data space to the feature space, 〈. , . 〉 represents the inner product operation, and T represents the 

transpose operation. 

The Gaussian radial basis function is a commonly used kernel function[21], expressed as: 

𝐾(𝑎, 𝑏) = 𝑒𝑥𝑝 (−
(𝑎 − 𝑏)2

𝜎
) (2) 

among them, the parameter 𝜎 represents the bandwidth of the kernel function, and 𝐾(𝑎, 𝑎) = 1. Then, the 

non-Euclidean distance metric in the feature space is expressed as (Wu et al.[18]): 

∥ 𝜑(𝑎) − 𝜑(𝑏) ∥2= (𝜑(𝑎) − 𝜑(𝑏))
𝑇
𝜑(𝑎) − 𝜑(𝑏) = 𝐾(𝑎, 𝑎) + 𝐾(𝑏, 𝑏) − 2𝐾(𝑎, 𝑏) = 2 − 2𝐾(𝑎, 𝑏) (3) 
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3.2. Hybrid Level Set Segmentation Algorithm 

This section first uses an improved multi-scale mean filter to estimate the offset field of the image to 

reduce the gray-scale unevenness of the image. Then, the kernel metric and local similarity metric are used to 

suppress the influence of noise. Finally, the count gradient regularization term is used to further reduce the 

influence of noise. 

3.3. Improved Multi-Scale Mean Filter 

The MSF model[22] uses a multi-scale mean filter to estimate the offset field of the gray inhomogeneous 

image. However, this model uses a fixed number of scales. For some small-sized images, a larger scale will 

cause the offset field to be excessively smooth, and the local grayscale change information of the image cannot 

be obtained, leading to incorrect segmentation. Therefore, this thesis proposes an improved multi-scale mean 

filter, which can approximate the offset field of the image and obtain more local variation information of the 

offset field. 

The higher the degree of unevenness of the gray level of the image, the more severe the local gray level 

changes in the smooth area of the image. Therefore, try to use small-scale mean filtering to estimate the offset 

field of the image to obtain more local change information, which is beneficial to remove the serious grayscale 

inhomogeneity of the image, and only retains the slight grayscale inhomogeneity. The scale number k of the 

multi-scale mean filter is defined as: 

𝑘 = min⁡(𝑟𝑜𝑢𝑛𝑑 (√𝑁0 (4𝜋)⁄ ) , 𝑘𝑚𝑎𝑥) (4) 

among them, 𝑁0 is the number of pixels of the image I, and 𝑘𝑚𝑎𝑥  is a positive integer, which represents the 

maximum number of scales of the multi-scale mean filter. 

In this way, the 𝑖 scale parameter of the multi-scale mean filter is expressed as: 

𝑟𝑖 = 𝑖, 𝑖 = 1,2,⋯ , 𝑘 (5) 

In addition, by weighting the image gray level to reduce the influence of salt and pepper noise and singular 

values, the mean filter with a scale of 𝑟𝑖 is defined as: 

𝐴𝐹𝑖(𝑥) =
∑ 𝐼(𝑦) ∙ 𝑤(𝑦)𝑦∈𝑅𝑥,𝑖

∑ 𝑤(𝑦)𝑦∈𝑅𝑥,𝑖

 (6) 

among them, 𝑅𝑥,𝑦 = {𝑦: |𝑦 − 𝑥| ≤ 𝑟𝑖} represents a partial circular area with x as the center and radius 𝑟𝑖. 

𝑤(∙) is the weight function of image gray level, defined as: 

𝐴𝐹𝑖(𝑥) =
∑ 𝐼(𝑦) ∙ 𝑤(𝑦)𝑦∈𝑅𝑥,𝑖

∑ 𝑤(𝑦)𝑦∈𝑅𝑥,𝑖

 (7) 

among them, ∗ is a convolution operator, 𝐾0 is a normalized mean filter with a size of (2𝑤0 + 1) × (2𝑤0 +

1), and 𝜎0⁡is: 

𝜎0 = (
1

𝑁0 − 1
∑(𝑑(𝑥𝑗

𝑁0

𝑗=1

) − �̅�)2)

0.5

 (8) 

among them, 𝑑(𝑥) = |𝐼(𝑥) − 𝐼|̅ , 𝐼⁡̅ represents the average gray value of image 𝐼 , and �̅�⁡ represents the 

average value of 𝑑(𝑥). 

Then, the approximate estimation of the offset field of the uneven grayscale image is: 

𝐵0(𝑥) =
1

𝑘
∑𝐴𝐹𝑖(𝑥)

𝑘

𝑖=1

𝐼 ̅⁄  (9) 

according to the uneven gray scale image model, through offset correction, the image 𝐼1 after offset correction 

is obtained as: 
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𝐼1(𝑥) =
𝐼(𝑥)

𝐵0(𝑥)
, 𝑥 ∈ Ω (10) 

The improved multi-scale averaging filter can well eliminate the unevenness of slightly uneven grayscale 

images, while for severely uneven grayscale images, it can greatly reduce the unevenness, leaving only slight 

grayscale unevenness. At the same time, the filter has strong robustness to noise. 

3.4. Energy functional 

The image 𝐼1 after the offset correction generally has slight grayscale unevenness. The (local intensity 

clustering Mumford-Shah) LIC-CV model[21] can segment images with slight gray unevenness quickly, 

accurately and robustly. Therefore, this thesis uses the LIC-CV model to construct the energy functional, and 

can use fixed scale parameters. The kernel function estimates the offset field and eliminates the influence of 

scale parameters on the segmentation of uneven grayscale images. At the same time, this thesis introduces the 

kernel metric method into the LIC-CV model, and replaces the Euclidean distance metric in the energy 

functional with the kernel metric to improve the robustness to noise. In this way, the energy term based on 

local area information is expressed as: 

𝐸𝑙𝑜𝑐𝑎𝑙(𝜙, 𝑏, 𝑐) =∑𝜆𝑖∫(1 − 𝐾𝐿(𝐼1 , 𝑏, 𝑐𝑖))𝑀𝑖(𝜙(𝑥))𝑑𝑥

𝑁

𝑖=1

 (11) 

among them, 𝑀𝑖(𝜙) is the membership function, and 𝐾𝐿(𝐼1, 𝑏, 𝑐𝑖) is defined as the form of the kernel metric: 

𝐾𝐿(𝐼1 , 𝑏, 𝑐𝑖) = exp⁡(−∫𝐾𝜎 (𝑦 − 𝑥)((𝐼1(𝑥) − 𝑏(𝑦)𝑐𝑖)
2 𝜎1⁄ )𝑑𝑦) (12) 

among them, 𝜎1 can be obtained by using image 𝐼1 and Equation (5–8), 𝑘𝜎(∙) is a Gaussian kernel function 

with a standard deviation of 𝜎. 

The energy item based on the global area information is: 

𝐸𝑔𝑙𝑜𝑏𝑎𝑙(𝜙, 𝑐𝑐𝑣) =∑𝜆𝑖∫(1 − 𝐾𝐺(𝐼1 , 𝑐𝑖
𝑐𝑣))𝑀𝑖(𝜙(𝑥))𝑑𝑥

𝑁

𝑖=1

 (13) 

among them, 𝐾𝐺(𝐼1, 𝑐𝑖
𝑐𝑣) is defined as the form of nuclear metric: 

𝐾𝐺(𝐼1 , 𝑐𝑖
𝑐𝑣) = exp⁡(−

(𝐼1(𝑥) − 𝑐𝑖
𝑐𝑣)2

𝜎1
) (14) 

Secondly, considering the spatial relationship between the center pixel and its neighborhood, this method 

uses the local block similarity[23] to further reduce the impact of noise, and the local and global energy terms 

can be converted into: 

𝐾𝐺(𝐼1 , 𝑐𝑖
𝑐𝑣) = exp⁡(−

(𝐼1(𝑥) − 𝑐𝑖
𝑐𝑣)2

𝜎1
) (15) 

𝐸𝑔𝑙𝑜𝑏𝑎𝑙(𝜙, 𝑐𝑐𝑣) = ∫∑𝜆𝑖∫𝑍(|𝑧 − 𝑥|)(1 − 𝐾𝐺(𝐼1 , 𝑐𝑖
𝑐𝑣))𝑀𝑖(𝜙(𝑥))𝑑𝑥𝑑𝑧

𝑁

𝑖=1

 (16) 

among them, the kernel function 𝑍(∙) is defined as: 

𝑍(𝑢) = {

1

2
exp (−

𝑢2

ℎ
) , |𝑢| ≤ 𝑟

0, 𝑜𝑡ℎ𝑒𝑟

 (17) 

among them, ℎ is the bandwidth and 𝑟 is the scale parameter. 

In addition, this thesis suggests a novel weight function as a means of dynamically modifying the relative 

importance of regional and international energy variables. The weight of the global energy item is 

automatically adjusted according to the degree of gray-level unevenness of the image, whereas the weight of 

the local energy item is automatically adjusted according to the gray-level uniformity of the image. This is 
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because the global energy item can only handle the gray-level uniform image, whereas the local energy item 

can handle the gray-level uneven image. The gray-level unevenness of the picture may be described using the 

offset field b, as stated by the gray-level uneven image model[21]. The offset field value of the gray-level 

uniform image is 1, and the farther b deviates from 1, the image The more significant the unevenness in the 

gray scale. Hence, a new weight function is constructed by making use of the estimated offset field while the 

algorithm is going through the iteration process: 

𝜔(𝑥) = 𝑣𝑒𝑥𝑝(−𝑙(𝑏(𝑥) − 1)2) (18) 

among them, 𝑣 and 𝑙 are constant parameters. 

𝑣 For the two-phase segmentation, that is, N = 2, this thesis uses a binary step function to represent the 

inner and outer regions of the evolution curve C, which is defined as: 

𝜙(𝑥) = {
−1, 𝑥 ∈ 𝑖𝑛𝑠𝑖𝑑𝑒(𝐶)

1, 𝑥 ∈ 𝑜𝑢𝑡𝑠𝑖𝑑𝑒(𝐶)
 (19) 

Then the membership function of each subregion is expressed as: 𝑀1(𝜙(𝑥)) = (1 +𝜙(𝑥))/2 

and⁡𝑀2(𝜙(𝑥)) = (1 − 𝜙(𝑥))/2. Using the weight function in Equation (16) to combine the local and global 

energy terms, the mixed energy function is obtained as: 

𝐸𝐻(𝜙, 𝑏, 𝑐, 𝑐𝑐𝑣) = ∫∑𝜆𝑖∫(1 − 𝜔(𝑥))𝑍(|𝑧 − 𝑥|)(1 − 𝐾𝐿(𝐼1 , 𝑏, 𝑐𝑖))𝑀𝑖(𝜙(𝑥))𝑑𝑥

2

𝑖=1

𝑑𝑧

+∫∑𝜆𝑖∫𝜔(𝑥)𝑍(|𝑧 − 𝑥|)(1 − 𝐾𝐺(𝐼1, 𝑐𝑖
𝑐𝑣))𝑀𝑖(𝜙(𝑥))𝑑𝑥𝑑𝑧

2

𝑖=1

 

(20) 

In addition, this thesis introduce the length term and rule term[23] based on 𝐿0 regularization to regularize 

the level set function to ensure the stability of the level set evolution and further suppress the influence of noise. 

A weighted Regional Scale Variable Fitting (RSF) model that is based on local entropy has been established at 

the top in order to increase the original model’s robustness with respect to the beginning contour position and 

considerable noise. This is a very important development. In fact, owing to the heterogeneity of the gray scale, 

the difference in gray scale across various places in a picture that has an uneven distribution of gray is often 

varied. This is because a picture with an uneven distribution of gray contains a picture that has an uneven 

distribution of gray. A new local fitting energy function is proposed to replace the existing ones in the CV and 

Local Binary Fitting (LBF) models, with the aim of addressing intensity inhomogeneity more effectively. The 

proposed energy function takes into consideration the advantages and disadvantages of the CV and RSF models. 

This new approach is expected to improve the ability to handle intensity inhomogeneity in image analysis. The 

Therefore benefits of the proposed method will be a more accurate and robust image segmentation and analysis 

process: 

𝐸𝐶𝐸𝑅 = 𝛾𝐸𝐻(𝜙, 𝑏, 𝑐, 𝑐𝑐𝑣) + 𝜇𝐶(∇𝜙) + 𝜈𝐶(𝜙 + 1) (21) 

among them, 𝛾, 𝜇 and 𝜈 are constant parameters,⁡𝐶(∙) represents the 𝐿0 counting operator, and 𝐶(𝜙 + 1) 

represents the number of pixels satisfying |𝜙 + 1| ≠ 0. 

3.5. Level set evolution and numerical realization 

By minimizing the energy function in Equation (21), image segmentation can be achieved and the offset 

field can be estimated at the same time. Using the alternate iterative minimization method to solve, the energy 

functional E is minimized relative to each variable in the Equation (21), and the closed solution of each variable 

M can be obtained: 

𝑐𝑖 =
∫(𝑏 ∗ 𝐾)𝐼1𝑀𝑖(𝜙)𝑊𝑖

𝐿𝑑𝑥

∫(𝑏2 ∗ 𝐾)𝑀𝑖(𝜙)𝑊𝑖
𝐿𝑑𝑥

, 𝑖 = 1,⋯ ,𝑁 (22) 

𝑏 =
(𝐼1𝐽

(1)) ∗ 𝐾

𝐽(2) ∗ 𝐾
 (23) 
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=
∫ 𝐼1(𝑥)𝑀𝑖(𝜙(𝑥))𝑊𝑖

𝐺𝑑𝑥

∫𝑀𝑖(𝜙(𝑥))𝑊𝑖
𝐺𝑑𝑥

, 𝑖 = 1,⋯ ,𝑁. 𝑎𝑛𝑑⁡𝑥 ∈ Ω 

 

(24) 

among them, 𝐽(1) = ∑ 𝑊𝑖
𝐿𝑐1𝑀𝑖(𝜙)

𝑁
𝑖=1  , 𝐽(2) = ∑ 𝑊𝑖

𝐿𝑐1
2𝑀𝑖(𝜙)

𝑁
𝑖=1  , 𝑊𝑖

𝐿 = exp⁡(− (𝐼1 − 𝑏𝑐1)
2 𝜎1)⁄  , 𝑊𝑖

𝐺 =

exp⁡(− (𝐼1 − 𝑐𝑖
𝑐𝑣)2 𝜎1)⁄ . 

When 𝑐𝑖, b and 𝑐𝑖
𝑐𝑣are fixed, the relative level set function 𝜙 minimizes the energy function. However, 

two counting operators are introduced in the mixed energy functional, namely⁡𝐶(∇𝜙) and⁡𝐶(𝜙 + 1), which 

cannot be solved directly by the gradient descent method. To this end, auxiliary variables are introduced, and 

the level set function is evolved using the alternate iteration optimal method[23]. Similar to the LODL model, 

the mixed energy function is discretized, and three auxiliary variables 𝜑, 𝜉  and 𝜓  are introduced for 

𝜕𝑥𝜙𝑝 , 𝜕𝑦𝜙𝑝 and 𝜙 respectively, the final discrete energy functional can be obtained as: 

𝐸 = 𝛾𝐸𝐻(𝜙, 𝑏, 𝑐, 𝑐𝑐𝑣) + 𝜇𝐶(𝜑, 𝜉) + 𝜈𝐶(𝜓) + 𝛼∑((

𝑝

𝜕𝑥𝜙𝑝 − 𝜙𝑝)
2 + (𝜕𝑦𝜙𝑝 − 𝜉𝑝)

2)

+ 𝛽∑(𝜙𝑝
𝑝

+ 1 −𝜓𝑝)
2 

(25) 

among them, 𝐶(𝜑, 𝜉) = {𝑝: |𝜙𝑝| + |𝜉𝑝| ≠ 0}, 𝐶(𝜓) = {𝑝: |𝜓𝑝| ≠ 0} , 𝛼 > 0  and⁡𝛽 > 0  as a parameter, 𝛼 

needs to be adjusted according to the image. Replace⁡𝐶(𝜑, 𝜉)and 𝐶(𝜓)⁡with ∑ 𝐵(𝑝 |𝜙𝑝| + |𝜉𝑝|),⁡∑ 𝐵(𝜓𝑝𝑝 ), 

where 𝐵(𝑥) is a binary function, if 𝑥 ≠0, then its value is 1, otherwise it is 0. Therefore, the final discrete 

energy functional is: 

𝐸 = 𝛾𝐸𝐻(𝜙, 𝑏, 𝑐, 𝑐𝑐𝑣) + 𝜇∑ 𝐵(
𝑝

|𝜙𝑝| + |𝜉𝑝|) + 𝜈∑ 𝐵(𝜓𝑝
𝑝

) + 𝛼∑((

𝑝

𝜕𝑥𝜙𝑝 −𝜙𝑝)
2

+ (𝜕𝑦𝜙𝑝 − 𝜉𝑝)
2) + 𝛽∑(𝜙𝑝

𝑝

+ 1 − 𝜓𝑝)
2

 

(26) 

Using the alternate iterative optimization method, （𝜑, 𝜉） and 𝜓 can be obtained as: 

(𝜑𝑝, 𝜉𝑝) = {
(0,0), (𝜕𝑥𝜙𝑝)

2 + (𝜕𝑦𝜙𝑝)
2 ≤ 𝜇 𝛼⁄

(𝜕𝑥𝜙𝑝 , 𝜕𝑦𝜙𝑝), (𝜕𝑥𝜙𝑝)
2 + (𝜕𝑦𝜙𝑝)

2 > 𝜇 𝛼⁄
 (27) 

𝜓𝑝 = {
0, (𝜙𝑝 + 1)2 ≤ 𝜈 𝛽⁄

𝜙𝑝 + 1, (𝜙𝑝 + 1)2 > 𝜈 𝛽⁄
 (28) 

For the level set function 𝜙, the corresponding Euler equation can be obtained: 

2(𝛽𝜙 − 𝛼∇𝜙) =
1

2
𝛾 ∙ 𝑍

∗ (−𝜆1(2 − (1 − 𝜔)𝐾𝐿(𝐼1, 𝑏, 𝑐1) − 𝜔𝐾𝐺(𝐼1 , 𝑐1
𝑐𝑣))

+ 𝜆2(2 − (1 − 𝜔)𝐾𝐿(𝐼1 , 𝑏, 𝑐2) − 𝜔𝐾𝐺(𝐼1 , 𝑐2
𝑐𝑣))) + 2𝛽(𝜓 − 1) + 2𝛼(𝜕𝑥

∗𝜑 + 𝜕𝑦
∗𝜉) 

(29) 

among them, 𝜕𝑥
∗ and 𝜕𝑦

∗ represent the complex conjugate of 𝜕𝑥 and 𝜕𝑦, respectively. 

Using Fast Fourier Transform (FFT) to solve the Equation (19)[23], this thesis can get: 

𝜙0 = 𝐹−1 [
𝐹(𝑄) + 2𝛼 (𝐹(𝜕𝑥

∗)𝐹(𝜑) + 𝐹(𝜕𝑦
∗)𝐹(𝜉))

2𝛽 + 2𝛼 (𝐹∗(𝜕𝑥)𝐹(𝜕𝑥) + 𝐹∗(𝜕𝑦)𝐹(𝜕𝑦))
] (30) 

among them, 𝐹(∙) represents the Fourier transform, 𝐹−1(∙) is the inverse Fourier transform, 𝐹∗ represents 

the complex conjugate of 𝐹, and Q is defined as: 

𝑄 =
1

2
𝛾 ∙ 𝑍 ∗ (−𝜆1(2 − (1 − 𝜔)𝐾𝐿(𝐼1 , 𝑏, 𝑐1) − 𝜔𝐾𝐺(𝐼1 , 𝑐1

𝑐𝑣))

+ 𝜆2(2 − (1 − 𝜔)𝐾𝐿(𝐼1 , 𝑏, 𝑐2) − 𝜔𝐾𝐺(𝐼1 , 𝑐2
𝑐𝑣))) + 2𝛽(𝜓 − 1) 

(31) 

Finally, a Gaussian filter with a scale of 𝜎𝑠 is used to smooth the level set function 𝜙0 and perform 
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binarization processing 𝜙0(𝑥): 

𝜙(𝑥) = {
1, 𝜙0(𝑥) ≥ 0

−1, 𝜙0(𝑥) < 0
 (32) 

In the numerical implementation (Appendix B), in order to maintain the stability of the evolution of the 

level set function, the gray level of the original image 𝐼1 is linearly compressed to the interval [0,1]. And the 

level set function𝜙0 that is not regularized into a binary function is used to calculate 𝑐𝑖 , 𝑏 and 𝑐𝑖
𝑐𝑣, where the 

membership function is expressed as 𝑀1(𝜙0(𝑥)) = 𝐻(𝜙0(𝑥))  and 𝑀2(𝜙0(𝑥)) = 1 − 𝐻(𝜙0(𝑥)) , the 

Heaviside function 𝐻(𝜙) is defined as: 

𝐻𝜀(𝜙) =
1

2
[1 +

2

𝜋
∙ arctan(

𝜙

𝜀
)] (33) 

among them, 𝜀⁡is a constant parameter. 

The initial constants 𝑐𝑖
𝑐𝑣 and 𝑐𝑖 can be calculated by the following Equation: 

𝑐1
𝑐𝑣 = 𝑐1 =

∫𝐼1(1 + 𝜙)𝑑𝑥

∫(1 + 𝜙)𝑑𝑥
, 𝑐2

𝑐𝑣 = 𝑐2 =
∫𝐼1(1 − 𝜙)𝑑𝑥

∫(1 − 𝜙)𝑑𝑥
, 𝑥 ∈ Ω (34) 

The main steps of the proposed hybrid level set binary segmentation algorithm (VLSM) based on kernel 

metric are as follows: 

Step 1. Calculate 𝐵0 according to Equation (4), and obtain the image 𝐼1 after offset correction according to 

Equation (5); 

Step 2. Initialize the offset field 𝑏0(𝑥) = 1, 𝑥 ∈ Ω, initialize 𝜙0, 𝑐𝑖
𝑐𝑣 and 𝑐𝑖 according to the Equation (14) 

and Equation (19), and according to the Equation (3) Calculate 𝜎1; 

Step 3. According to Equation (17), Equation (18) and Equation (19) respectively calculate 𝑐𝑖 , 𝑏 and 𝑐𝑖
𝑐𝑣; 

Step 4. Calculate (𝜑, 𝜉)and 𝜓 according to Equation (22) and Equation (23); 

Step 5. Obtain the level set function𝜙0 according to Equation (25); 

Step 6. Obtain the binary level set function𝜙 according to Equation (27); 

Step 7. When the maximum number of iterations is reached or the level set function converges, the algorithm 

ends, otherwise, return to step 3. 

3.6. Multiphase level set 

The two-phase segmentation form is extended to the polyphase form. When N = 3, two level set functions 

𝜙1 and 𝜙2 are used to define different target areas in the image domain 𝛺, and the polyphase, 𝑏, mixed 

function can be obtained: 

𝐸𝑀
𝐻(Φ, 𝑏, 𝑐, 𝑐𝑐𝑣) = ∫∑𝜆𝑖∫(1 − 𝜔(𝑥))𝑍(|𝑧 − 𝑥|)(1 − 𝐾𝐿(𝐼1

3

𝑖=1

, 𝑏, 𝑐𝑖))𝑀𝑖(Φ)𝑑𝑥𝑑𝑧

+ ∫∑𝜆𝑖∫𝜔(𝑥)𝑍(|𝑧 − 𝑥|)(1 − 𝐾𝐺(𝐼1

3

𝑖=1

, 𝑐𝑖
𝑐𝑣))𝑀𝑖(Φ)𝑑𝑥𝑑𝑧 

(35) 

among them, 𝑀1(Φ) = (1 +𝜙1)(1 +𝜙2) 4⁄  , 𝑀2(Φ) = (1 + 𝜙1)(1 −𝜙2) 4⁄  and 𝑀3(Φ) =

(1 − 𝜙1) 2⁄ ⁡represents⁡membership⁡function⁡Φ = (𝜙1, 𝜙2). 

The final multiphase energy functional is defined as: 

𝐸𝑀(Φ, 𝑏, 𝑐, 𝑐
𝑐𝑣) = 𝛾𝐸𝑀

𝐻(Φ, 𝑏, 𝑐, 𝑐𝑐𝑣) + 𝜇𝐶(∇𝜙1) + 𝜈𝐶(𝜙1 + 1) + 𝜇𝐶(∇𝜙2) + 𝜈𝐶(𝜙2 + 1) (36) 

The level set function 𝜙1 can be obtained by Equations (25) and (27), where Q is defined as: 
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𝑄 =
1

2
𝛾 ∙ 𝑍 ∗ (−𝜆1(2 − (1 − 𝜔)𝐾𝐿(𝐼1 , 𝑏, 𝑐1) − 𝜔𝐾𝐺(𝐼1 , 𝑐1

𝑐𝑣)) (1 + 𝜙2) 2⁄

− 𝜆2(2 − (1 − 𝜔)𝐾𝐿(𝐼1 , 𝑏, 𝑐2) − 𝜔𝐾𝐺(𝐼1 , 𝑐2
𝑐𝑣)) (1 − 𝜙2) 2⁄ )

+ 𝜆3(2 − (1 − 𝜔)𝐾𝐿(𝐼1 , 𝑏, 𝑐2) − 𝜔𝐾𝐺(𝐼1 , 𝑐2
𝑐𝑣))) + 2𝛽(𝜓1 − 1) 

(37) 

among them, (𝜑1, 𝜉1) and 𝜓1 can be obtained according to Equation (22) and Equation (23) respectively. 

Similarly, the level set function 𝜙2 is obtained by Equation (25) and Equation (27), where Q is defined 

as: 

𝑄 =
1

2
𝛾 ∙ 𝑍 ∗ (−𝜆1(2 − (1 − 𝜔)𝐾𝐿(𝐼1 , 𝑏, 𝑐1) − 𝜔𝐾𝐺(𝐼1 , 𝑐1

𝑐𝑣)) (1 + 𝜙1) 2⁄

+ 𝜆2(2 − (1 − 𝜔)𝐾𝐿(𝐼1, 𝑏, 𝑐2) − 𝜔𝐾𝐺(𝐼1 , 𝑐2
𝑐𝑣)) (1 + 𝜙1) 2⁄ ) + 2𝛽(𝜓2 − 1) 

(38) 

where, (𝜑2, 𝜉2) and 𝜓2 are obtained according to Equation (22) and Equation (23) respectively. 

4. Result and discussion 

After excluding the 399 examples, the dataset contains 4384 nodule annotations that were labeled 

consistently. However, in order to further eliminate uncertain circumstances, the total number of annotations 

used was reduced to 2817. 

Figures 4 and 5 present a summary of patient demographic and scan information, collected by reviewing 

the DICOM file data from the LIDC dataset. Among the 734 scans, there is no available information about the 

subject’s age or gender. However, among the remaining 284 instances that have gender information (DICOM 

Tag ID: 0010, 0040) available, there is a distribution of 49.3% males and 50.7% females. Additionally, when 

age information (DICOM Tag ID: 0010, 1010) is provided, as shown in Figure 4, the median age is 61 years 

old. It’s worth noting that this value may be considered a place holder for the tag. Importantly, there are no 

instances where information about a person’s age is known without also knowing their gender. 

 
Figure 4. Distribution of age and sex in the LIDC dataset. 

Figure 4 presents an illustration of the pixel spacing distribution within a slice of the scan (DICOM Tag 

ID: 0028, 0030) and the thickness of each slice (DICOM Tag ID: 0018, 0050), both measured in millimeters. 

The median pixel spacing is found to be 0.7 mm, while the median slice thickness of the CT scan image 

volumes is 2 mm. The distributions of scanner resolutions in the LIDC dataset are depicted in Figure 5. The 

left side displays the distribution of pixel spacing within the slice, with a median of 0.7 mm. On the right side, 

the distribution of slice thickness for CT scan image volumes is shown, revealing a median value of 2 mm or 
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less. 

 
Figure 5. Sample related to pixel spacing and slice thickness. 

The information provided here is derived from a scoring system ranging from 1 to 5 was used to assess 

the presence of a certain trait in Figure 6. A score of 1 indicated a low presence of the trait, while a score of 5 

indicated a strong presence as shown in Figure 5. The level of agreement among four individuals who 

annotated a nodule as belonging to a specific type of structure determined the number of annotations assigned 

to each nodule. The total annotations for a given nodule could vary from one to four. Identifying which 

annotations referred to the same physical nodule in a scan proved challenging due to the lack of a universally 

unique identifier for the physical nodules among the various annotations. 

 
Figure 6. Distribution of annotation values for image features and malignancy. Note the excluded bin for the indeterminate 
malignancy value of 3. 

Figure 7 displays the center (17th) slice through the image volume of each of the 20 lung nodules in the 

testing dataset. The red curve in the figure represents the contour from the slice, obtained through the ground-

truth segmentation surface. On the other hand, the blue curve represents the contour from the slice, acquired 

through the approximate segmentation surface using the proposed method with the zero level set. The results 

depicted in Figure 7 demonstrate the effectiveness of the proposed method across various contexts. This 

includes successful segmentation of juxta-pleural nodules (e.g., Figure 7(14,15)), nodules with cavities (e.g., 

Figure 7(11,12)), non-solid nodules (e.g., Figure 7(8)), and irregularly-shaped nodules (e.g., Figure 7(20)). 

These visual observations, coupled with the previously mentioned quantitative results, affirm the success of 

the proposed approach in lung nodule image segmentation within CT image volumes. 
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Figure 7. The effectiveness of the proposed method across various contexts. 

5. Conclusion 

In this paper VLSM algorithm has greatly changed the traditional medical model. Its convenient specimen 

collection and dynamic detection greatly facilitate the clinic. At present, VLSM can be used for early disease 

detection, prognosis, recurrence monitoring and personalized cancer treatment. In addition, single-cell 

sequencing of VLSMs enables the identification of point mutations in oncogenes, reveals the dynamics of 

genetic mutations in patients undergoing cancer treatment, and predicts drug resistance and phenotypic 

transformation, ultimately providing a truly personalized approach to medicine. Liquid biopsy and noninvasive 
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analysis will undoubtedly continue to play an important role in the overall evaluation and treatment of NSCLC 

patients. However, the results of single-cell gene sequencing of VLSM, that is, the detection of immune 

markers, are not completely consistent with the results of tissue detection commonly used in clinical practice. 

There is no unified conclusion on which of the two can better represent the characteristics of the tumor. Further 

large-sample research is needed, and dynamic monitoring of gene target site mutations and changes in immune 

markers on VLSM is expected to become an indispensable routine evaluation method in the diagnosis and 

treatment of NSCLC. 
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