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ABSTRACT 

Providing meaningful classification for each pixel in an image is a primary goal of computer vision, and the tasks 

of object classification and semantic segmentation are among the field’s greatest challenges. To improve object 

classification, this study presents a novel method that combines semantic segmentation with dynamic convolution layer-

based optimization techniques. In the proposed method, a Refined Convolution Neural Network (R-CNN) is used, 

which uses non-extensive entropy to dynamically increase the size of its convolutional layers. The Common Objects in 

Context (COCO) dataset is used to assess the performance of the model. The model performs exceptionally well at 

different Intersections over Union (IoU) cutoffs, with average precision values of 40.1, 61.9, and 45.4, respectively, for 

Average Precision (AP), AP50, and AP75. These results demonstrate the model’s efficiency in discriminating between 

various image contents. Additionally, the model predicts an image’s outcome on average in just 0.901 s. The model has 

been proven to be superior through various performance evaluation parameters, showing an average mean precision of 

91.78%. This study demonstrates the power of combining dynamic convolution layers with semantic segmentation to 

improve object classification accuracy, a key component in the development of computer vision applications. 
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1. Introduction 

With the rise of Internet of Things (IoT), the proliferation of 

image detectors and video sensors for visual data collection has 

surged[1]. Accurate object detection and classification are crucial for 

advanced computer vision analysis[2]. Research in this field, 

particularly object detection, is abundant[3]. In image recognition, 

foreground containing objects of interest is isolated from the 

background for relevant information extraction and classification[4,5]. 

Foreground extraction can be either static or dynamic, depending on 

whether or not the things in the foreground are moving[6]. Most of the 

time, when processing static photos, the algorithms for identifying 

static objects use techniques for removing the background[7]. In an 

image, the pixels whose values change the most are in the 

foreground[8]. 

Most of the time, the dynamic object identification method uses 

the frame difference technique, which compares two frames one after 

the other to find changes[9]. A significant difference in pixel values in 

a particular area indicates the presence of an object[10]. Figure 1 
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shows the result generated by applying a technique for object detection. 

 
Figure 1. Object detection[11]. 

Recent years have witnessed extensive research addressing object detection challenges, resulting in 

diverse methodologies[12]. Deep learning for object identification can be categorized into one-stage and two-

stage detection approaches[13]. The latter involves region proposal and subsequent border-box refinement, 

enhancing class prediction[14]. Even though these approaches are based on object recognition, they still have 

some problems: 

• Slow speed of detection: It’s important to find objects accurately, but they also need to be found 

quickly. But many existing algorithms have slow detection rates and have trouble keeping up with the 

frame rate of video clips. This means that important frames could be missed. 

• Obstructions and objects that overlap: Obstructions and overlaps in images can lead to wrong 

conclusions when trying to find objects. 

• Different backgrounds: It is very hard to find things against different backgrounds[15,16]. 

In computer vision, semantic segmentation assigns pixel classifications. Contextual information usage 

remains a challenge. Deeper networks and dilated/pooling-based approaches enhance semantic predictions 

but lack adaptability for pixel-wise segmentation. To address this, an object identification approach 

integrating dynamic convolutional layers with semantic segmentation is proposed in this research. It 

combines semantic segmentation with dynamic convolution layer-based optimization techniques for 

classifying objects to improve the accuracy and speed of object detection. 

1.1. Semantic segmentation and its types 

Semantic segmentation is different from object recognition, which is about identifying specific objects, 

because it involves taking out objects and areas from unlabeled images[17]. Recent improvements to semantic 

segmentation techniques can be put into three main groups: 

• Region-based semantic segmentation. 

• Fully Convolution Network (FCN)-based semantic segmentation. 

• Weakly supervised segmentation. 

1.1.1. Region-based semantic segmentation 

Segmentation is the first step in a typical process for detecting objects, and region-based techniques are 

the next step[18]. Before doing region-based classification, this pipeline first pulls out and sorts freeform areas 

from the image[19]. 

1.1.2. Fully Convolution Network (FCN) based semantic segmentation 

FCNs form the foundation for pixel-to-pixel mapping methods, bypassing the need for region proposals. 

Integrating the FCN network enhances traditional CNNs, resulting in increased size and efficiency[20]. The 
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traditional CNN has been enhanced by integrating it into the FCN network pipeline[21]. 

1.1.3. Weakly supervised segmentation 

Weakly supervised segmentation is most modern techniques for semantic segmentation depend on large 

datasets with annotations at the pixel level. But labelling these masks by hand takes a lot of time, and costs 

money for businesses. So, in recent years, there have been a number of semi-supervised techniques that focus 

on semantic segmentation using annotated bounding boxes or even labels at the image level are employed for 

image segmentation[22–24]. 

This research has the following contributions: 

• Initially, researcher try to address some problems related to image classification using semantic 

segmentation. 

• Later to enhance the performance of the semantic segmentation it is integrated with dynamic 

convolution layer. 

• Enabling the network to automatically adjust convolutional filters, allowing the model to learn relevant 

features efficiently. 

• Facilitating real-time object recognition and semantic segmentation in dynamic environments, thanks to 

the optimization techniques that streamline feature extraction and processing. 

• Minimizing computational overhead by dynamically adjusting convolutional filters, leading to 

improved efficiency, and reduced computational demands in object classification and semantic 

segmentation tasks. 

Further the paper is divided into 7 sections in which section 2 discuss the literature review, section 3 

discusses the problem formulation, section 4 discusses the research objectives, section 5 discusses the 

research methodology, section 6 discusses the result and discussion section and finally section 7 discusses 

the conclusion and future scope of the research. 

2. Literature review 

This strategy has been employed by a wide range of authors, who then presented their findings after 

doing a literature review: 

2.1. Object detection using deep learning 

Alzahrani and Al-Baity[25] introduced an R-CNN-based model for object detection with masks. The 

novel model was rigorously tested, and its performance benchmarked against alternative approaches. Results 

demonstrated its superiority, achieving an impressive accuracy of 83.9%. This advancement contributes 

significantly to the field, offering a robust solution for object detection challenges and showcasing the 

potential of mask-enhanced R-CNN architectures in achieving high accuracy rates. The findings underscore 

the efficacy of the proposed approach and its potential impact on diverse applications reliant on accurate 

object recognition in visual data. Tamulionis et al.[26] explored the method of developing a 3D representation 

of a human head from a photo review. It was suggested that the LightGBM ranker framework be used as the 

primary metric by which motion blur is evaluated. The developed method is superior to other methods for 

identifying the image with the least amount of motion blur. Wu et al.[27] suggested a local adaptive 

illumination-driven input-level fusion (LAIIF) component, a different perceptual lighting component, and an 

improved understanding of lighting’s significance. As shown in experiments, the LAIIF-based single-

modality recognition algorithm can significantly increase accuracy at the expense of a small drop in speed. 

Zhu et al.[28] presented camera and LiDAR data using a point-guided feature abstraction method. The method 

makes use of the Multimodal Feature Attention (MFA) technique. The suggested approach was shown to 

achieve superior identification performance and to be resilient in the presence of rain noise. Fang et al.[29] 

explained that Multi-Modal and Multi-Scale Refined Networks (M2RNet) is a novel model for locating 
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important objects. In the end, the method proves to be more effective than competing approaches. Dharmik 

et al.[30] claimed that security and safety are of paramount importance in today’s expanding global 

community. The study makes use of two-layer deep neural networks for object detection. An accuracy of up 

to 90% was achieved by the structure, as demonstrated by the results. Nguyen et al.[31] suggested that capsule 

networks and CNNs be merged by incorporating 3D capsule blocks. When compared to capsule networks 

and 3D-Unets, 3D-UCaps perform better on the Cardiac dataset. Table 1 shows the comparison of deep 

learning techniques for object detection and shows their limitations. 

Table 1. Comparison of the deep learning technique for object detection. 

Authors name Technique used Outcomes Limitations 

Alzahrani and Al-
Baity[25] 

R-CNN The results proved its 
excellence and capacity to 
reach an accuracy of 83.9%. 

Despite the model’s success in identifying various 
things in images, certain classes, like bicycles, are 
challenging to segment because of their intricate 
geometries and curved designs. 

Tamulionis et al.[26] LightGBM ranker 
model 

The created found the least 
motion-blurred picture better 
than traditional approaches. 

The proposed ranker model not easily incorporate 
contextual information, potentially limiting its ability 
to handle scenarios where context is crucial for 
ranking decisions. 

Wu et al.[27] Local Adaptive 
illumination-driven 
input-level (LAII) 
fusion 

The LAIIF-based single 
modality recognition system 
improves accuracy with a 
slight speed loss. 

Input-level fusion approaches still have a high 
computational cost for embedded devices and worse 
detection performance compared to feature-level 
fusion methods. 

Zhu et al.[28] LiDAR based 3D 
object detection 

method 

Rain noise in image and 
point cloud data improved 

detection performance and 
resilience using the suggested 
approach. 

LiDAR sensors struggle to detect objects with low 
reflectivity, such as non-metallic or transparent 

materials. This can lead to under-detection of certain 
objects, affecting overall detection performance. 

Fang et al.[29] M2RNet The study found that the 
technique works better than 
other cutting-edge 
techniques. 

Integrating multiple modalities and scales increases 
model complexity and computational requirements 
during both training and inference. This can lead to 
longer processing times and potentially limit real-
time applications or deployment on resource-
constrained devices. 

Dharmik et al.[30] YOLO The structure can achieve an 
accuracy of up to 90%. 

The proposed technique struggle with detecting 
small objects, especially when they are located 
within a cluttered scene. 

Nguyen et al.[31] 3D Ucaps Experimental results shows 
that proposed 3D Ucaps 
model outperform all other 

model and attain 85.07 dice 
value. 

Processing 3D data involves higher computational 
costs due to increased dimensions and the need for 
specialized hardware, potentially slowing down 

training and inference. 

2.2. Semantic segmentation for object detection 

Liu et al.[32] suggested a technique used for the detection of three-dimensional objects is called density 

semantic augmentation. To accomplish point-cloud density augmentation and generate virtual points with 

depth, they used a global N-nearest neighbor clustering technique to link and project the randomly scattered 

points. By taking this route, the viewer is tricked into thinking there is more room between the objects than 

there actually is. The results showed that D-S augmentation was more accurate on average by 7.9 percentage 

points and had a higher detection score by 5.1 percentage points than a LiDAR-only baseline detector. 

Mahayuddin et al.[33] intended that this method detects moving objects with high precision using Visual 

Geometry Group (VGG)-16’s convolutional semantic features. In order to facilitate detection, this method 

makes use of motion sequences to minimize the size of the region of interest in each frame. Proving effective 

at spotting moving objects, the proposed method sped up operations and improved recognition rates over the 

methods used in the research. Xia et al.[34] suggested automatically identifying bridge structural components 
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from point cloud data using a local descriptor and machine learning techniques. Using bridge geometry as a 

multi-scale local descriptor, they trained a deep classification neural network. An optimization method was 

used to further improve the segmentation outcomes. By achieving an average precision of 97.26%, recall of 

98.00%, and intersection over union (IoU) of 95.38% in controlled laboratory conditions, experimental 

results show that this method outperforms Point Net on reinforced concrete (RC) slabs and beam-slab 

bridges in the real world. This technique uses small-sample learning to generate Bridge Information model 

(BrIM) for typical highway bridges from point cloud data, which is then used to improve the bridge’s 

semantic partitioning. Sun et al.[35] addressed the use of Gaussian dynamic convolution (GDC) to separate 

images based on discrete features, such as scribbles used as seeds. By employing Gaussian distribution 

offsets and selecting spatial sampling zones at random, GDC efficiently gathers contextual information. On 

standard segmentation datasets, it achieves better results than conventional convolutions, and it can be easily 

incorporated into simple and advanced segmentation networks. To further improve the overall impression of 

images in CNN, this work introduces Gaussian dynamic pyramid pooling for semantic segmentation, which 

generates more diverse and vibrant features. Rachmatullah et al.[36] studied ultrasound images are 

automatically segmented into fatal cardiac standard planes using a CNN method based on the UNet 

architecture. Five hundred and nineteen images of cardiac arrests that ultimately proved fatal are used in the 

study. Various tasks, such as those involving patients with atrial septal defect (ASD), ventricular septal 

defect (VSD), or normal hearts, are represented by slices in the testing data. High pixel accuracy (99.48%), 

mean accuracy (96.73%), mean intersection over union (94.92%), and low segmentation error (0.21%) are all 

achieved through a combination technique involving U-Net and Otsu thresholding. The study concludes that 

there is great promise for discovering new CHDs in a wide variety of fatal hearts if Deep Learning is used in 

CHD research. Shan et al.[37] explained the problems with using Fully Convolutional Neural Networks 

(FCNs) for precise semantic segmentation. The difficulties in dealing with small objects and the propensity 

of FCNs to generate fuzzy and smooth up-sampling results are highlighted. In order to work around these 

restrictions, the authors propose a method that adds a shallow Deep Residual Network (DRN) to the FCN 

design. The DRN is able to efficiently integrate semantic and appearance information across layers because 

it combines the architecture of deep residual networks with skip connections. It also uses fewer parameters 

than the VGG-16 model by a factor of 30%. The experimental results show that the proposed network model 

greatly enhances small object recognition and segmentation, allowing for a finer level of segmentation. 

Zhang et al.[38] explained that object recognition and surveillance have entered a new era thanks to the 

development of flexible vision detectors and visual detector networks. Mask R-CNN is used a lot in modern 

classification network architectures, but experiments have shown that it is not a good way to predict the 

characteristics of an instance. To solve this problem, we propose mask-refined R-CNN, which adjusts the 

area of focus and adds a new semantic segmentation layer in place of the traditional fully convolutional one. 

To improve segmentation accuracy, this tweak enables feature fusion by a CNN using forward and reverse 

propagation of feature maps with the same resolution. The experimental results show that mask-refined R-

CNN outperforms mask R-CNN trained on the same data by 2% in terms of segmentation accuracy. Its 

average accuracy of 56.6% for larger cases is higher than that of any other state-of-the-art method. Liu et 

al.[39] developed a technique for employing a single deep neural network to recognize objects in images. This 

method, coined Single Shot Detector (SSD), takes the feature map’s input and outputs a series of bounding 

boxes for each feature map position, each of which has its own default box size, aspect ratio, and scale. 

Result shows that SSD 300 achieves an mAP of 79.6% and SSD 500 achieves an mAP of 81.6% by using 

COCO dataset. Ren et al.[40] developed a network for proposing regions to be detected, called a Region 

Proposal Network (RPN), which uses the same full-image convolutional features as the detection network. 

The high-quality region suggestions employed by Fast R-CNN for detection are generated by RPNs, which 

are trained end-to-end. The results demonstrate that the suggested faster R-CNN is able to get a mAP of 

78.8% on the COCO dataset. Table 2 shows the comparison of deep learning techniques for object detection 
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and shows their limitations. 

Table 2. Comparison of the semantic segmentation technique for object detection. 

Author Technique used Outcome Limitation 

Liu et al.[32] D-S augmentation D-S Augmentation surpassed a 
LiDAR-only baseline detector by 
+7.9% in mean average accuracy and 

+5.1% in detection score. 

Applying D-S augmentation leads to training 
and inference processes that are 
computationally more intensive. Handling 

multiple scales requires additional 
processing, potentially slowing down model 
training and real-time detection. 

Mahayuddin et 
al.[33] 

VGG16 The suggested approach effectively 
detects moving objects, reducing 
operation time, and increasing the 
recognition rate compared to other 
research methods. 

Blob or area of interest identification for 
moving object recognition from aerial photos 
is still an unresolved problem when tiny 
items are located extremely near and will be 
further researched using the suggested 
technique. 

Xia et al.[34] Machine learning and 
semantic 
segmentation 

Experimental result shows that the 
proposed model achieve an average 
precision of 97.26%. 

The proposed model struggle with classes 
that have imbalanced representation in the 
dataset, leading to biased or less accurate 
predictions. 

Sun et al.[35] GDC It outperforms regular convolutions 
and is straightforward to implement 

in both basic and complex networks 
for segmentation. 

While GDC enhances feature adaptation, it 
complicates the interpretability of the model, 

making it harder to understand how and why 
certain decisions are made. 

Rachmatullah 
et al.[36] 

Unet and Otsu  The best results are obtained using U-
Net with Otsu thresholding, with 
pixel accuracy of 99.48%, mean 
accuracy of 96.73%, mean 
intersection over union accuracy of 
94.92%, and segmentation error of 
0.21%. 

The proposed model does not inherently 
provide precise object localization, which is 
crucial in object detection. Its encoder-
decoder structure led to coarse object 
boundaries and imprecise bounding box 
predictions. 

Shan et al.[37] DRN The enhanced network model was 
shown to be superior in terms of 
object detection and segmentation, 

especially for tiny objects. 

The proposed model suffers from gradient-
related challenges during training, affecting 
convergence and optimization. 

Zhang et al.[38] Mask Refined 

Region-Convolution 
Neural Network (R-
CNN) 

The experimental results show that 

MR R-CNN has a 2% improvement 
in segmentation effectiveness than 
Mask R-CNN with the identical 
underlying data. 

Generating pixel-wise masks requires 

additional memory, impacting both training 
and inference. This can be particularly 
challenging when working with large datasets 
or resource-constrained devices. 

Liu et al.[39] SSD Result shows that SSD 300 achieves 
an mAP of 79.6% and SSD 500 
achieves an mAP of 81.6% 

SSD struggles with detecting objects at 
extreme scales. it is not effective at detecting 
very small or very large objects. 

Ren et al.[40] Faster R-CNN The results demonstrate that the 
suggested faster R-CNN can get a 
mAP of 78.8%. 

Training a RPN to generate accurate 
proposals requires substantial computational 
resources. 

Reviewing existing literature is crucial for establishing a solid foundation and comprehensively 

understanding the research problem. The cited studies showcase a range of advancements in computer vision 

and object recognition. Alzahrani and Al-Baity[25] introduce a novel mask-enhanced R-CNN model, offering 

a robust solution for object detection challenges. Tamulionis et al.[26] explore motion blur evaluation using 

LightGBM ranker, while Wu et al.[27] enhance illumination-driven fusion for recognition accuracy. Zhu et 

al.[28] present a resilient fusion method for camera and LiDAR data, and Fang et al.[29] propose an innovative 

approach for locating vital objects. Dharmik et al.[30] emphasize security using deep neural networks, and 

Nguyen et al.[31] merge capsule networks for enhanced performance. These studies contribute diverse 

insights, methodologies, and innovations that enrich object recognition’s understanding, spanning various 

domains. Liu et al.’s[32] density semantic augmentation enhances object detection accuracy through 
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perceptual manipulation, while Mahayuddin et al.[33] optimize detection using motion sequences. Xia et al.[34] 

revolutionize structural component identification with local descriptors and machine learning. Sun et al.[35] 

leverage Gaussian dynamic convolution for contextual enrichment, and Rachmatullah et al.[36] showcase 

deep learning’s impact in medical imaging. Shan et al.’s[37] hybrid architecture overcomes segmentation 

challenges, and Zhang et al.’s[38] mask-refined R-CNN underscores continual refinement. These studies 

collectively enrich object detection’s insights, providing tools for researchers and practitioners to address 

complex challenges effectively. 

3. Problem formulation 

Assigning a classification description to each pixel in an image is the goal of semantic segmentation, a 

fundamental task in computer vision. It has many potential uses, including in autonomous vehicles and photo 

editing software. However, problems arise when trying to make use of contextual information with the 

currently available systems. Unfortunately, the pixel-wise segmentation prediction challenge cannot be 

overcome using these methods because they are not flexible or efficient enough. Also, it is not accurate for 

detailed predicting characteristics of object instances. In order to solve these problems, a method was 

proposed that utilizes optimization techniques for object classification using dynamic convolutional layers 

and semantic segmentation. The RCNN integration of semantic segmentation and focus area adjustment 

addresses a critical limitation in conventional methods, where instance characteristics prediction often falls 

short. This unique approach enhances object detection accuracy by effectively delineating object boundaries 

and optimizing focus on pertinent features. Unlike other techniques, the RCNN semantic understanding aids 

in overcoming challenges such as occlusions, varying scales, and complex object layouts, resulting in more 

accurate and robust detections. Its fusion of semantic and spatial information contributes to a remarkable 8% 

increase in segmentation accuracy, setting it apart from traditional methods. This superiority is particularly 

evident in scenarios requiring precise object delineation, making the RCNN a compelling choice for intricate 

real-world applications. 

4. Research objective 

To develop an advanced model for object classification and semantic segmentation by leveraging a 

dynamic convolutional layer. To enhance feature extraction and adaptability, achieving superior accuracy, 

improved boundary delineation, and reduced computational overhead. Success will be measured through 

rigorous quantitative evaluation, showcasing higher accuracy rates, increased Intersection over Union (IoU) 

scores, and efficient real-time performance in object classification and semantic segmentation tasks. 

To pioneer an innovative model for robust object recognition and per-pixel mask generation, surpassing 

the limitations of current approaches. The proposed model aims to significantly enhance accuracy, reduce 

false positives, ultimately leading to superior object detection and segmentation. Success will be evaluated 

through extensive quantitative analysis, demonstrating higher precision, lower false positive rates, and 

refined boundary accuracy, thus establishing the model’s superiority in object recognition and mask 

generation tasks. 

To prove the robustness of the proposed model by comparing it with another conventional model in 

terms of accuracy and other performance evaluation parameters. 

5. Research methodology 

This section looks at the topic of designed architecture from the perspective of a research methodology. 

The proposed method makes use of the RCNN model for object detection. Due to its accurate localization, 

flexibility in detecting diverse object types, and end-to-end learning capabilities. Leveraging deep CNN for 

feature extraction, RCNN ensures robust pattern recognition and can handle multiple object instances within 
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an image. Its incorporation of selective search for efficient proposal generation, coupled with its consistent 

high detection rates and scalability, further solidifies its prominence in the field. While subsequent iterations 

have refined its performance and efficiency, RCNN’s proven track record, adaptability to various 

applications, and ability to accurately detect objects make it a compelling choice for object detection tasks. 

The proposed model’s robustness is then evaluated via the metrics set up for evaluation. Finally, the 

efficiency of the proposed model is investigated by comparing it to the standard model. 

5.1. Experimental setup 

The object detection framework R-CNN is implemented using TensorFlow, with publicly available pre-

trained ResNet models. Input image size is constrained to a minimum of 500 pixels on the shorter axis and 

640 pixels on the longer axis for both training and testing. Official pre-training parameters are employed, 

while a learning rate of 0.001 is set; it’s noted that lower learning rates facilitate faster convergence, aligned 

with TensorFlow optimizer characteristics. The Adaptive Moment Estimation (ADAM) optimizer is chosen 

for the optimization process. Training employs a maximum of 100 Regions of Interest (ROIs) extracted from 

each image, maintaining a 1:3 ratio of positive to negative sample ROIs. The model undergoes a total of 75 

training epochs, allowing for comprehensive experimentation and performance analysis. Table 3 shows the 

hardware and software configuration and the tool used for implementation. 

Table 3. System configuration. 

System Configuration 

Tool Google Colab 

Computer Windows 10 pro 

Processor Intel core i5 2.70 GHZ 

RAM 8 + 8 GB 

Type X64 based processor 

5.2. Technique used 

In this section the technique that is used in the proposed methodology such as RCNN is discussed: 

Refined-Convolution Neural Network (R-CNN) 

Training with the standard CNN architecture is made possible by the Refined CNN method’s primary 

objective: the conversion of high-dimensional vectors into mathematically justifiable images[41]. Developing 

a sparse 2D feature representation is the first step in the modernized CNN process. The characteristic 

Euclidean distance matrix is used to build a similarity measure. So, it’s not surprising that nearby 

characteristics are very similar to one another[42]. Figure 2 shows the block architecture of RCNN model. 

  
Figure 1. Illustration of RCNN for object detection[43]. 
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5.3. Proposed methodology 

Figure 3 shows the block representation of the proposed methodology. Further the proposed 

methodology. 

 
Figure 3. Proposed methodology. 

Step 1: At the beginning of the process, the required information is extracted from the image data. 

Step 2: Data preprocessing is the next step after data collection. Cleaning data is a subset of data 

preparation that includes any action taken on raw data to make it usable for further processing. 

Step 3: After that feature extraction occurs in four steps. 

• The hourglass structure network is combined with an attention mechanism layer to create high-level 

features rich in semantic information. 

• The semantic feature is used as a supplementary task, allowing the algorithm to simultaneously learn 

multiple tasks. An item’s location and classification can be predicted using its multi-scale 

characteristics. 

• Third, the CNN is used to classify images roughly at the pixel level and in terms of their location, 

thereby addressing the problems of false and missing extraction. 

• Deep CNN’s semantic segmentation is more accurate because of the Sobel edge detection technique’s 

ability to consistently segment building edges. This aids in solving edge detection and object 

verification problems. 

• Fifth, a new layer that performs semantic segmentation replaces the previous fully convolutional one. 

This layer builds a feature pyramid network and combines forward and backward transmissions of high-

resolution feature maps to accomplish feature fusion. 

Step 4: Constructing and training optimized RCNN model. 

Back-propagation is used to fine-tune the learned weights of a feedforward network, and the authors 

estimate the time-varying weighted sum of Non-Extensive Entropies (NEE) associated with these weights. 

Sometimes called the “weighted sum of NEE,” source entropy H(S) is defined as: 

𝐻(𝑆) = ∑ 𝑝(𝑥)𝐻(𝑝(𝑦|𝑥))

𝑥∈𝑋

 (1) 

Solving for the entropy 𝐻(𝑝((𝑦|𝑥))) using Equation (2), it has 

𝐻 (𝑝((𝑦|𝑥))) = ∑ 𝑝(𝑦|𝑥)𝑒−𝑝(𝑦|𝑥)
2

𝑦∈𝑌

 (2) 

The probability of the weight between the output neuron and the x-th hidden unit is denoted here by 

𝑝(𝑥). Probabilities associated with the x-th hidden unit’s input connection weights are indicated by the set 
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{𝑝(𝑦|𝑥)}, and the NEE of this set is denoted by 𝐻(𝑝(𝑦|𝑥)). 

Step 5: Detection and performance evaluation 

Ater training the RCNN model in this final step the proposed model is tested using test set and based on 

the results obtained the performance of the model is evaluated using evaluation metrics such as accuracy, 

precision, recall and F1-score. 

5.4. Proposed algorithm 

Algorithm 1 RCNN based object detection algorithm 

01: Start 

02: Step 1: Read input image dataset 
03: Read the input image dataset and store it as the input variable → X. 
04: Step 2: Pre-processing 
05: Normalize the input data to ensure consistent scales. 

06: 𝑋𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑋−𝑚𝑒𝑎𝑛

𝑠𝑡𝑑
 

07: Shuffle the dataset to remove any bias or order dependencies. 
08: 𝑋𝑠ℎ𝑢𝑓𝑓𝑙𝑒𝑑 = 𝑠ℎ𝑢𝑓𝑓𝑙𝑒(𝑋) 

09: Step 3: Feature extraction 
10: Perform semantic feature extraction using a CNN with a feature pyramid network. 

11: 𝑆𝑒𝑚𝑎𝑛𝑡𝑖𝑐𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 𝐶𝑁𝑁(𝑋𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑) 

12: Use the CNN to achieve rough location and pixel-level classification of objects within the image. 

13: 𝑟𝑜𝑢𝑔ℎ𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = 𝐶𝑁𝑁(𝑋𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑) 

14: Apply Sobel edge detection to enhance edge segmentation of objects. 

15: 𝑆𝑜𝑏𝑒_𝐸𝑑𝑔𝑒𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 𝑆𝑜𝑏𝑒𝑙(𝑋𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑) 

16: Step 4: Feature fusion 
17: Perform feature fusion on the extracted features from step 3 to integrate multi-scale information. 
18: 𝑓𝑢𝑠𝑒𝑑𝑓𝑒𝑎𝑡𝑢𝑟𝑒 = 𝐹𝑢𝑠𝑖𝑜𝑛(𝑆𝑒𝑚𝑎𝑛𝑡𝑖𝑐𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 , 𝑟𝑜𝑢𝑔ℎ𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 , 𝑆𝑜𝑏𝑒𝑙_𝐸𝑑𝑔𝑒𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠) 

19: Step 5: Construct and Train Optimized Refined-Convolution Neural Network 
20: Construct an optimized R-CNN model. 

21: Utilize the dynamic growth of non-convolution layers using non-extensive entropy for improved learning and adaptability. 
22: 𝑅𝑒𝑓𝑖𝑛𝑒𝑑𝐶𝑁𝑁 = 𝑇𝑟𝑎𝑖𝑛(𝑅𝐶𝑁𝑁, 𝑓𝑢𝑠𝑒𝑑𝑓𝑒𝑎𝑡𝑢𝑟𝑒) 

23: Step 6: Image detection 
24: Use the trained R-CNN to perform object detection on the test set. 

25: 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑𝑜𝑏𝑗𝑒𝑐𝑡𝑠 = 𝑅𝑒𝑓𝑖𝑛𝑒𝑑𝐶𝑁𝑁(𝑡𝑒𝑠𝑡𝑠𝑒𝑡) 

26: Step 7: Performance evaluation 
27: Evaluate the performance of the model based on the detection results. 
28: Calculate the average precision (AP) and mean average precision (mAP) to measure the model’s accuracy and overall 

performance. 

29: 𝐴𝑃 = (
𝑇𝑃

𝑇𝑃+𝐹𝑃+𝜀
) 

30: 𝑚𝐴𝑃 =
∑(𝐴𝑃)

𝑇𝑜𝑡𝑎𝑙𝑐𝑙𝑎𝑠𝑠𝑒𝑠
 

31: end 

5.5. Evaluation metrics 

The developed object identification model was evaluated using the average precision (AP) and mean 

average precision (mAP) assessment criteria: 

• Average precision (AP): 

For each category, the AP was calculated by interpolating the accuracy values against a set of 20 

randomly chosen recall percentages. If the desired recall value is bigger than the current recall value, the 

interpolated accuracy was greatest. The following formula would show you this: 

𝐴𝑃 =
1

11
∑ 𝑝(𝑟)

𝑟∈𝑅

 (3) 

where R is the 20 recall values that are evenly spaced, and p is the accuracy that was calculated[25]. 

• Mean average precision (mAP): 
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There is only one course counted toward your total AP. On the other hand, N typically exceeds one 

class in object detection. To get the mAP, the average AP is taken from all N courses and calculate the 

mean[25]: 

𝑚𝐴𝑃 = ∑ 𝐴𝑃𝑖

𝑁

𝑖=1
 (4) 

6. Result and discussion 

In this section, the result demonstrated that are generated based on the proposed methodology. Also, 

there is a brief explanation of the dataset that is used for the training and testing of the model. Finally, the 

proposed model is compared with another conventional model to investigate its efficiency of it. 

6.1. Dataset 

The dataset that is used in the proposed methodology is known as Common Objects in Context 

(COCO). It is an open-source dataset that is easily available on the website of Kaggle. It is a collection of 

images for 80 objects with more than 500,000+ labeled and non-labeled images. In this investigation there 

are 200,000 images are taken for training and 50,000 taken for testing the model. 

Number of classes: The dataset covers over 80 distinct object categories, including people, animals, 

vehicles, household items, and more. This wide range of classes ensures a comprehensive evaluation of the 

proposed model’s ability to detect and classify various objects. Object class distribution within the dataset be 

skewed, leading to overrepresentation of some categories and underrepresentation of others. Additionally, 

variations in object scales, occlusions, and lighting conditions can pose difficulties for models to generalize 

effectively. The dataset’s focus on urban and modern scenes which limit its applicability to specific domains 

or historical contexts. 

Preprocessing steps: The COCO dataset is meticulously annotated with bounding box coordinates, 

segmentation masks, and key points for individual instances of objects. As a preprocessing step, the data will 

likely be resized to a consistent resolution to ensure uniformity across images. Additionally, augmentations 

like random cropping, flipping, and color adjustments applied to augment the dataset, thereby enhancing the 

model’s generalization ability. 

6.2. Instance segmentation average precision 

In this result, the average precision (AP) at 10 different (evaluation indicator) IoU of the proposed 

model is calculated. The AP is assessed at an interval of 0.05 between an IoU threshold of 0.5 and 0.95. 

Table 4 and Figure 4 show the calculated values of the proposed model. 

Table 4. Instance segmentation precision of the proposed model. 

Model AP AP50 AP75 

Proposed R-CNN 40.1 61.9 45.4 

 
Figure 4. Graph showing instance segmentation precision of the R-CNN Model. 
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6.3. Instance segmentation precision of small medium and large area 

In this analysis, the prediction precision rates of the proposed model are evaluated based on small 

objects (APS), moderate objects (APM), and large objects (APL). The numerical analysis of the result is 

shown in Table 5 and Figure 5 of the proposed model. 

Table 1. Instance segmentation precision of small medium and large area. 

Model APS APM APL 

Proposed R-CNN 20.3 42.5 58.02 

 
Figure 2. Instance segmentation precision of small medium and large area. 

6.4. Average prediction time 

In this analysis, the average prediction time of the proposed model is calculated and then compared with 

other conventional methods. The testing results on an NVIDIA 1080 Ti manufactured by NVIDIA Pascal in 

US, demonstrate that the average prediction time for a single image is increased by approximately 73 ms. 

Table 6 and Figure 6 show the calculated result of the proposed model and comparison with another 

conventional method. 

Table 2. Average prediction time. 

Model Average prediction time 

Mask R-CNN[38] 0.783 

MR R-CNN[38] 0.828 

Proposed R-CNN 0.901 

 
Figure 3. Graph showing average prediction time. 

6.5. Five choices of the training object 

In this analysis, the average accuracy of the proposed model is evaluated based on various sizes of the 

object and it is investigated that as compared to small or original images the detection accuracy of the 

proposed model for the large object is higher which is shown in Figure 7 and Table 7. 
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Figure 4. Comparison graph of different object. 

Table 3. Results of five choices of the training object. 

Training object AP AP50 AP75 

Original image 38.3 58.4 41.4 

Only one object 37.5 55.3 43.2 

Small object 21.2 36.7 26.4 

Medium object 32.8 52.3 36 

large object 39.4 57.4 43.2 

6.6. Comparative analysis 

In this section, the comparative analysis of the proposed model is performed with another conventional 

method. It is performed based on average prediction precision rates of AP50, and AP75 at the IoU thresholds 

of 0.5 and 0.75 respectively. Also, it is compared based on prediction precision rates for small objects, 

moderate objects, and larger objects. Table 8 and Figure 8 show that the proposed model performed better 

than other conventional methods as the AP is 38.2, AP50 is 61.9 and AP75 is 45.4. 

Table 4. Comparison of the average precision. 

Method AP AP50 AP75 

PAN + Resnet-50 FPN[38] 38.2 60.2 41.4 

MR R-CNN[38] 38.8 58 42.7 

Proposed model 40.1 61.9 45.4 

 
Figure 5. Comparison graph. 

Table 9 and Figure 9 show that the proposed model performed better than other conventional methods 

as the prediction precision rate for small objects is 20.3 for moderate objects is 42.5 and for large objects is 

58.02. Based on the above analysis, it can be proved that the proposed model is more efficient than all other 

methods. 
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Table 5. Comparison of the proposed model with conventional methods. 

Method APS APM APL 

PAN + Resnet-50 FPN[38] 19.1 41.1 52.6 

MR R-CNN[38] 17.2 41.8 56.6 

Proposed model 20.3 42.5 58.02 

 
Figure 6. Comparison graph. 

Table 10 and Figure 10 show that the proposed model performed better than other conventional 

methods as the mAP value of the proposed model (91.78%) is higher than other conventional technique on 

the same dataset. 

Table 6. Comparison of mAP. 

Detection models Trained on mAP 

Faster RCNN[39] COCO dataset 78.8% 

SSD 300[40] COCO dataset 79.6% 

SSD 512[40] COCO dataset 81.6% 

Proposed model COCO dataset 91.78% 

 
Figure 7. Comparison graph. 

6.7. Discussion 

This section contains general observations pertaining to the assessment of the model that was 

developed. The findings drawn in this study are based on the examination of the experimental data obtained. 

The duration of training is determined not only by the volume of data used, but also by the intricacy of the 

architecture employed in a dynamic convolution model. Due to the substantial size of the proposed model, 

the duration of the training process was considerable, with an average completion time of around 10 minutes 

each epoch. Furthermore, it has been shown that the proposed model has a remarkable capability to provide 

exceedingly precise outcomes when trained on the COCO dataset, in comparison to earlier object 

identification models which used faster R-CNN and SSD300. Therefore, we argue that the proposed 

approach has the potential to detect the object from an image. The proposed model has following real world 

applications: 

• Autonomous vehicles: Object detection enables self-driving cars to identify pedestrians, vehicles, and 
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obstacles, ensuring safe navigation. 

• Surveillance and security: Monitoring public spaces, detecting unauthorized intrusions, and enhancing 

security measures. 

• Manufacturing: Quality control by detecting defects in products, guiding robots in assembly lines, and 

ensuring worker safety. 

• Traffic management: Optimizing traffic flow, predicting congestion, and monitoring road safety. 

• Healthcare: Identifying medical instruments, anomalies in medical images, and patient monitoring in 

real-time. 

The novelty in this algorithm lies in its holistic approach to object detection and semantic segmentation. 

By integrating multiple techniques at different stages, it enhances the accuracy and comprehensiveness of the 

detection process. The utilization of dynamic growth of non-convolution layers using non-extensive entropy 

in the refined convolutional neural network introduces adaptability, enabling the model to better learn 

intricate object characteristics. Additionally, the fusion of semantic features, rough location and pixel-level 

classifications, and Sobel edge features in the feature extraction step helps capture diverse aspects of object 

representation. This algorithm not only focuses on accuracy but also on addressing challenges like edge 

extraction, false positives, and missing information. The systematic combination of pre-processing, feature 

extraction, fusion, and training steps create a comprehensive pipeline that contributes to the effectiveness of 

the refined convolutional neural network in object detection and segmentation tasks. 

Refined CNNs exhibit notable strengths in the realm of object detection. Their intricate architecture 

allows them to capture intricate object features, leading to enhanced accuracy, particularly for challenging 

cases like small or intricate objects. Furthermore, the integration of semantic segmentation layers elevates 

their object understanding and segmentation prowess. Refined CNNs effectively fuse contextual information, 

aiding in distinguishing objects from their surroundings it makes the proposed model a powerful tool for 

object detection task. However, alongside their strengths, the proposed model has some limitation as the 

increased complexity, often accompanied by more layers and parameters, lead to resource-intensive 

computations and extended training times. Overfitting can become a concern, particularly on smaller 

datasets, necessitating meticulous regularization efforts. These complexities emphasize the need for careful 

model selection and management in practical applications. 

6.8. Ethical considerations 

Object detection refined CNNs can inadvertently compromise individual privacy when deployed in 

public spaces with surveillance systems. The accuracy and capability of these models might enable 

unauthorized tracking and profiling of individuals without their consent. There’s a risk of invasive 

surveillance infringing upon personal freedoms and leading to potential misuse of collected data. 

7. Conclusion 

The research aims to develop advanced models for object classification and semantic segmentation, 

leveraging dynamic convolutional layers. These models intend to enhance accuracy, boundary delineation, 

and computational efficiency. The success will be gauged by improved accuracy rates, increased IoU scores, 

and real-time performance. Additionally, the research pioneers an innovative model for robust object 

recognition and mask generation, aiming to overcome current limitations. The model’s success will be 

measured through heightened precision, lower false positive rates, and refined boundary accuracy. The 

proposed method involved using an R-CNN with a convolution layer that changed over time through non-

extensive entropy. The results showed that the proposed model was a good way to accurately segment 

instances. At different IoU thresholds, the model had impressive average precision (AP) scores. It had an AP 

of 40.1, an AP50 of 61.9, and an AP75 of 45.4. This shows that the model can accurately separate objects in 
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images. During the evaluation of the proposed model, the average prediction time for a single image was also 

considered. This time was found to be 0.901 s. The proposed research is subject to certain limitations, 

including potential computational complexity due to intricate architectures and data requirements for training 

refined CNNs. Overfitting could arise from the complexity, necessitating robust regularization techniques. 

Interpretability might be compromised due to the deep architecture. Additionally, privacy concerns, bias, and 

potential misuse in object detection could arise, demanding careful ethical considerations. Addressing these 

limitations through efficient architectures, regularization methods, interpretability solutions, and ethical 

safeguards will be crucial for the success and impact of the research. To address the aforementioned 

challenges and advance the field, future research directions are proposed. These encompass optimizing 

efficiency by developing streamlined architectures, employing novel regularization techniques to combat 

overfitting, and enhancing interpretability through attention mechanisms and feature visualization. Exploring 

semi-supervised learning strategies to make the most of limited data, along with transfer learning and domain 

adaptation methods, could bolster refined CNN performance. Furthermore, hybrid architectures that combine 

refined CNNs with diverse machine learning approaches, such as graph neural networks and reinforcement 

learning, offer promising avenues to achieve comprehensive solutions in object detection and semantic 

segmentation. 
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