
Journal of Autonomous Intelligence (2023) Volume 6 Issue 3 

doi: 10.32629/jai.v6i3.973 

1 

Original Research Article 

An improved fuzzy c-means-raindrop optimizer for brain magnetic 

resonance image segmentation 
Bindu Puthentharayil Vikraman, Jabeena Afthab* 

School of Electronics Engineering, Vellore Institute of Technology, Vellore 632014, India 

* Corresponding author: Jabeena Afthab, bindu.pv2018@vitstudent.ac.in, ajabeena@vit.ac.in 

ABSTRACT 

The performance of healthcare systems, particularly regarding disease diagnosis and treatment planning, depends on 

the segmentation of medical images. Fuzzy c-means (FCM) is one of the most widely used clustering techniques for 

image segmentation due to its simplicity and effectiveness. FCM, on the other hand, has the disadvantages of being noise-

sensitive, quickly settling on local optimal solutions, and being sensitive to initial values. This paper suggests a fuzzy c-

means clustering improved with a nature-inspired raindrop optimizer for lesion extraction in brain magnetic resonance 

(MR) images to get around this constraint. In the preprocessing stage, the possible noises in a digital image, such as 

speckles, gaussian, etc., are eliminated by a hybrid filter—A combination of Gaussian, mean, and median filters. This 

paper presents a comparative analysis of FCM clustering and FCM-raindrop optimization (FCM-RO) approach. The 

algorithm performance is evaluated for images subjected to various possible noises that may affect an image during 

transmission and storage. The proposed FCM-RO approach is comparable to other methods now in use. The suggested 

system detects lesions with a partition coefficient of 0.9505 and a partition entropy of 0.0890. Brain MR images are 

analyzed using MATLAB software to find and extract malignancies. Image data retrieved from the public data source 

Kaggle are used to assess the system’s performance. 
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1. Introduction 

Image segmentation is a hotspot and focal point for image 

processing techniques. Segmenting an image into smaller sectors with 

remarkably homogeneous features enables extracting some critical 

data. It assembles portions of an image that have similar characteristics 

or properties. In segmentation, images are divided based on the pixels’ 

color, directed gradient histograms, local binary patterns, etc.[1]. 

Segmentation is helpful in many different domains, including remote 

sensing, geographic information systems, medical imaging, and many 

more[2]. Medical imaging uses segmentation for various purposes, 

including image representation, feature extraction, and measurement. 

The identification of tumors, the classification of blood cells, the 

simulation of surgeries, the detection of coronary borders in 

angiograms, the detection of microcalcifications on mammograms, and 

other processes all depend on image segmentation[3–6]. 

Different segmentation techniques are already in use in numerous 

applications. There are two categories of image segmentation methods: 

(1) A discontinuity-based technique, which relies on abrupt variations 

in pixel intensity values, and (2) a similarity-based strategy, which 

works based on the homogeneity requirement[7–11]. A discontinuity-
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based method identifies isolated points, edges, or lines, and a similarity-based technique groups pixels with 

similar intensities[12]. The segmentation methods based on thresholding, region enlarging, region splitting, and 

merging are all included in the similarity strategy. In thresholding, pixels with intensity values over a 

predetermined threshold form a cluster. In the region-growing technique, we start with a set of seed points and 

pixels with the same intensity value to develop a specific bunch. The region-growing method expands regions 

based on proximity and similarity[13–14]. The input image is separated into smaller images in the split and merge 

approach, and smaller sub-images with similar qualities are combined to create a more noticeable segment[15–18]. 

The fundamental region-growing technique in fuzzy c-means (FCM) clustering divides pixels into 

appropriate segments according to their membership grades. FCM is a probability-based soft clustering 

algorithm[19–21]. One data point in this algorithm might be a member of several clusters. FCM has emerged as 

one of the most popular clustering techniques due to its ease of use and potency. FCM, on the other hand, has 

the disadvantages of being noise sensitive, quickly sinking into local optimal solutions, and being keen on 

preliminary values[22–23]. 

Optimized clustering of data in FCM algorithms uses metaheuristic optimization techniques. The raindrop 

optimization algorithm (ROA) is a metaheuristic algorithm enthused by how raindrops naturally fall down a 

valley when they descend a slope[24–26]. After a few iterations, the population size falls, and larger droplets with 

a broader inquiry domain appear. 

Zotin et al.[27] proposed an image segmentation technique using FCM clustering. Before clustering, the 

image underwent preprocessing to eliminate any possible noise in the picture. The canny edge detection tool 

identifies the images’ delicate borders. Mishro et al.[28] introduced a type 2 FCM clustering technique for 

segmenting brain MR images. A fixed value for the fuzzifier and potential noise in the collected image has a 

substantial negative impact on the execution of an FCM clustering algorithm. An adaptive fuzzy linguistic 

fuzzifier value replaces the fixed fuzzifier in this approach. Including spatial features in the membership 

decreases the misclassification of the noisy pixels. An FCM clustering method for segmenting tumors from a 

brain MR image was presented by Mohammed and Al-ani[3]. They cited different imaging modalities and FCM 

clustering procedures in their work. 

The UNet++ architecture was presented by Zhou et al.[29] for precise and practical image segmentation. 

They used a collection of U-nets with different depths that collaborated on learning while closely supervised. 

A versatile feature fusion technique was created by rebuilding skip connections at the decoder sub-networks 

to combine features of varying semantic sizes. Trimming accelerated the processing speed. Data from six 

medical imaging sensory systems, including computed tomography (CT), electron microscopy (EM), and 

others, were used to evaluate the system’s performance. TransUNet, a technique for picture segmentation that 

combines transformers and U-net, was proposed by Chen et al.[30]. Using a tokenized image patch as input, the 

transformer extracts global contexts from a convolution neural network (CNN) feature map. Before merging 

the encoded features with the resolution-enhanced CNN feature maps, the decoder up samples them for exact 

localization. The results show that the suggested technique performs better by recovering localized spatial 

information. The advantages and disadvantages of network architectures and image segmentation approaches 

were evaluated by Hesamian et al.[31]. They thoroughly explained the problems deep learning-based 

segmentation algorithms encounter and possible solutions in their study. ResUNet++, an enhanced ResUNet 

design for segmenting colorectal polyps in colonoscopic images, was introduced by Jha et al.[32]. The outcomes 

demonstrate that adding residual units, ASPP, and other elements enhanced the system’s performance. 

Dhanachandra and Chanu[33] presented an FCM algorithm optimized with a dynamic particle swarm 

optimizer. This algorithm dynamically updated the learning parameters and inertia weight. A noise reduction 

method based on nearby pixels enhanced the anti-noise capacity. Moazzeni and Khamehchi[26] demonstrated 

the rain optimization method (ROA), a metaheuristic optimization process triggered by precipitation. The 
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algorithm initialized the population size, raindrop radius, and other tuning parameters. The cost function gives 

each droplet a value. The droplets start to fall one by one at that point. The cost function would examine each 

droplet’s endpoint to address this issue. A droplet will proceed along its course as it starts to move until it 

reaches the slightest obstruction. Each droplet would experience an identical process. The speed of the 

algorithm might increase if nearby droplets combine their paths. The droplet’s radius gradually decreases as it 

approaches its lowest radius, significantly increasing the precision of the response. This method enables the 

algorithm to locate every target function extremum position. Kaboli et al.[34] used the rain optimization 

approach as a practical remedy for multi-dimensional numerical test optimization functions. The proposed 

method was artless of the parameter selection and thus retained its usefulness for handling constrained 

optimization problems. They evaluated the algorithm’s performance against other heuristic search techniques 

and discovered comparable outcomes. Mirjalili et al.[24] presented GWO approaches that mimic grey wolves’ 

social structure and stalking tactics in the wild. The performance of the proposed algorithm was comparable 

to that of the metaheuristic approaches like PSO, GSA, etc. Mohammdian-Khoshnoud et al.[25] presented a 

hybrid FCM-GWO algorithm to separate the nucleus of a cell from the other dark objects in it. The hybrid 

algorithm achieved better Vpc and Vpe indices than the FCM approach, while its performance was poor in 

Davies-Bouldin and Calinski-Harabasz indices. 

Kirillov et al.[35] presented a method for segmenting images using traditional computer graphics. They 

displayed a rendering network model based on neural networks. The execution of point-based segmentation 

projections at configurable chosen locations constitutes an iterative subdivision technique. 

Table 1 shows a comparative analysis of algorithms used for optimization. 

Table 1. Comparative analysis of optimization techniques. 

Sl. No. Optimization technique Concept Advantage Disadvantage Reference 

1 Genetic algorithm (GA) An evolutionary algorithm 

inspired by Charles 

Darwin’s theory of 

evolution. 

It works best in 

situations where a huge 

search space area has 

several factors in it. 

Sensitive to initial 

conditions and may not 

reach the global 

optimum. 

[36] 

2 Particle swarm 

optimization (PSO) 

Population-based stochastic 

optimization algorithm 

inspired by social behavior 

of bird flocking. 

Fast computing speed 

and parallel processing. 

In high-dimensional 

space, there is more 

probability of falling into 

a local optimum and a 

low convergence rate 

during the iterative 

process. 

[37,38] 

3 Gray wolf optimization 

(GWO) 

Compared to PSO and GA, 

GWO has the advantages 

of fewer parameters, simple 

principles, and 

implementation quickly. 

Slow convergence 

speed, low solution 

accuracy. 

The chances of falling in 

local optimum are less. 

[25,39] 

A detailed analysis of current methods suggests that more accurate segmentation can improve lesion 

identification and diagnosis. So, to extract lesions from MR images, this paper presents the FCM clustering 

method supplemented with the RO algorithm. 

The rest of the research paper’s organization is as follows. section 2 describes the suggested approach, 

while section 3 discusses the implementation outcomes. Section 4 presents the central conclusion and then 

references. 

2. Proposed methodology 

Digital imaging is critical to medical research, diagnosis, and therapy planning. Image segmentation 

algorithms are frequently used in diagnosis, for instance, to assess anatomical features and to remove lesions[30,31]. 
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The three elements of a healthy brain are white matter, cerebrospinal fluid, and grey matter. Lesions in the 

brain can have a variety of characteristics. Medical image segmentation extracts lesions, the medically relevant 

parts called the region of interest (RoI), from the non-region of interest (NRoI) background information. This 

study uses feature-based clustering to identify lesions from brain MR images. 

Figure 1 depicts the workflow model of the proposed system. 

 
Figure 1. Workflow model of the proposed algorithm. 

The dataset for the algorithm evaluation is from the public source Kaggle dataset. The image in the dataset 

has a resolution of 240 × 240 pixels. A hybrid filter is used in the preprocessing stage to eliminate the possible 

noise in the image. The proposed system applies a feature-based clustering approach. The cluster centroid 

selection is optimized using the raindrop algorithm. 

2.1. Image pre-processing 

Pre-processing is the process of improving the quality of an image. This pre-processing technique 

suppresses the undesired image distortions and improves the crucial image attributes required for future 

processing. Because of transmission and acquisition problems, medical images are particularly susceptible to 

noise. Moreover, MR images are more vulnerable to noise, such as salt and pepper noise, Gaussian, and speckle, 

which affects the quality of MR images. A hybrid filter-a combination of Gaussian, mean, and median filters 

is used in the preprocessing stage to denoise the image. 

The Equations (1)–(3) provide the mathematical representation of these filters. 

𝑀𝑒𝑎𝑛 𝑓𝑖𝑙𝑡𝑒𝑟, 𝑀𝐹 =
1

𝑁
∑ ∑ 𝑔[𝑥, 𝑦]

𝑏

𝑞=−𝑏

𝑎

𝑝=−𝑎

 (1) 

where, N indicates the number of pixels considered, x and y denote the pixel location. 

𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑓𝑖𝑙𝑡𝑒𝑟, 𝐺𝐹(𝑝, 𝑞) =
1

2π𝜎2
𝑒

−
𝑝2+𝑞2

2𝜎2  (2) 

where, 𝜎 depicts Gaussian distribution, and p, q indicates the rows and columns of the Gaussian function. 

𝑀𝑒𝑑𝑖𝑎𝑛 𝑓𝑖𝑙𝑡𝑒𝑟 = 𝑀𝑒𝑑{𝑀𝑑𝑘} {
𝑀𝑑𝑘

(𝑛 + 1)
2⁄ , 𝑛 is odd.

1
2⁄ [𝑀𝑑𝑘(𝑛

2⁄ ) + 𝑀𝑑𝑘(𝑛
2⁄ ) + 1], 𝑛 is even.

} (3) 

2.2. Raindrop optimized FCM clustering approach 

Hard clustering and soft clustering are two different types of clustering techniques. In hard clustering, a 

single data point could only fit into a single group; however, it may belong to numerous groups in soft 
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clustering. FCM is a fuzzy clustering technique with a probability emphasis. A single data point may belong 

to many clusters when using this method[29,40–42]. 

The dataset consists of n input data points, 𝑃 = {𝑝1, 𝑝2, 𝑝3, . . . , 𝑝𝑛} that can be grouped into C clusters, 

𝐶 = {𝐶1, 𝐶2, 𝐶3, . . . , 𝐶𝑐}. The FCM algorithm tries to reduce the objective function in Equation (4) by altering 

the membership function and cluster center degree in each iteration. 

𝐽 = ∑ ∑ 𝑈𝑖𝑗
𝑚

𝑛

𝑗=1

𝐶

𝑖=1

𝐷𝑖𝑗
2  (4) 

where, m is the fuzzification element, 𝑈𝑖𝑗  is the membership degree and 𝐷𝑖𝑗 the euclidean distance of j-th 

instance to i-th cluster centroid and is given by the Equation (5). Degree of membership of 𝑝𝑖 in j-th cluster is 

given by the Equation (6) and the cluster centroid is given by the Equation (7). 

𝐷𝑖𝑗 = ‖𝑃𝑖 − 𝐶𝑗‖ (5) 

𝑈𝑖𝑗 =
𝐷

𝑖𝑗

2
1−𝑚

∑ 𝐷
𝑘𝑗

2
1−𝑚

𝐶

𝑘=1

, 𝑖 ∈ [1, 𝐶], 𝑗 ∈ [1, 𝑛] 
(6) 

𝐶𝑖 =

∑ 𝑈𝑖𝑗
𝑚𝑃𝑗

𝑛

𝑗=1

∑ 𝑈𝑖𝑗
𝑚

𝑛

𝑗=1

, 𝑖 ∈ [1, 𝐶] (7) 

The ROA is a metaheuristic algorithm stirred by how raindrops fall as they push from a mountainside to 

a valley[43]. If a droplet falls on a level surface, it may be absorbed into the soil or evaporate. If it falls on an 

inclined surface, it may flow downward and congregate with other droplets to form a stream. Based on the soil 

characteristic and the earth’s topography, individual droplets may form lakes that reflect local minima. By 

choosing a better outcome than a forecast based on the gradient of the objective function, RO simulates this 

bias. The situation will be different if the droplet size is large. Flooding can occur when large droplets quickly 

mix without evaporation or soil absorption. Parameter tweaking is essential in raindrop optimization. The 

initial population of the raindrop optimization algorithm was created randomly on the first iteration as a nod 

to the randomness of raindrop fall. Before the drop traveled toward the neighbor point with the lowest position, 

the drop’s neighbor points’ positions were compared with the drop itself. Until it reaches the valley, the 

raindrops will keep falling. Even if puddles are on the road to the valley, the RO algorithm generates a suitable 

mechanism to overspill and emerge from the puddles, allowing them to continue their journey to the 

canyon[19,34]. The radius of a raindrop might be reduced by evaporation or absorption, but interactions with 

other raindrops may also increase it. Each droplet’s radius is selected at random from a suitable range. Each 

droplet inspects its neighborhood iteratively, whose basis is its size. Find the last point in the region a droplet 

has covered if it doesn’t connect to another droplet. While attempting to solve a problem in n dimensions, each 

droplet has n variables. As a result, the minimum and maximum limits are calculated first because the droplet’s 

radius will determine these limits[6,10]. The next step is testing the second variable’s two endpoints until the last 

one evaluates. The first droplet’s cost changes when it pushes lower, which is not the final move; instead, it 

will decrease the same way the cost function does. After repeating this process for all the droplets, each 

droplet’s price and location are calculated. There are two ways to alter the radius of each droplet. This 

algorithm can locate global and local extremum if its parameters are adjusted correctly. 

The algorithm’s first iteration starts with the randomly generated initial population. Assume that s 

represents the population size. Therefore, Equation (8) defines the drop figure Dn. 
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𝐷𝑛 = [𝑝𝑛,1, 𝑝𝑛,2, 𝑝𝑛,3, … , 𝑝𝑛,𝑚], 𝑛 ∈ {1,2,3, . . . , s} (8) 

where m is the optimization variables, p is the optimization problem variable and 𝑃𝑛,𝑘 is the k-th variable of 

optimization task. 

Rainfall properties are modeled as a uniform random distribution function bound by the constraint in 

Equation (9) throughout the optimization phase. 

𝑝𝑛,𝑘 = 𝑈(low𝑘, upp𝑘) (9) 

where 𝑙𝑜𝑤𝑘, 𝑢𝑝𝑝𝑘  indicates the minimum and maximum bounds of 𝑝𝑘  and U indicates the uniform 

distribution function. 

A randomly generated point b about drops j, 𝑁𝑃𝑗
𝑏 is represented as Equation (10). 

‖(𝐷𝑏 − 𝑁𝑃𝑗
𝑏). �̂�𝑘‖ ≤ ‖𝑟. �̂�𝑘‖

𝑏 = {1,2,3. . . . . , 𝑠}; 𝑘 = {1,2,3, . . , 𝑚}
𝑟 = 𝑟initial𝑥𝑓iteration

 (10) 

where r indicates the neighborhood size, 𝑟initial the initial neighborhood size and 𝑓iteration indicates the step 

size within the iteration and �̂�𝑘 indicates the unit vector of k-th dimension. 

If G indicates the objective function, the dominant neighbor point 𝑁𝑃𝑑
𝑖  satisfies the constraint given in 

Equations (11) and (12). 

𝐺(𝑁𝑃𝑑
𝑖 ) < 𝐺(𝐷𝑖) (11) 

𝐺(𝑁𝑃𝑑
𝑖 ) < 𝐺(𝑁𝑃𝑗

𝑖), 𝑗 ∈ {1,2,3, . . . , 𝑛𝑝} − {𝑑} (12) 

when two droplets of radius r1 and r2 are near enough to share a common area, they can join to build a larger 

droplet of radius R given by the Equation (13). If a droplet of radius r1 does not advance because of soil 

characteristics, the expression becomes Equation (14). 

𝑅 = (𝑟1
𝑚 + 𝑟2

𝑚)
1

𝑚⁄  (13) 

𝑅 = (𝛼𝑟1
𝑚)

1
𝑚⁄  (14) 

where, 𝛼 indicates the volume percentage of droplet and varies between 0–100 percent in each iteration. 

After a few iterations, the population size falls, and larger droplets with a broader inquiry domain appear. 

As a result, increasing the number of iterations speeds up the finding of reasonable solutions. As a result, the 

cluster group is produced in the shortest period while minimizing noise by increasing the overall number of 

iterations. 

2.3. Proposed system flowchart 

Figure 2 shows the flowchart of the proposed algorithm. The algorithm segments the brain MR image 

into RoI and non-RoI. So, the number of clusters is initialized as 2. Parameters of the RO algorithm, such as 

the population, raindrop position, neighborhood size, iteration step size, and objective function, are initialized. 

Randomly generated the initial fuzzy partition matrix and computed the membership function. Until it reaches 

the ideal objective function, each raindrop’s position, velocity, and fitness function are calculated and updated. 

The output of the RO method is used to calculate the cluster centroid and objective function in the FCM 

algorithm. Two clusters are generated when the goal function comes to the minimum value. As a result, the 

cluster group (ROI and non-ROI) is formed with the least time and noise by increasing the total number of 

repetitions. 
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Figure 2. Proposed algorithm flowchart. 
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3. Results and discussions 

This section looks at the experimental findings made possible by the suggested technique. MATLAB 

2021a is used to carry out the proposed strategy. 

3.1. Information on dataset 

The public source Kaggle dataset[44] is the basis for the algorithm evaluation. This dataset is a personal 

collection of brain tumor-specific T1, contrast-enhanced T1, and T2 magnetic resonance images. Without any 

tagging or patient identification, the images were gathered, reviewed by radiologists, and made available for 

research. The image data has a resolution of 240 × 240 pixels. 

Figure 3 shows the images used in the algorithm evaluation. 

 
Figure 3. Images used for the lesion extraction. 

3.2. Performance metrics 

Partition coefficient PC and partition entropy PE, defined by Equations (15) and (16), are used as the 

evaluation metrics. 

𝑃𝐶 =

∑ ∑ 𝑈𝑖𝑗
2

𝐶

𝑗

𝑁

𝑖

𝑁
 

(15) 

𝑃𝐸 =

∑ ∑ 𝑈𝑖𝑗𝑙𝑜𝑔𝑈𝑖𝑗

𝐶

𝑗

𝑁

𝑖

𝑁
 

(16) 

3.3. Algorithm performance analysis 

This section demonstrates the outcomes derived from the proposed algorithm. Figure 4 displays the 

obtained output at different stages of the FCM approach. The input image is of resolution 240 × 240 pixels. 

The FCM algorithm segments the input image into RoI and non-RoI. The PC value varies from 0.7819 to 

0.8338 for five MR images, with an average value of 0.8086. The PE value ranges from 0.3256 to 0.4138, with 

an average value of 0.369 for the five selected images. 

Figure 5 shows the output at various stages in the optimized RO-FCM approach. The proposed algorithm 

segments the input image into RoI and non-RoI. To accomplish ideal clustering, PC and PE must be in their 
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highest and lowest positions. In the [0, 1] space are PC and PE. The PC value varies from 0.9429 to 0.9583 

for five MR images, with an average of 0.9505. The PE value range from 0.0756 to 0.0999, with an average 

value of 0.0890 for the five selected images. Given that the mean PC value of the suggested algorithm is 0.9505, 

which is closer to one, and that the PE value is 0.0890, which is closer to zero, it performs comparable to 

existing algorithms. 

Table 2 presents a performance comparison of PC and PE for the above five different MR images in the 

data set. 

 
Figure 4. Segmentation outcomes of the FCM approach. 

Table 2. Performance comparison in terms of PC and PE. 

Sl. No. FCM RO-FCM Time elapsed in 

seconds (RO-FCM) 
Partition coefficient (PC) Partition entropy (PE) Partition coefficient (PC) Partition entropy (PE) 

1 0.7819 0.4138 0.9462 0.0978 0.805095 

2 0.8191 0.3519 0.9429 0.0999 0.673290 

3 0.8119 0.3629 0.9583 0.0756 0.684236 

4 0.7962 0.3908 0.9499 0.0905 1.521729 

5 0.8338 0.3256 0.9550 0.0813 1.549656 

Mean 0.8086 0.369 0.9505 0.0890 1.046801 
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Figure 5. Segmentation outcomes of the RO-FCM approach. 

Figure 6 shows the graphical illustration of the performance comparison. 

 
Figure 6. Performance comparison in terms of PC and PE. 

Optimal clustering attains when PC and PE are at their highest and lowest points, respectively. The FCM 

technique yielded a mean PC value of 0.8086 and a PE of 0.3690. When compared to the FCM method, the 

RO-FCM algorithm performs better. The RO-FCM approach induces better clustering since its mean PC value 

is 0.9505, closer to one, and the PE value is 0.0890, more comparable to zero. 

The noise in the image impacts how well the proposed algorithms perform. The most common type of 

image noise is additive white gaussian noise[45]. Table 3 shows the performance indicator values for the RO-
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FCM method for noise-affected and noise-filtered images. The performance is evaluated using images 

subjected to salt and pepper noise with a noise density of 0.02 and Gaussian noise with a mean of 0.01. 

Figure 7 shows the graphical illustration of the performance comparison in Table 3. The algorithm’s 

performance declines for the images with noise problems. Image preprocessing for eliminating noise takes 

place before segmentation. A sequence of mean-median filters performs the noise removal task. The average 

PC for the five noise-affected photos is 0.9061, less than the noise-free image, and the average PE is 0.1654, 

more than the noise-free image. 

Table 4 compares the proposed approach to SFCM[23], AWSFCM[28], DPSO-FCM[33], and E-based 

FCM[46] in terms of PC and PE values. 

Table 3. RO-FCM performance indicators for noise affected images. 

Sl. No. RO-FCM (Gaussian noise) RO-FCM (salt & pepper noise) 

Partition coefficient (PC) Partition entropy (PE) Partition coefficient (PC) Partition entropy (PE) 

1 0.8891 0.195 0.9361 0.1169 

2 0.9182 0.1441 0.9544 0.0825 

3 0.9052 0.1680. 0.9483 0.0948 

4 0.8963 0.1826 0.9391 0.1108 

5 0.9219 0.1375 0.9486 0.0920 

Mean 0.9061 0.1654 0.9453 0.0994 

Table 4. Performance comparison with available approaches. 

Technique Partition coefficient (PC) Partition entropy (PE) 

SFCM 0.924 0.117 

AWSFCM 0.9038 0.0475 

DPSO-FCM 0.94 0.13 

E-based FCM 0.921 0.106 

FCM 0.8086 0.369 

Proposed RO-FCM 0.9505 0.0890 

 
Figure 7. Performance comparison (noise affected image) in terms of PC and PE. 

The RO-FCM performs significantly better than the alternative algorithms considered in the analysis. The 

RO-FCM algorithm has excellent PC and lower PE values than the FCM algorithm. FCM has a mean PC value 

of 0.8086 and a mean PE value of 0.3690 over five images, whereas RO-FCM has a mean PC value of 0.9505 
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and a mean PE value of 0.0890. The PC value of the RO-FCM is higher than the considered algorithms. The 

PE value of the RO-FCM approach is lower than the other approaches considered, except AWSFCM approach. 

The average segmentation time for the five images considered in the proposed RO-FCM approach is 

1.046801 s. The segmentation time in the KIFCM approach proposed by Abdel-Maksoud et al.[47] is 12.87 s 

for 8 iterations. In the deep learning-attention mechanism approach proposed by Ranjbarzadeh et al.[48], the 

segmentation time is 84 s and the on the U-net model approach of Lee et al.[49] takes 4 h for the image 

segmentation. The performance metrics show that the proposed algorithm is a promising one in MR image 

segmentation. 

4. Conclusion 

This work presents efficient lesion extraction strategies for MR images utilizing the metaheuristic 

optimization technique, raindrop optimization, in fuzzy c-means clustering. The raindrop optimization 

algorithm addresses the quick settling on local optimal solutions and sensitivity to initial values problems of 

FCM clustering. A hybrid filter combines Gaussian, mean, and median filters in the preprocessing stage to 

eliminate any possible noise in the image. The dataset for the algorithm assessment is from the public Kaggle 

data source. This paper presents a comparative analysis of FCM clustering and FCM-raindrop optimization 

(FCM-RO) approach. The suggested RO-FCM method exhibits higher PC values than the FCM technique, 

and its PE value is lower than that of the FCM approach. FCM has a mean PC value of 0.8086 and a mean PE 

value of 0.3690 over five images, whereas RO-FCM has a mean PC value of 0.9505 and a mean PE value of 

0.0890. The algorithm performance is evaluated for images subjected to various possible noises that may affect 

an image during transmission and storage. The proposed RO-FCM approach is comparable to other methods 

now in use. The suggested system detects lesions with a partition coefficient of 0.9505 and a partition entropy 

of 0.0890. By verifying the findings using more pertinent evaluation criteria and comparing them against 

equivalent algorithms already in use, we intend to extend the study in the future. 
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