
Journal of Autonomous Intelligence (2024) Volume 7 Issue 1 

doi: 10.32629/jai.v7i1.997 

1 

Original Research Article 

A Study of 3D model voxelization method for artificial intelligence 

learning 
Byongkwon Lee 

School of Media Contents, Department of Multimedia Major, Seowon University, Cheongju-si 28674, Korea; 

byongkwonlee53@gmail.com, sonic747@seowon.ac.kr 

ABSTRACT 

The 3D reconstruction technology which is one of various restoration technologies, implements and shapes 2D pixels 

of an object that actually exists in a 3D form. As an accurate 3D model for artificial intelligence learning information pre-

processing is required. The pre-processing needs to accurately size information and coordinate information of a 3D object 

for artificial intelligence learning. Also, the 3D model data generated during the preprocessing can be represented as a 

point cloud, which is point-based coordinate data. In this study, the pixel data was analyzed by voxelizing the 3D model 

for artificial intelligence learning, and the 3D model data was digitized to form a mesh file. In this study, 3D modeling 

was done with a 3D modeling tool and the object was exported to STL. In addition, it was converted into mesh file data 

including 3D coordinate data in Python language on Google’s colab platform. The mesh data created in this way is used 

in DataSet for artificial intelligence learning (CNN, RNN, GAN). Currently, there are many datasets for 2D artificial 

intelligence learning, but this study provided an opportunity to collect 3D artificial intelligence learning datasets. The 

research results can be used in the fields of robots, autonomous driving, games, and product design. 

Keywords: 3D model voxelization; point cloud; 3D vision; AI 3D model learning; mesh 3D dataset 

1. Introduction 

A restoration of 3D buildings or objects is distinguished from a 

restoration of 2D images[1] or videos. The 2D reconstruction is based 

on two X, Y coordinates, but the 3D reconstruction[2,3] requires 

calculation of three-dimensional coordinates X, Y, Z. Currently, most 

search and tree gardening algorithms using artificial intelligence learn 

and utilize 2D data sets. However, 3D artificial intelligence learning 

has difficulties in artificial intelligence learning because there is only 

data specialized in a specific field and the 3D dataset required for 

learning is insufficient[4,5]. In this study, we studied how to convert a 

general 3D model (object) into a mesh file required for artificial 

intelligence learning. In the course of the research, the pagoda was 

modeled using a 3D model creation tool and exported as a numerical 

data STL file, which is artificial intelligence learning data. The 

exported 3D modeling data is used for 3D printing as an STL file. It 

contains coordinate data and numerical data. In this study, STL data 

was converted into mesh data and expressed in 3D space as points. The 

tool used for STL to mesh conversion used Python language for 

Google’s colab-based platform[6,7]. The composition of this paper 

consists of research related to 3D modeling and voxelization in Section 

2, research procedures and methods for voxelization in Section 3. In 

Section 4, there are the experiments and considerations on voxelization 

ARTICLE INFO 

Received: 18 July 2023 

Accepted: 28 July 2023 

Available online: 30 October 2023 

COPYRIGHT 

Copyright © 2023 by author(s). 

Journal of Autonomous Intelligence is 

published by Frontier Scientific Publishing. 

This work is licensed under the Creative 

Commons Attribution-NonCommercial 4.0 

International License (CC BY-NC 4.0). 

https://creativecommons.org/licenses/by-

nc/4.0/ 

mailto:sonic747@seowon.ac.kr


 

2 

results, and in Section 5, there is the conclusion. 

2. Literature review 

2.1. Voxelization of 3D model 

Voxel are extensions of the pixel (picture element), the smallest unit that makes up a 2D image into 3D. 

In other words, in image 1*1, it is expressed as 1*1*1 with depth information, and the smallest unit is called 

Voxel (Volume + Pixel). Units are not fixed and are user-definable. Figure 1 shows the concept and application 

examples of voxels. In some documents, it is also expressed as a 3D Box or Cube. 

 
Figure 1. A concept (L) and application© for Voxelization 3D models. 

Voxelization means converting a point cloud into voxels. PCL performs voxelization using a “Voxel Grid 

filter”. The voxelization of the PCL method is shown in Figure 2. (a). Select Voxel size (=leaf_size) suitable 

for user definition. (b). Calculate the presence or absence of points (blue) within the leaf size from the center 

point of each voxel. (c). Calculate the center point (red) of the points and remove the remaining points[8]. 

 
Figure 2. The process of the voxelization. 

In the example of Figure 2, 5 points are expressed as one point (=Voxel). That is the size of the data has 

become 1/5. If the voxel unit (=leaf_size) is large, the amount of data can be further reduced. However, the 

expressiveness of the object will be reduced. After all, the most important thing in voxelization is to find the 

optimal unit (=leaf_size) in the trade-off relationship between computational load and object expressiveness. 

2.2. Voxelization of GPU Nvidia 

The basic concept of Nvidia GPU voxelization for converting scenes composed of triangular nets into 

regular voxel grid representations using GPU shaders[9]. The process for this is very simple. Figures 3 and 4 

describe this process visually[10]. 



 

3 

 
Figure 3. Orthogonal projection view. 

 
Figure 4. Render target and voxel grid. 

3. An implementation of the voxelization for 3D model 

3.1. Configuration of environment 

In this study, a voxelization experiment was conducted by finding a point of 3D Pagoda modeling data. 

Table 1 is the development environment setting for the experiment. The used development language is Python. 

It can be seen that Tensorflow and Pytorch were used for artificial intelligence learning. 

Table 1. Development environment. 

DIV Configuration 

OS Linux (Google Colab) 

CPU CPU: Intel (R) Xeon(R) CPU @ 2.30GHz (Dual-Core) 

GPU Nvidia Tesla T4. 

Language Python 3.9.12 

CUDA version CUDA 11.7 

Platform Pytorch 1.11.0 , Tensorflow-GPU 2.3.1 

Google Colab is a free, cloud-based Jupyter notebook development environment. Internally, it is known 

to be composed of a technology stack of Colab + Google Drive + Docker + Linux + Google Cloud. Colab’s 

features are free, easy to configure, multiple people can access it at the same time, and it’s faster than a regular 

PC if you use the paid version[11,12]. However, the downside is that the maximum session duration is 12 hours. 

In other words, AI training must be completed within 12 hours. Figure 5 is the environment setting for using 

Colab. Colab operates based on Google Drive, so you must be registered with Google. In addition, it has a 

great advantage because it can proceed with voxelization through the use of GPU. The coded voxelization 

program checks the transformation process while executing in units of modules. 



 

4 

 
Figure 5. Colab environment setup for voxelization. 

3.2. Convert to MAT from STL mesh data 

In MATLAB version 5, a MAT consists of a 128-byte header and one or more data elements. Each data 

element consists of an 8-byte tag and data from the element. Tags specify the number of bytes in the data 

element and how they are interpreted. This means that bytes must be read as 16-bit values, 32-bit values, 

floating-point values, or other data types. Version 5 MAT file formats allow fast access to individual data 

elements within a MAT file using tags[13,14]. Figure 6 shows MAT format. 

 
Figure 6. MATLAB version MAT-File Format. 

The voxelization process for AI training is divided into four steps. Figure 7 is a flowchart of the process. 

In Figure 7, (1) is the process of modeling a 3D object and creating a mesh using the graphic authoring tool 

Blender. (2) is the process of exporting (*.stl) the created 3D model to include numerical data. (3) The STL 

file is converted to a Matlab file (*.mat), which is used by a Python program to convert the numerical data. 

This step is divided into four sub-steps. (3.1) loads the program through Google’s colab and loads the STL file 

created in (3.2). (3.3) Loading the imported mesh data into memory to rearrange the X, Y, Z coordinates. In 

(3.4), the loaded STL data is voxelized into triangles. (3.4.1) Check if the cube diagonals cross the triangle in 

the cube. (3.4.2) Check if point is inside triangle. (3.4.3) Match the triangle data. Finally, generate and save 

MAT data in (4). 



 

5 

 
Figure 7. Converter Flowchart to MAT from STL. 

3.3. 3D mesh object modeling 

3D Mesh Object Modeling is to model an object using the 3D graphics tool blender tool[15]. Modeling 

targets were Korean traditional pagodas from Goryeo, Silla, and Baekjea. A total of three pagodas were 

modeled, and Table 2 shows the number of points and faces of the 3D modeled Pagoda. It also shows 

Perspective, Front and Shading views. 

Table 2. Modeled points and faces of 3D pagoda. 

Index Perspective Front Shading 

1 

Verts: 8,301 Face: 15,818 Tris: 15,818 

2 

Verts: 216 Face: 162 Tris: 324 

3 

Verts: 473 Face: 363 Tris: 722 

The recreated 3D modeling object is saved as an OBJ file through the Export function. The exported OBJ 



 

6 

file proceeds with the voxelization process. 

3.4. Voxelization of 3D models 

The purpose of this section is to find a data set optimized for artificial intelligence learning by voxelizing 

the 3D object modeled in section 3.3 with a Python program. 

Table 3 is a representative stone pagoda in Korea, which is a voxel of the Mireuksa Temple Site in 

Gyeongju. Modeling is the number of vertices 8,301. In the voxelization process, the size of the X, Y, and Z 

axes (l*m*n) was changed to find the optimal voxelization similar to the original data. In this study, the values 

1, 4, 8, 16, 34, 64, 128, and 256 were changed based on the height coordinate Y axis. It was confirmed that 

when the Y-axis value is confined to 128 voxels, it is voxelized similarly to the original data. However, in the 

case of 180*256*181/Voxels: 713,000, it was similar to the original data, but the data capacity was over 300 

Mb, so it was confirmed that it was not suitable for artificial intelligence learning. In the case of initial modeling, 

it is judged that the model should proceed while minimizing the number of vertices. 

Table 3. Index Number 1 3D Model in Section 3.3. 

original model 

Verts: 8301 

 
1*1*1 

Voxels: 1 
3*4*3 

Voxels: 20 

6*8*6 

Voxels: 100 

12*16*12 

Voxels: 460 

23*34*23 

Voxels: 2450 

45*64*46 

Voxels: 15,277 

90*128*91 

Voxels: 102,763 

180*256*181 

Voxels: 713,000 



 

7 

Table 4. Index Number 2 3D Model in Section 3.3. 

original model 

Verts: 216 

1*1*1 

Voxels: 1 

 
2*4*2 

Voxels: 16 

3*8*3 

Voxels: 64 
6*16*6 

Voxels: 432 

13*34*13 

Voxels: 3116 

24*64*24 

Voxels: 3116 

 
48*128*48 

Voxels: 130,222 

 
95*256*95 

Voxels: 820,280 

Table 4 is the voxelization of the second model of Index number in Section 3.3. The number of vertices 

is 216. This model voxelization was reconstructed 1, 4, 8, 16, 34, 64, 128, 256 based on the Y axis. The first 

similar to the original 3D model is 24*64*24. Voxels: 3116. It was confirmed that it is optimized when 

modeling small vertices with 64 generated voxels. 

Table 5 is the voxelization of the 3rd model of Index number in Section 3.3. The number of vertices is 

473. This model voxelization was reconstructed 1, 4, 8, 16, 34, 64, 128, 256 based on the Y axis. The first 

similar to the original 3D model is 61*128*61 Voxels:128,078. It was confirmed that the number of generated 

voxels was optimized to 128,078. As a result of the three experiments presented above, when collecting a 

dataset for AI learning through voxelization, it is good to minimize the number of vertices of the model. 

However, it was confirmed that 256 cells in the Y-axis are good when 3D data is converted into 3D voxels due 

to a lack of similarity with the original data. 

 

 

 

 



 

8 

Table 5. Index Number 3 3D Model in Section 3.3. 

 
original model 

Verts: 473 1*1*1 
Voxels: 1 

 
2*4*2 

Voxels: 16 

4*8*4 

Voxels: 80 
8*16*8 

Voxels: 432 

16*32*16 
Voxels: 2540 

31*64*31 
Voxels: 17,691 

61*128*61 

Voxels: 128,078 

122*256*122 

Voxels: 128,078 

4. Result and discussion 

Blender was used as a 3D modeling tool to create a data set for artificial intelligence learning. In this 

study, when producing a 3D model, it should be made to express the characteristics of the object most 

effectively while minimizing the number of vertices and faces. In addition, the expression of numerical data 

for voxelization must be preceded by an MAT data conversion program in the case of an STL file used. In this 

study, Google’s Colab was used to easily set the environment and system environment. In order to find the 

optimal cell size (height) for the voxel converted to MAT data, the experiment was conducted while changing 

the Y-axis value to 1, 4, 8, 16, 34, 64, 128, 256. As a result of this experiment, it was confirmed a voxel that 

is most similar to the original data (shape) and contains 128 heights with a small number of vertices. Table 6 

records the conversion time to point cloud form for model in Section 3.3. 

 

 

 

 

 



 

9 

Table 6. Voxelization transformation time. 

Model Vector time Result 

 

1 60 s 

 

2 80 s 

 

3 112 s 

 

5 141 s 

 

5. Conclusion and future work 

AI training on data with 3D coordinates requires a large number of datasets. Most of the existing data is 

difficult to utilize as a 2D data set. In this study, a 3D object was created using a 3D modeling tool and a dataset 

for artificial intelligence learning was obtained through voxelization. However, voxelization has a problem in 

that it must be transformed into a form most similar to the original data. Therefore, in this study, the optimal 

voxelization was found while adjusting the size of the voxel. As a result of the study, optimal voxelization 

should first be produced with the minimum number of vertices in the initial modeling work. In addition, it was 

confirmed that the shape of the original data can be maintained if the cell size of the Y-axis corresponding to 

the height is set to 128 during voxelization. 

Future research projects require research on voxelized data sets such as point cloud type GAN. As a field 

of application of this study, it is considered that it will be used for restoration of cultural assets and restoration 

of 3D objects. 

Conflict of interest 

The author declares no conflict of interest. 

References 

1. Brown MS, Sun M, Yang R, et al. Restoring 2D content from distorted documents. IEEE Transactions on Pattern 

Analysis and Machine Intelligence 2007; 29(11): 1904–1916. doi: 10.1109/TPAMI.2007.1118 

2. Banerjee A, Zacur E, Choudhury RP, Grau V. Automated 3D whole-heart mesh reconstruction from 2D cine MR 
slices using statistical shape model. Annual International Conference of the IEEE Engineering in Medicine & 

Biology Society (EMBC) 2022; 2022: 1702–1706. doi: 10.1109/EMBC48229.2022.9871327 

3. Lv S, Zhu Y, Ni H, et al. Teapot three-dimensional geometrical model reconstruction based on reverse engineering 

and rapid prototyping technology. In: Proceedings of the 2018 3rd International Conference on Mechanical, 

Control and Computer Engineering (ICMCCE); 2018; Huhhot, China. pp. 180–184. 

4. Sabbella DS, Singh A, Maheswari G. Artificial intelligence in 3D CAD modelling. In: Proceedings of the 2020 

International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE); 2020; 

Vellore, India. pp. 1–5. 

5. Singh A, Srivastava AP, Bhardwaj G, et al. Methods to detect an event using artificial intelligence and machine 

learning. In: Proceedings of the 2022 3rd International Conference on Intelligent Engineering and Management 

(ICIEM); 2022; London, United Kingdom. pp. 297–301. 



 

10 

6. Ali I, Khan A, Waleed M. A google colab based online platform for rapid estimation of real blur in single-image 

blind deblurring. In: Proceedings of the 2020 12th International Conference on Electronics, Computers and 

Artificial Intelligence (ECAI); 2020; Bucharest, Romania. pp. 1–6. 

7. Firigato JON, Junior JM, Gonçalves WN, Bacani VM. Deep learning and google earth engine applied to mapping 

eucalyptus. In: Proceedings of the 2021 IEEE International Geoscience and Remote Sensing (IGARSS); 2021; 

Brussels, Belgium. pp. 4696–4699. 

8. Koide K, Yokozuka M, Oishi S, Banno A. Voxelized GICP for fast and accurate 3D point cloud registration. In: 
Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA); 2021; Xi’an, China. 

pp. 11054–11059. 

9. Potluri S, Goswami A, Rossetti D, et al. GPU-Centric communication on NVIDIA GPU clusters with InfiniBand: 

A case study with OpenSHMEM. In: Proceedings of the 2017 IEEE 24th International Conference on High 

Performance Computing (HiPC); 18–21 December 2017; Jaipur, India. pp. 253–262. 

10. Choquette J, Gandhi W. NVIDIA A100 GPU: Performance & innovation for GPU computing. In: Proceedings of 

the 2020 IEEE Hot Chips 32 Symposium (HCS); 16–18 August 2020; Palo Alto, California. pp. 1–43. 

11. Canesche M, Bragança L, Neto OPV, et al. Google colab CAD4U: Hands-on cloud laboratories for digital design. 

In: Proceedings of the 2021 IEEE International Symposium on Circuits and Systems (ISCAS); 22–28 May 2021; 

Daegu, Korea. pp. 1–5. 

12. Shariar S, Hasan KMA. GPU accelerated indexing for high order tensors in google colab. In: Proceedings of the 

2020 IEEE Region 10 Symposium (TENSYMP); 5–7 June 2020; Dhaka, Bangladesh. pp. 686–689. 

13. Zhang Z, Lan W, Xin J, Li Q. A hybrid compress method of STL Mesh for realtime VR visualization. In: 
Proceedings of the 2020 7th International Conference on Information Science and Control Engineering (ICISCE); 

18–20 December 2020; Changsha, China. pp. 27–30. 

14. Xie T, Liu Z, Li J, et al. Development of launch vehicle shape design software based on parameterization method. 

In: Proceedings of the 2022 International Conference on Machine Learning and Intelligent Systems Engineering 

(MLISE); 5–7 August 2022; Guangzhou, China. pp. 100–104. 

15. Patoli MZ, Gkion M, Al-Barakati A, et al. An open source Grid based render farm for Blender 3D. In: Proceedings 

of the 2009 IEEE/PES Power Systems Conference and Exposition; 15–18 March 2009; Seattle, WA, USA. pp. 1–

6. 


