banner

PA10 Robot’s Movement Through Natural Interface

Diego Manuel Dussán Muñoz, Enrique Bauzano Núñez, Oscar Andrés Vivas Albán

Abstract


 This paper introduces a natural interface for the movement of PA10 industrial robot and the implementation of its system. In order to evaluate the availability of these interfaces and the difference between the trajectory input by using its own development method and the trajectory executed by the robot, the mathematical model of PA10 robot is preliminarily established, and its motion is simulated in unity 3D graphics engine. Subsequently, the leap motion capture device is added as the main element of the natural interface, and tracks the movement of the user’s palm during the execution of various trajectories of the simulation software and the actual robot. The results show that the tracking error between the expected trajectory and the actual trajectory of PA10 robot is very small.


Keywords


Gesture Capture; Robot Control; Jumping Motion; Natural Interface; PA10 Robot; Trajectory Tracking

Full Text:

PDF

References


1. Barrientos A. Nuevas aplicaciones de la robótica: Robots de servicio [A new application of robotics: service robot] [Online]. 2002. Available from: https://www.researchgate.net/profile/Antonio_Barrie-tos2/publication/228889902_Nuevas_aplicaciones_de_la_robotica_Robots_de_servicio/links/0c96052855198b0438000000.pdf.

2. Sanchez Martin FM, Millán Rodriguez F, Salvador Bayarri J, et al. History of robotics: From Archytas of Tarentum until Da Vinci robot (Part I). Actas Urológicas Españolas 2007; 31(2): 185–196.

3. Flor Ángela BS, Alejandro FG. La robótica como un recurso para facilitar el aprendizaje y desarrollo de competencias generales [Robots as a resource for learning and developing general abilities]. Te-oría de la Educación en la Sociedad de la Infor-mación 2012; 13(2): 120–136.

4. Arnaldo Héctor O, Fernando Javier L, Zulma C. Robótica, informática, inteligencia artificial y educación [Robotics, computer science, artificial intelligence and education] [Online]. Carreras: Computer major university network (RedUNCI); 2007. Available from: http://sedici.unlp.edu.ar/handle/10915/20504.

5. Efraín GR. Control de un robot móvil en entornos domésticos [Control of mobile robots in the home environment]. Colombia: Columbia National University; 2013.

6. Gaitan Rodríguez A. Cibernética en la guerra contemporánea: Definición de nuevos escenarios estratégicos y operacionales [Cybernetics in con-temporary warfare: Definitions of new strategies and operational scenarios] Estudios en Seguridad y Defensa 2015; 10(20): 117–131.

7. D Galleano. Robótica médica [Medical robotics] [Online]. 2016. Available from: http://jeuazarru.com/wpcontent/uploads/2014/10/robotica_medicinal.pdf.

8. Vivas Alban OA. Aplicaciones de la robótica al campo de la medicina [Application of robotics in medicine]. Revista Pulsos 2007; 9: 32–38.

9. Marcos BS, Cristián MB. Medicina y robótica [Medicine and robotics] Revista Médica Clínica Las Condes 2005; 16(3): 157–167.

10. Mishra RK. Textbook of practical laparoscopic surgery. New Delhi: Jabby; 2013.

11. Escobar PF, Falcone T. Atlas of single port, lapa-roscopic and robotic surgery. New York: Springer; 2014.

12. Fernández-Riomalo CE, Guástar-Morillo HA, Vi-vas-Albán OA. Design and modeling of a virtual PA-10 robot for surgical applications. Revista Facultad de Ingeniería 2016; 25(42): 21–32.

13. Ballantyne GH. Robotic surgery, telerobotic sur-gery, telepresence, and telementoring. Surgical Endoscopy and Other Intervention Techniques 2002; 16(10): 1389–1402.

14. Juanes JA, Gómez JJ, Peguero PD. 2015. Practical applications of movement control technology in the acquisition of clinical skills [Online]. Availa-ble from:https://dl.acm.org/doi/abs/10.1145/2808580.2808583.

15. Lee JY, P. Mucksavage P, Sundaram CP, et al. Best practices for robotic surgery training and creden-tialing. The Journal of Urology 2011; 185(4): 1191–1197.

16. Elena VM. Diseño de un algoritmo de seguimiento del instrumental quirúrgico mediante un disposi-tivo Leap Motion y su validación en un simulador físico [Design of surgical instrument tracking al-gorithm using jumping motion device and verifi-cation in physical simulator]. Madrid: Universidad Politécnica de Madrid; 2017.

17. Dombre E, Khalil W. Modeling, performance analysis and control of robot manipulators. Lon-don: Willie; 2007.

18. Fernández-Riomalo CE, Guástar-Morillo HA. Design and modeling of a virtual PA-10 robot for surgical applications. Popayan: Universidad del Cauca; 2014.

19. Vivas-Alban OA. Diseño y control de robots in-dustriales: teoría y práctica [Design and control of industrial robots: Theory and practice]. Buenos Aires: Elaeph; 2010.




DOI: https://doi.org/10.32629/jai.v5i1.506

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Diego Manuel Dussán Muñoz, Enrique Bauzano Núñez, Oscar Andrés Vivas Albán

License URL: https://creativecommons.org/licenses/by-nc/4.0