banner

Fog Computing: Applications, Challenges, and Opportunities

Rajanikanth Aluvalu, Lakshmi Muddana, V Uma Maheswari, Krishna Keerthi Channam, Swapna Mudrakola, MD Sirajuddin, CVR Syavasya

Abstract


Cloud computing, is a widely accepted utility computing model. All the application processing takes place in the cloud data center managed by the cloud service provider. This includes network latency and delays in processing. Each time the application is executed, data has to be transported from node to the cloud. This will increase network traffic and is practically not feasible to transport data from node to remote cloud server and back. Fog computing, a new paradigm of cloud computing will help in overcoming this challenge. In fog computing technology, the data processing tasks are executed at the node level either completely or partially, which highly increases the speed of responses. Also, it reduces latency, processing costs, and bandwidth problems, and improves the efficiency of customer driver services with better response time. Fog is highly useful in locations where network connectivity is an issue because fog has a separate protocol suite that will support weak network connections. In this article, the various parameters of the fog computing paradigm such as challenges, application, and opportunities are studied and presented.

Keywords


Fog Computing; Edge Computing; Customer-Driver Service; Cloud Computing

Full Text:

PDF

References


1. Saharan KP, Kumar A. Fog in comparison to cloud: A survey. International Journal of Computer Applications 2015; 122(3): 10-12.

2. Bonomi F, Milito R, Zhu J, Addepalli S. Fog computing and its role in the internet of things. In: MCC '12: Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing; 2012 Aug 17; Helsinki, Finland. New York: Association for Computing Machinery; 2012. p. 13-16. doi: 10.1145/2342509.2342513.

3. Hao X, Yeoh PL, Ji Z, et al. Stochastic analysis of double blockchain architecture in IoT communication networks. IEEE Internet of Things Journal 2022; 9(12): 9700-9711. doi: 10.1109/JIOT.2022.3142761.

4. Macedo ELC, Delicato FC, de Moraes LFM, Fortino G. Assigning trust to devices in the context of consumer IoT applications. IEEE Consumer Electronics Magazine 2022. doi: 10.1109/MCE.2022.3154357.

5. Abid MA, Afaqui N, Khan MA, et al. Evolution towards smart and software-defined Internet of Things. AI 2022; 3(1): 100-123. doi: 10.3390/ai3010007.

6. Chavhan S, Gupta D, Gochhayat SP, et al. Edge computing AI-IoT integrated energy efficient intelligent transportation system for smart cities. ACM Transactions on Internet Technology (TOIT) 2022; 22(4): 1-18. doi: 10.1145/3507906.

7. Ali O, Ishak MK, Bhatti MKL, et al. A comprehensive review of internet of things: Technology stack, middlewares, and fog/edge computing interface. Sensors 2022; 22(3): 995. doi: 10.3390/s22030995.

8. Talaat FM. Effective prediction and resource allocation method (EPRAM) in fog computing environment for smart healthcare system. Multimedia Tools and Applications 2022; 81: 8235-8258. doi: 10.1007/s11042-022-12223-5.

9. Farooqi AM, Alam MA, Hassan SI, Idrees SM. A fog computing model for VANET to reduce latency and delay using 5G network in smart city transportation. Applied Sciences 2022; 12(4): 2083. doi: 10.3390/app12042083.

10. Gardasu AK, Kotha RK. A fog computing solution for advanced security, storage techniques for platform infrastructure. EasyChair Prepring No. 7460. 2022.

11. Sun L, Xue G, Yu R. TAFS: A truthful auction for IoT application offloading in fog computing networks. IEEE Internet of Things Journal 2022; 10(4): 3252-3263. doi: 10.1109/JIOT.2022.3143101.

12. Almiani M, Razaque A, Alotaibi B, et al. An efficient data-balancing cyber-physical system paradigm for quality-of-service (QoS) provision over fog computing. Applied Sciences 2022; 12(1): 246. doi: 10.3390/app12010246.

13. Verma P, Tiwari R, Hong WC, et al. FETCH: A deep learning-based fog computing and IoT integrated environment for healthcare monitoring and diagnosis. IEEE Access 2022: 10: 12548-12563. doi: 10.1109/ACCESS.2022.3143793.

14. Laghari AA, He H, Halepoto IA, et al. Analysis of quality of experience frameworks for cloud computing. IJCSNS 2017: 17(12): 228-233.

15. Dubey H, Yang J, Constant N, et al. Fog data: Enhancing telehealth big data through fog computing. In: Proceedings of the ASE BigData & SocialInformatics; 2015 Oct 7-10; Kaohsiung Taiwan. New York: Association for Computing Machinery; 2015. p. 1-6. doi: 10.1145/2818869.2818889.

16. Kocabas O, Soyata T, Couderc JP, et al. Assessment of cloud-based health monitoring using homomorphic encryption. 2013 IEEE 31st International Conference on Computer Design (ICCD); 2013 Oct 6-9; Asheville, NC, USA. New York: IEEE; 2013. p. 443-446. doi: 10.1109/ICCD.2013.6657078.

17. Wang Q, Guo S, Wang Y, Yang Y. Incentive mechanism for edge cloud profit maximization in mobile edge computing. ICC 2019-2019 IEEE International Conference on Communications (ICC); 2019 May 20-24; Shanghai, China. New York: IEEE; 2019. p. 1-6. doi: 10.1109/ICC.2019.8761241.

18. Boyd S, Parikh N, Chu E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends® in Machine learning 2011; 3(1): 1-122. doi: 10.1561/2200000016.

19. Wang L, An H, Chang Z. Security enhancement on a lightweight authentication scheme with anonymity fog computing architecture. IEEE Access 2000; 8: 97267-97278. doi: 10.1109/ACCESS.2020.2996264.

20. Hong J, Xue K, Li W. Comments on “DAC-MACS: Effective data access control for multiauthority cloud storage systems”/security analysis of attribute revocation in multiauthority data access control for cloud storage systems. IEEE Transactions on Information Forensics and Security 2015; 10(6): 1315-1317. doi: 10.1109/TIFS.2015.2407327.

21. Liang J, Zhang M, Leung VC. A reliable trust computing mechanism based on multisource feedback and fog computing in social sensor cloud. IEEE Internet of Things Journal 2020: 7(6): 5481-5490. doi: 10.1109/JIOT.2020.2981005.

22. Alwakeel AM. An overview of fog computing and edge computing security and privacy issues. Sensors 2021: 21(24): 8226. doi: 10.3390/s21248226.

23. Mukherjee M, Matam R, Shu L, et al. Security and privacy in fog computing: Challenges. IEEE Access 2017: 5: 19293-19304. doi: 10.1109/ACCESS.2017.2749422.

24. Priyadarshini R, Barik RK. A deep learning based intelligent framework to mitigate DDoS attack in fog environment. Journal of King Saud University-Computer and Information Sciences 2022; 34(3): 825-831. doi: 10.1016/j.jksuci.2019.04.010.

25. Yaseen Q, Jararweh Y, Al-Ayyoub M, AlDwairi M. Collusion attacks in Internet of Things: Detection and mitigation using a fog based model. 2017 IEEE Sensors Applications Symposium (SAS); 2017 Mar 13-15; Glassboro, NJ, USA. New York: IEEE; 2017. p. 1-5. doi: 10.1109/SAS.2017.7894031.

26. Aliyu F, Sheltami T, Shakshuki EM. A detection and prevention technique for man in the middle attack in fog computing. Procedia Computer Science 2018: 141: 24-31. doi: 10.1016/j.procs.2018.10.125.

27. Tu S, Waqas M, Rehman SU, et al. Security in fog computing: A novel technique to tackle an impersonation attack. IEEE Access 2018; 6: 74993-75001. doi: 10.1109/ACCESS.2018.2884672.

28. Jia B, Hu H, Zeng Y, et al. Double-matching resource allocation strategy in fog computing networks based on cost efficiency. Journal of Communications and Networks 2018; 20(3): 237-246. doi: 10.1109/JCN.2018.000036.

29. Alenizi F, Rana O. Minimising delay and energy in online dynamic fog systems. arXiv preprint arXiv:2012.12745. 2020. doi: 10.48550/arXiv.2012.12745.

30. da Silva RA, da Fonseca NL. Resource allocation mechanism for a fog-cloud infrastructure. 2018 IEEE International Conference on Communications (ICC); 2018 May 20-24; Kansas City, MO, USA. New York: IEEE; 2018. p. 1-6.

31. Mijuskovic A, Chiumento A, Bemthuis R, et al. Resource management techniques for cloud/fog and edge computing: An evaluation framework and classification. Sensors 2021; 21(5): 1832. doi: 10.3390/s21051832.

32. Taneja M, Davy A. Resource aware placement of IoT application modules in Fog-Cloud Computing Paradigm. 2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM); 2017 May 8-12; Lisbon, Portugal. New York: IEEE; 2017. p. 1222-1228. doi: 10.23919/INM.2017.7987464.

33. Javaid S, Javaid N, Saba T, et al. Intelligent resource allocation in residential buildings using consumer to fog to cloud based framework. Energies 2019; 12(5): 815. doi: 10.3390/en12050815.

34. OpenFog Consortium Architecture Working Group. OpenFog reference architecture for fog computing. OPFRA001.020817. OpenFog Consortium Architecture Working Group; 2017.

35. Tuli S, Gill SS, Casale G, Jennings NR. iThermoFog: IoT‐Fog based automatic thermal profile creation for cloud data centers using artificial intelligence techniques. Internet Technology Letters 2020; 3(5): e198. doi: 10.1002/itl2.198.

36. Zhang Q, Wang J, Kim M. Heterofuzz: Fuzz testing to detect platform dependent divergence for heterogeneous applications. In: Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering; 2021 Aug 23-28; Athens Greece. New York, United States: Association for Computing Machinery; 2021. p. 242-254. doi: 10.1145/3468264.3468610.

37. Wu HY, Lee CR. Energy efficient scheduling for heterogeneous fog computing architectures. 2018 IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC); 2018 Jul 23-27; Tokyo, Japan. New York: IEEE; 2018. p. 555-560. doi: 10.1109/COMPSAC.2018.00085.

38. Oueis J, Strinati EC, Barbarossa S. The fog balancing: Load distribution for small cell cloud computing. 2015 IEEE 81st Vehicular Technology Conference (VTC spring); 2015 May 11-14; Glasgow, UK. New York: IEEE; 2021. p. 1-6. doi: 10.1109/VTCSpring.2015.7146129.

39. Intharawijitr K, Iida K, Koga H. Analysis of fog model considering computing and communication latency in 5G cellular networks. 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops); 2016 Mar 14-18; Sydney, NSW, Australia. New York: IEEE; 2016. p. 1-4. doi: 10.1109/PERCOMW.2016.7457059.

40. Machen A, Wang S, Leung KK, et al. Live service migration in mobile edge clouds. IEEE Wireless Communications 2017; 25(1): 140-147. doi: 10.1109/MWC.2017.1700011.

41. Hu P, Ning H, Qiu T, et al. Security and privacy preservation scheme of face identification and resolution framework using fog computing in internet of things. IEEE Internet of Things Journal 2017; 4(5): 1143-1155. doi: 10.1109/JIOT.2017.2659783.

42. Koo D, Hur J. Privacy-preserving deduplication of encrypted data with dynamic ownership management in fog computing. Future Generation Computer Systems 2018; 78: 739-752. doi: 10.1016/j.future.2017.01.024.

43. Shynu PG, Nadesh RK, Menon VG, et al. A secure data deduplication system for integrated cloud-edge networks. Journal of Cloud Computing 2020; 9(1): 1-12. doi: 10.1186/s13677-020-00214-6.

44. Du M, Wang K, Liu X, et al. A differential privacy-based query model for sustainable fog data centers. IEEE Transactions on Sustainable Computing 2017; 4(2): 145-155. doi: 10.1109/TSUSC.2017.2715038.

45. Huang C, Lu R, Zhu H, et al. EPPD: Efficient and privacy-preserving proximity testing with differential privacy techniques. 2016 IEEE International Conference on Communications (ICC); 2016 May 22-27; Kuala Lumpur, Malaysia. New York: IEEE; 2016. p. 1-6. doi: 10.1109/ICC.2016.7511194.

46. Yi S, Qin Z, Li Q. Security and privacy issues of fog computing: A survey. In: Xu K, Zhu H (editors). Wireless algorithms, systems, and applications. International Conference on Wireless Algorithms, Systems, and Applications; 2015 Aug 10-12; Qufu, China. Cham: Springer; 2015. p. 685-695. doi: 10.1007/978-3-319-21837-3_67.

47. Hatzivasilis G, Soultatos O, Ioannidis S, et al. Review of security and privacy for the Internet of Medical Things (IoMT). 2019 15th International Conference on Distributed Computing in Sensor Systems (DCOSS); 2019 May 29-31; Santorini, Greece. New York: IEEE; 2019. p. 457-464. doi: 10.1109/DCOSS.2019.00091.

48. Chiang M. Fog networking: An overview on research opportunities. arXiv preprint arXiv:1601.00835. 2016. doi: 10.48550/arXiv.1601.00835.

49. Kang J, Yu R, Huang X, Zhang Y. Privacy-preserved pseudonym scheme for fog computing supported internet of vehicles. IEEE Transactions on Intelligent Transportation Systems 2017; 19(8): 2627-2637. doi: 10.1109/TITS.2017.2764095.

50. Margariti SV, Dimakopoulos VV, Tsoumanis G. Modeling and simulation tools for fog computing—A comprehensive survey from a cost perspective. Future Internet 2020; 12(5): 89. doi: 10.3390/fi12050089.

51. Shi W, Cao J, Zhang Q, et al. Edge computing: Vision and challenges. IEEE Internet of Things Journal 2016; 3(5): 637-646. doi: 10.1109/JIOT.2016.2579198.

52. Dubey H, Yang J, Constant N, et al. Fog data: Enhancing telehealth big data through fog computing. In: Proceedings of the ASE BigData & SocialInformatics; 2015 Oct 7-9; Kaohsiung Taiwan. New York: Association for Computing Machinery; 2015. p. 1-6. doi: 10.1145/2818869.2818889.

53. Singh S. Smart meters big data: Behavioral analytics via incremental data mining and visualization [PhD thesis]. Ottawa: University of Ottawa; 2016.

54. Gia TN, Jiang M, Rahmani AM, et al. Fog computing in healthcare internet of things: A case study on ecg feature extraction. 2015 IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing; 2015 Oct 26-28; Liverpool, UK. New York: IEEE; 2015. p. 356-363. doi: 10.1109/CIT/IUCC/DASC/PICOM.2015.51.

55. Lynn R, Wescoat E, Han D, Kurfess T. Embedded fog computing for high-frequency MTConnect data analytics. Manufacturing Letters 2018; 15: 135-138. doi: 10.1016/j.mfglet.2017.11.002.

56. Wang X, Yang LT, Kuang L, et al. A tensor-based big-data-driven routing recommendation approach for heterogeneous networks. IEEE Network 2019; 33(1): 64-69. doi: 10.1109/MNET.2018.1800192.

57. Gao L, Luan TH, Yu S, et al. FogRoute: DTN-based data dissemination model in fog computing. IEEE Internet of Things Journal 2016; 4(1): 225-235. doi: 10.1109/JIOT.2016.2645559.

58. Ahanger TA, Tariq U, Nusir M, et al. A novel IoT–fog–cloud-based healthcare system for monitoring and predicting COVID-19 outspread. The Journal of Supercomputing 2022; 78(2): 1783-1806. doi: 10.1007/s11227-021-03935-w.

59. Barik RK, Dubey H, Samaddar AB, et al. FogGIS: Fog Computing for geospatial big data analytics. 2016 IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics Engineering (UPCON); 2016 Dec 9-11; Varanasi, India. New York: IEEE; 2017. p. 613-618. doi: 10.1109/UPCON.2016.7894725.

60. Dhande R. Dynamic replica management in fog-enabled IoT using enhanced data mining technique [Master’s thesis]. Dublin: National College of Ireland; 2020.

61. Pérez JL, Gutierrez-Torre A, Berral JL, Carrera D. A resilient and distributed near real-time traffic forecasting application for Fog computing environments. Future Generation Computer Systems 2018; 87: 198-212. doi: 10.1016/j.future.2018.05.013.

62. Ning Z, Dong P, Wang X, et al. Deep reinforcement learning for intelligent internet of vehicles: An energy-efficient computational offloading scheme. IEEE Transactions on Cognitive Communications and Networking 2019; 5(4): 1060-1072. doi: 10.1109/TCCN.2019.2930521.

63. Pandit MK, Mir RN, Chishti MA. Adaptive task scheduling in IoT using reinforcement learning. International Journal of Intelligent Computing and Cybernetics 2020; 13(3): 261-282. doi: 10.1108/IJICC-03-2020-0021.

64. Sami H, Mourad A. Dynamic on-demand fog formation offering on-the-fly IoT service deployment. IEEE Transactions on Network and Service Management 2020; 17(2): 1026-1039. doi: 10.1109/TNSM.2019.2963643.

65. Wilkes MV. Artificial intelligence as the year 2000 approaches. Communications of the ACM 1992; 35(8): 17-23.

66. Zou Z, Jin Y, Nevalainen P, et al. Edge and fog computing enabled AI for IoT-an overview. 2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS); 2019 Mar 18-20; Hsinchu, Taiwan. New York: IEEE; 2019. p. 51-56. doi: 10.1109/AICAS.2019.8771621.

67. Ji W, Liang B, Wang Y, et al. Crowd V-IoE: Visual internet of everything architecture in ai-driven fog computing. IEEE Wireless Communications 2020; 27(2): 51-57. doi: 10.1109/MWC.001.1900349.

68. Dastjerdi AV, Gupta H, Calheiros RN, et al. Fog computing: Principles, architectures, and applications. Internet of Things 2016; 61-75. doi: 10.1016/B978-0-12-805395-9.00004-6.

69. Cheng X, Dale C, Liu J. Statistics and social network of youtube videos. 2008 16th International Workshop on Quality of Service; 2008 Jun 2-4; Enschede, Netherlands. New York: IEEE; 2008. p. 229-238. doi: 10.1109/IWQOS.2008.32.

70. Chen N, Chen Y, You Y, et al. Dynamic urban surveillance video stream processing using fog computing. 2016 IEEE Second International Conference on Multimedia Big Data (BigMM); 2016 Apr 20-22; Taipei, Taiwan. New York: IEEE; 2016. p. 105-112. doi: 10.1109/BigMM.2016.53.

71. Jain S, Gupta S, Sreelakshmi KK, Rodrigues JJ. Fog computing in enabling 5G-driven emerging technologies for development of sustainable smart city infrastructures. Cluster Computing 2022; 25: 1111-1154. doi: 10.1007/s10586-021-03496-w.




DOI: https://doi.org/10.32629/jai.v5i2.545

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Rajanikanth Aluvalu, Lakshmi Muddana, V Uma Maheswari, Krishna Keerthi Channam, Swapna Mudrakola, MD Sirajuddin, CVR Syavasya

License URL: https://creativecommons.org/licenses/by-nc/4.0