banner

Deep learning-based approach for prediction of brain stroke from MR images for IoT in healthcare

Manu Gupta, Pessani Meghana, Kancherla Harshitha Reddy

Abstract


This study develops a technique to predict brain strokes using magnetic resonance imaging (MRI). Worldwide, brain stroke is a leading factor in death and long-term impairment. The impact of stroke on the life of survivors is substantial, often resulting in disability. Stroke analysis performed manually takes a lot of time and is subject to intra- and inter-operator variability. Consequently, this work aims to create a computer-based system for the prediction of stroke utilizing deep learning techniques, which help in timely diagnosis. The MRI images are preferred as it provides images of good contrast and no ionizing radiations are used in this imaging method. The deep learning methods included in this proposed work are DenseNet-121, Xception, LeNet, ResNet-50 and VGG-16. The DenseNet-121 classifier outperformed other classifiers and achieved acccuracy of 96%. The outcomes of the proposed approach for stroke prediction in IOT healthcare systems show that improved performance is attained using deep learning methods.


Keywords


stroke prediction; magnetic resonance images; deep learning; performance analysis; healthcare

Full Text:

PDF

References


1. Feigin VL, Norrving B, Mensah GA. Global burden of stroke. Circulation Research 2017; 120(3): 439–448. doi: 10.1161/circresaha.116.308413

2. World Stroke Organization (WSO): Global Stroke Fact Sheet 2022. Available online: https://www.world-stroke.org/assets/downloads/WSO_Global_Stroke_Fact_Sheet.pdf (accessed on 21 July 2023).

3. Kelly-Hayes M. Influence of age and health behaviors on stroke risk: Lessons from longitudinal studies. Journal of the American Geriatrics Society 2010; 58(Suppl2): S325–328. doi: 10.1111/j.1532-5415.2010.02915.x

4. Boehme AK, Esenwa C, Elkind MSV. Stroke risk factors, genetics, and prevention. Circulation Research 2017; 120(3): 472–495. doi: 10.1161/circresaha.116.308398

5. Johnson CO, Nguyen M, Roth GA, et al. Global, regional, and national burden of stroke, 1990–2016: A systematic analysis for the global burden of disease study 2016. The Lancet Neurology 2019; 18(5): 439–458. doi: 10.1016/S1474-4422(19)30034-1

6. Chen H, Engkvist O, Wang Y, et al. The rise of deep learning in drug discovery. Drug Discovery Today 2018; 23(6): 1241–1250. doi: 10.1016/j.drudis.2018.01.039

7. Gupta M, Gupta S. Classification of gliomas using efficient zernike moments based shape descriptors extracted from segmented MR images. In: Reddy VS, Prasad VK, Wang J. Soft Computing and Signal Processing. Springer; 2021. Volume 1325, pp. 445–454.

8. Rodríguez JAT. Stroke prediction through data science and machine learning algorithms. Unpublished. doi: 10.13140/RG.2.2.33027.43040

9. Ashrafuzzaman M, Saha S, Nur K. Prediction of stroke disease using deep CNN based approach. Journal of Advances in Information Technology 2022; 13(6): 604–613. doi: 10.12720/jait.13.6.604-613

10. Tazin T, Alam N, Dola NN, et al. Stroke disease detection and prediction using robust learning approaches. Journal of Healthcare Engineering 2021; 2021: 1–12. doi: 10.1155/2021/7633381

11. Almadani O, Alshammari R. Prediction of stroke using data mining classification techniques. International Journal of Advanced Computer Science and Applications 2018; 9(1): 457–460. doi: 10.14569/ijacsa.2018.090163

12. Sailasya G, Kumari GLA. Analyzing the performance of stroke prediction using ML classification algorithms. International Journal of Advanced Computer Science and Applications 2021; 12(6): 539–545. doi: 10.14569/ijacsa.2021.0120662

13. Bandi V, Bhattacharyya D, Midhunchakkravarthy D. Prediction of brain stroke severity using machine learning. Revue d'Intelligence Artificielle 2020; 34(6): 753–761. doi: 10.18280/ria.340609

14. Islam M, Akter S, Rokunojjaman, et al. Stroke Prediction Analysis using Machine Learning Classifiers and Feature Technique. International Journal of Electronics and Communications Systems 2021; 1(2): 57–62. doi: 10.24042/ijecs.v1i2.10393

15. Aishvarya R, Anand RJ, Vasundhara B, Sudha S. Early detection of brain stroke using MRI images. International Research Journal of Engineering and Technology 2020; 7(9): 2258–2261.

16. Faust O, En Wei Koh J, Jahmunah V, et al. Fusion of higher order spectra and texture extraction methods for automated stroke severity classification with MRI images. International Journal of Environmental Research and Public Health 2021; 18(15): 8059. doi: 10.3390/ijerph18158059

17. Nwosu CS, Dev S, Bhardwaj P, et al. Predicting stroke from electronic health records. In: Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); 23–27 July 2019; Berlin, Germany. pp. 5704–5707.

18. Rahman S, Hasan M, Sarkar AK. Prediction of Brain stroke using machine learning algorithms and deep neural network techniques. European Journal of Electrical Engineering and Computer Science 2023; 7(1): 23–30. doi: 10.24018/ejece.2023.7.1.483

19. Sung SF, Hsieh CY, Kao Yang YH, et al. Developing a stroke severity index based on administrative data was feasible using data mining techniques. Journal of Clinical Epidemiology 2015; 68(11): 1292–1300. doi: 10.1016/j.jclinepi.2015.01.009

20. Harshitha KV, Harshitha P, Gunjan Gupta, et al. Stroke prediction using machine learning algorithms. International Journal of Innovative Research in Engineering & Management (IJIREM) 2021; 8(4): 6–9.

21. Sundaram MS, Pavithra K, Poojasree V, Priyadharshini S. Stroke prediction using machine learning. International Advanced Research Journal in Science, Engineering and Technology 2022; 9(6): 141–148.

22. Govindarajan P, Soundarapandian RK, Gandomi AH, et al. Classification of stroke disease using machine learning algorithms. Neural Computing and Applications 2020; 32: 817-828.

23. Rishabh G, Sahana HK, Neelambika C, et al. Stroke risk prediction using machine learning algorithms. International Journal of Scientific Research in Computer Science, Engineering and Information Technology 2022; 8(4): 20–25. doi: 10.32628/cseit2283121

24. Pradeepa S, Manjula KR, Vimal S, et al. Detecting risk factor of stroke disease from social media using machine learning techniques. Neural Processing Letters 2020; 55(4): 3843–3861. doi: 10.1007/s11063-020-10279-8

25. Govindarajan P, Soundarapandian RK, Gandomi AH, et al. Classification of stroke disease using machine learning algorithms. Neural Computing and Applications 2019; 32(3): 817–828. doi: 10.1007/s00521-019-04041-y

26. Chantamit-O-Pas P, Goyal M. Prediction of stroke using deep learning model. In: Proceedings of the 24th International Conference, ICONIP 2017; 14–18 November 2017; Guangzhou, China. pp. 774–781. Springer International Publishing; 2017.

27. Brain MRI data. Available online: https://www.kaggle.com/datasets/rizwanulhoqueratul/brain-mri-data (accessed on 24 October 2023).

28. Sarker IH. Deep learning: A comprehensive overview on techniques, taxonomy, applications and research directions. SN Computer Science 2021; 2(6): 420–440. doi: 10.1007/s42979-021-00815-1

29. Huang G, Liu Z, van der Maaten L, Weinberger KQ. Densely connected convolutional networks. arXiv 2017; arXiv:1608.06993. doi: 10.48550/arXiv.1608.06993

30. Bohmrah MK, Kaur H. Classification of Covid-19 patients using efficient fine-tuned deep learning DenseNet model. Global Transitions Proceedings 2021; 2(2): 476–483. doi: 10.1016/j.gltp.2021.08.003

31. Chollet F. Xception: Deep learning with depthwise separable convolutions. arXiv 2017; arXiv:1610.02357. doi: 10.48550/arXiv.1610.02357

32. Tammina S. Transfer learning using VGG-16 with deep convolutional neural network for classifying images. International Journal of Scientific and Research Publications 2019; 9: 143-150.

33. Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv 2014; arXiv:1409.1556.

34. Abdollahi J. Evaluating LeNet Algorithms in Classification Lung Cancer from Iraq-Oncology Teaching Hospital/National Center for Cancer Diseases. arXiv 2023; arXiv:2305.13333.

35. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. pp. 770-778.

36. Mohanaiah P, Sathyanarayana P, GuruKumar L. Image texture feature extraction using GLCM approach. International Journal of Scientific and Research Publications 2013; 3: 1-6.




DOI: https://doi.org/10.32629/jai.v7i3.1101

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Manu Gupta, Pessani Meghana, Kancherla Harshitha Reddy

License URL: https://creativecommons.org/licenses/by-nc/4.0/