ETOSP: Energy-efficient task offloading strategy based on partial offloading in mobile edge computing framework for efficient resource management
Abstract
Mobile edge computing (MEC) is a very promising paradigm that facilitates efficient processing and analysis of Internet of Things (IoT) data at the network edge. MEC is a cloud-based platform that offers a range of online resources and sophisticated mobile apps to users of mobile devices. The continuing trend among mobile users is the growing need for accessing current apps and cloud-based services on their mobile computing devices (MCDs) with high data transfer rates and low latency. MCD’s frequently experience situations where they are either overwhelmed with excessive resource demands or insufficiently used due to imbalanced requests for resources. Offloading strategies play a crucial role in optimizing the efficiency of real-time data processing and analysis. This study proposes an ETOSP: Energy-efficient Task Offloading Strategy based on Partial Offloading in Mobile Edge Computing framework for efficient resource management as a solution to address the aforementioned difficulty. The application of the genetic algorithm is employed to produce strategies that provide balanced resource allocation for the purpose of identifying the most optimum offloading approach. The performance evaluation of ETOSP is shown through simulated experiments.
Keywords
Full Text:
PDFReferences
1. Casado-Vara R, Sittón-Candanedo I, De la Prieta F, et al. Edge Computing and Adaptive Fault-Tolerant Tracking Control Algorithm for Smart Buildings: A Case Study. Cybernetics and Systems. 2020, 51(7): 685-697. doi: 10.1080/01969722.2020.1798643
2. Huang PQ, Wang Y, Wang K, et al. A Bilevel Optimization Approach for Joint Offloading Decision and Resource Allocation in Cooperative Mobile Edge Computing. IEEE Transactions on Cybernetics. 2020, 50(10): 4228-4241. doi: 10.1109/tcyb.2019.2916728
3. Ebrahim Pourian R, Fartash M, Akbari Torkestani J. A New Approach to the Resource Allocation Problem in Fog Computing Based on Learning Automata. Cybernetics and Systems. Published online November 23, 2022: 1-20. doi: 10.1080/01969722.2022.2145653
4. Sabella D, Vaillant A, Kuure P, et al. Mobile-Edge Computing Architecture: The role of MEC in the Internet of Things. IEEE Consumer Electronics Magazine. 2016, 5(4): 84-91. doi: 10.1109/mce.2016.2590118
5. Mach P, Becvar Z. Mobile Edge Computing: A Survey on Architecture and Computation Offloading. IEEE Communications Surveys & Tutorials. 2017, 19(3): 1628-1656. doi: 10.1109/comst.2017.2682318
6. Carella GA, Pauls M, Magedanz T, et al. Prototyping nfv-based multi-access edge computing in 5G ready networks with open baton. 2017 IEEE Conference on Network Softwarization (NetSoft). Published online July 2017. doi: 10.1109/netsoft.2017.8004237
7. Xiong Z, Zhang Y, Niyato D, et al. When Mobile Blockchain Meets Edge Computing. IEEE Communications Magazine. 2018, 56(8): 33-39. doi: 10.1109/mcom.2018.1701095
8. Wang CX, Haider F, Gao X, et al. Cellular architecture and key technologies for 5G wireless communication networks. IEEE Communications Magazine. 2014, 52(2): 122-130. doi: 10.1109/mcom.2014.6736752
9. Rappaport TS, Sun S, Mayzus R, et al. Millimeter Wave Mobile Communications for 5G Cellular: It Will Work! IEEE Access. 2013, 1: 335-349. doi: 10.1109/access.2013.2260813
10. Hsin-Hung Cho, Chin-Feng Lai, Shih TK, et al. Integration of SDR and SDN for 5G. IEEE Access. 2014, 2: 1196-1204. doi: 10.1109/access.2014.2357435
11. Zaidi AA, Baldemair R, Tullberg H, et al. Waveform and Numerology to Support 5G Services and Requirements. IEEE Communications Magazine. 2016, 54(11): 90-98. doi: 10.1109/mcom.2016.1600336cm
12. Hu YC, Patel M, Sabella D, et al. Mobile Edge Computing—A Key Technology Towards 5G. ETSI white paper no. 11. Sophia Antipolis, France: European Telecommunications Standards Institute; 2015.
13. Mao Y, You C, Zhang J, et al. A Survey on Mobile Edge Computing: The Communication Perspective. IEEE Communications Surveys & Tutorials. 2017, 19(4): 2322-2358. doi: 10.1109/comst.2017.2745201
14. Rimal BP, Van DP, Maier M. Mobile Edge Computing Empowered Fiber-Wireless Access Networks in the 5G Era. IEEE Communications Magazine. 2017, 55(2): 192-200. doi: 10.1109/mcom.2017.1600156cm
15. Fajardo JO, Liberal F, Giannoulakis I, et al. Introducing Mobile Edge Computing Capabilities through Distributed 5G Cloud Enabled Small Cells. Mobile Networks and Applications. 2016, 21(4): 564-574. doi: 10.1007/s11036-016-0752-2
16. Zhang K, Mao Y, Leng S, et al. Energy-Efficient Offloading for Mobile Edge Computing in 5G Heterogeneous Networks. IEEE Access. 2016, 4: 5896-5907. doi: 10.1109/access.2016.2597169
17. Chen X, Jiao L, Li W, et al. Efficient Multi-User Computation Offloading for Mobile-Edge Cloud Computing. IEEE/ACM Transactions on Networking. 2016, 24(5): 2795-2808. doi: 10.1109/tnet.2015.2487344
18. Prashanth Joshi A, Han M, Wang Y. A survey on security and privacy issues of blockchain technology. Mathematical Foundations of Computing. 2018, 1(2): 121-147. doi: 10.3934/mfc.2018007
19. Zheng Z, Xie S, Dai H-N, Wang H. Blockchain Challenges and Opportunities: A Survey. Working paper. 2016.
20. Xiong Z, Feng S, Niyato D, et al. Optimal Pricing-Based Edge Computing Resource Management in Mobile Blockchain. 2018 IEEE International Conference on Communications (ICC). Published online May 2018. doi: 10.1109/icc.2018.8422517
21. Sarkar S, Chatterjee S, Misra S. Assessment of the Suitability of Fog Computing in the Context of Internet of Things. IEEE Transactions on Cloud Computing. 2018, 6(1): 46-59. doi: 10.1109/tcc.2015.2485206
22. Wang X, Yang LT, Li H, et al. NQA. ACM Transactions on Embedded Computing Systems. 2019, 18(4): 1-21. doi: 10.1145/3330139
23. Roy SS, Puthal D, Sharma S, et al. Building a Sustainable Internet of Things: Energy-Efficient Routing Using Low-Power Sensors Will Meet the Need. IEEE Consumer Electronics Magazine. 2018, 7(2): 42-49. doi: 10.1109/mce.2017.2776462
24. Bany Salameh HA, Almajali S, Ayyash M, et al. Spectrum Assignment in Cognitive Radio Networks for Internet-of-Things Delay-Sensitive Applications Under Jamming Attacks. IEEE Internet of Things Journal. 2018, 5(3): 1904-1913. doi: 10.1109/jiot.2018.2817339
25. Dolui K, Datta SK. Comparison of edge computing implementations: Fog computing, cloudlet and mobile edge computing. 2017 Global Internet of Things Summit (GIoTS). Published online June 2017. doi: 10.1109/giots.2017.8016213
26. Satria D, Park D, Jo M. Recovery for overloaded mobile edge computing. Future Generation Computer Systems. 2017, 70: 138-147. doi: 10.1016/j.future.2016.06.024
27. Yu Y, Li X, Qian C. Sdlb: A scalable and dynamic software load balancer for fog and mobile edge computing, in: Proceedings of the Workshop on Mobile Edge Communications. ACM; 2017. pp. 55–60.
28. Liu M, Yu FR, Teng Y, et al. Distributed Resource Allocation in Blockchain-Based Video Streaming Systems with Mobile Edge Computing. IEEE Transactions on Wireless Communications. 2019, 18(1): 695-708. doi: 10.1109/twc.2018.2885266
DOI: https://doi.org/10.32629/jai.v7i3.1203
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Chander Diwaker, Aarti Sharma
License URL: https://creativecommons.org/licenses/by-nc/4.0/