banner

Efficient sensor anomaly detection using Markov-LSTM architecture for methane sensing

S. Vishnu Kumar, G. Aloy Anuja Mary, Jasgurpreet Singh Chohan, Kanak Kalita

Abstract


The integration of the Internet of Things (IoT) into industrial activities has unlocked myriad possibilities, particularly in applications like environmental monitoring, which facilitates effective landfill management. Nevertheless, IoT environments present challenges, including resource constraints, heterogeneity and potential hardware/software failures. These issues often lead to sensor anomalies, triggering false alarms and stalling data-driven systems. Existing models for edge devices frequently overlook the sensor life cycle, leading to extensive training times and significant computational demands. In this paper, a collaborative approach is proposed wherein a Markovian architecture gauges the operational state of a sensor, assisting the Long Short-Term Memory (LSTM) model in outlier detection within real-world data. Commercially available MQ-4 sensor alongside a microwave RADAR-based Methane (CH4) sensor in a tandem setup is employed to evaluate our methodology. The Bathtub curve and the Pearson Correlation Coefficient (PCC) function as the switching mechanisms for the Markov chain. Real-time data validation yielded an impressive 92.57% accuracy and 94.86% efficiency in anomaly detection. When benchmarked against the Autoregressive Integrated Moving Average (ARIMA) and the Prophet algorithm, our method demonstrated superior anomaly rejection rates of 9.63% and 3.01%, respectively. Implementing the Markov-LSTM model in methane sensing significantly enhances the accuracy of recorded sensor values compared to standard methane sensors.


Keywords


sensor anomaly detection; edge computing; bathtub curve; methane monitoring; industrial IoT; LSTM Network; Markov model

Full Text:

PDF

References


1. Jo JY, Kwon YS, Lee JW, et al. Acute Respiratory Distress Due to Methane Inhalation. Tuberculosis and Respiratory Diseases. 2013, 74(3): 120. doi: 10.4046/trd.2013.74.3.120

2. Wu R, Tian L, Li H, et al. A selective methane gas sensor based on metal oxide semiconductor equipped with an on-chip microfilter. Sensors and Actuators B: Chemical. 2022, 359: 131557. doi: 10.1016/j.snb.2022.131557

3. Halley S, Tsui L kun, Garzon F. Combined Mixed Potential Electrochemical Sensors and Artificial Neural Networks for the Quantification and Identification of Methane in Natural Gas Emissions Monitoring. Journal of The Electrochemical Society. 2021, 168(9): 097506. doi: 10.1149/1945-7111/ac2465

4. Sun J, Tian L, Chang J, et al. Adaptively Optimized Gas Analysis Model with Deep Learning for Near-Infrared Methane Sensors. Analytical Chemistry. 2022, 94(4): 2321-2332. doi: 10.1021/acs.analchem.1c05059

5. Iwaszenko S, Kalisz P, Słota M, et al. Detection of Natural Gas Leakages Using a Laser-Based Methane Sensor and UAV. Remote Sensing. 2021, 13(3): 510. doi: 10.3390/rs13030510

6. Chai H, Zheng Z, Liu K, et al. Stability of Metal Oxide Semiconductor Gas Sensors: A Review. IEEE Sensors Journal. 2022, 22(6): 5470-5481. doi: 10.1109/jsen.2022.3148264

7. Balestrieri E, Daponte P, De Vito L, et al. Sensors and Measurements for UAV Safety: An Overview. Sensors. 2021, 21(24): 8253. doi: 10.3390/s21248253

8. Himeur Y, Ghanem K, Alsalemi A, et al. Artificial intelligence based anomaly detection of energy consumption in buildings: A review, current trends and new perspectives. Applied Energy. 2021, 287: 116601. doi: 10.1016/j.apenergy.2021.116601

9. Shagari NM, Idris MYI, Salleh RB, et al. Heterogeneous Energy and Traffic Aware Sleep-Awake Cluster-Based Routing Protocol for Wireless Sensor Network. IEEE Access. 2020, 8: 12232-12252. doi: 10.1109/access.2020.2965206

10. Ahmed G, Zou J, Fareed MMS, et al. Sleep-awake energy efficient distributed clustering algorithm for wireless sensor networks. Computers & Electrical Engineering. 2016, 56: 385-398. doi: 10.1016/j.compeleceng.2015.11.011

11. Sharma D, Bhondekar AP. Traffic and Energy Aware Routing for Heterogeneous Wireless Sensor Networks. IEEE Communications Letters. 2018, 22(8): 1608-1611. doi: 10.1109/lcomm.2018.2841911

12. Mahima V, Chitra A. Battery Recovery Based Lifetime Enhancement (BRLE) Algorithm for Wireless Sensor Network. Wireless Personal Communications. 2017, 97(4): 6541-6557. doi: 10.1007/s11277-017-4854-3

13. M T, Thangaraj P. Fuzzy Ontology for Distributed Document Clustering based on Genetic Algorithm. Applied Mathematics & Information Sciences. 2013, 7(4): 1563-1574. doi: 10.12785/amis/070442

14. Duangsuwan S, Prapruetdee P, Subongkod M, et al. 3D AQI Mapping Data Assessment of Low-Altitude Drone Real-Time Air Pollution Monitoring. Drones. 2022, 6(8): 191. doi: 10.3390/drones6080191

15. Cozma A, Firculescu AC, Tudose D, et al. Autonomous Multi-Rotor Aerial Platform for Air Pollution Monitoring. Sensors. 2022, 22(3): 860. doi: 10.3390/s22030860

16. Sonkar SK, Kumar P, George RC, et al. Detection and Estimation of Natural Gas Leakage Using UAV by Machine Learning Algorithms. IEEE Sensors Journal. 2022, 22(8): 8041-8049. doi: 10.1109/jsen.2022.3157872

17. Wang D, Pan J, Huang X, et al. Virtual Alternating Current Measurements Advance Semiconductor Gas Sensors’ Performance in the Internet of Things. IEEE Internet of Things Journal. 2022, 9(7): 5502-5510. doi: 10.1109/jiot.2021.3108799

18. Luo P, Harrist J, Menduni G, et al. Simultaneous Detection of Methane, Ethane, and Propane by QEPAS Sensors for On-Site Hydrocarbon Characterization and Production Monitoring. ACS Omega. 2022, 7(4): 3395-3406. doi: 10.1021/acsomega.1c05645

19. Contreras-Castillo J, Zeadally S, Guerrero Ibáñez JA. A seven-layered model architecture for Internet of Vehicles. Journal of Information and Telecommunication. 2017, 1(1): 4-22. doi: 10.1080/24751839.2017.1295601

20. Martín D, Fuentes-Lorenzo D, Bordel B, et al. Towards Outlier Sensor Detection in Ambient Intelligent Platforms—A Low-Complexity Statistical Approach. Sensors. 2020, 20(15): 4217. doi: 10.3390/s20154217

21. Chen Z, Yeo CK, Lee BS, et al. Autoencoder-based network anomaly detection. 2018 Wireless Telecommunications Symposium (WTS). Published online April 2018. doi: 10.1109/wts.2018.8363930

22. Jiang J, Liu F, Liu Y, et al. A dynamic ensemble algorithm for anomaly detection in IoT imbalanced data streams. Computer Communications. 2022, 194: 250-257. doi: 10.1016/j.comcom.2022.07.034

23. Siami-Namini S, Tavakoli N, Namin AS. The Performance of LSTM and BiLSTM in Forecasting Time Series. 2019 IEEE International Conference on Big Data (Big Data). Published online December 2019. doi: 10.1109/bigdata47090.2019.9005997

24. Kim J, Shin J, Park KW, et al. Improving Method of Anomaly Detection Performance for Industrial IoT Environment. Computers, Materials & Continua. 2022, 72(3): 5377-5394. doi: 10.32604/cmc.2022.026619

25. Yang X, Li Y, Shen J. Forecasting Research on Long-term Solar Irradiance with An Improved Prophet Algorithm. IFAC-PapersOnLine. 2022, 55(9): 491-494. doi: 10.1016/j.ifacol.2022.07.085

26. Arronte Alvarez A, Gómez F. Motivic Pattern Classification of Music Audio Signals Combining Residual and LSTM Networks. International Journal of Interactive Multimedia and Artificial Intelligence. 2021, 6(6): 208. doi: 10.9781/ijimai.2021.01.003

27. Gökdemr A, Çalhan A. Deep learning and machine learning based anomaly detection in internet of things environments (Turkish). Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. 2022, 37(4): 1945-1956. doi: 10.17341/gazimmfd.962375

28. Zhou C, Paffenroth RC. Anomaly Detection with Robust Deep Autoencoders. Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Published online August 4, 2017. doi: 10.1145/3097983.3098052

29. Xue H, Huynh DQ, Reynolds M. SS-LSTM: A Hierarchical LSTM Model for Pedestrian Trajectory Prediction. 2018 IEEE Winter Conference on Applications of Computer Vision (WACV). Published online March 2018. doi: 10.1109/wacv.2018.00135

30. Siami-Namini S, Tavakoli N, Siami Namin A. The performance of LSTM and BiLSTM in forecasting time series. In: Proceedings of 2019 IEEE International Conference on Big Data (Big Data); 9–12 December 2019; Los Angeles, CA, USA. doi:10.1109/BigData47090.2019.9005997

31. Zar Zar OO, Sabai P. Time Series Prediction Based on Facebook Prophet: A Case Study, Temperature Forecasting in Myintkyina. International Journal of Applied Mathematics Electronics and Computers. 2020, 8(4): 263-267. doi: 10.18100/ijamec.816894

32. Almanjahie IM, Kaid Z, Laksaci A, et al. Predicting temperature curve based on fastkNN local linear estimation of the conditional distribution function. PeerJ. 2021, 9: e11719. doi: 10.7717/peerj.11719

33. Sareminia S. A Support Vector Based Hybrid Forecasting Model for Chaotic Time Series: Spare Part Consumption Prediction. Neural Processing Letters. 2022, 55(3): 2825-2841. doi: 10.1007/s11063-022-10986-4

34. Khansa HE, Gervet C, Brouillet A. On the Ranking of Variable Length Discords Through a Hybrid Outlier Detection Approach. Lecture Notes in Computer Science. Published online 2022: 329-344. doi: 10.1007/978-3-031-18840-4_24

35. Garg S, Kaur K, Kumar N, et al. A Hybrid Deep Learning-Based Model for Anomaly Detection in Cloud Datacenter Networks. IEEE Transactions on Network and Service Management. 2019, 16(3): 924-935. doi: 10.1109/tnsm.2019.2927886

36. Garg S, Kaur K, Batra S, et al. A multi-stage anomaly detection scheme for augmenting the security in IoT-enabled applications. Future Generation Computer Systems. 2020, 104: 105-118. doi: 10.1016/j.future.2019.09.038

37. Moustafa N, Hu J, Slay J. A holistic review of Network Anomaly Detection Systems: A comprehensive survey. Journal of Network and Computer Applications. 2019, 128: 33-55. doi: 10.1016/j.jnca.2018.12.006

38. Carrillo-Amado YR, Califa-Urquiza MA, Ramón-Valencia JA. Calibration and standardization of air quality measurements using MQ sensors. Respuestas. 2020, 25(1): 70-77. doi: 10.22463/0122820x.2408

39. Alvarez‐Alvarado MS, Jayaweera D. Bathtub curve as a Markovian process to describe the reliability of repairable components. IET Generation, Transmission & Distribution. 2018, 12(21): 5683-5689. doi: 10.1049/iet-gtd.2018.5505

40. Kumar VS, Mary AAG, Esakki B. Analyzing the Applicability of ML Powered Microwave Sensor for UAV Based CH4 Sensing. International Journal of Electrical and Electronic Engineering & Telecommunications. Published online 2023: 161-170. doi: 10.18178/ijeetc.12.3.161-170

41. Wang B, Chen Y, Liu D, et al. An embedded intelligent system for on-line anomaly detection of unmanned aerial vehicle. Journal of Intelligent & Fuzzy Systems. 2018, 34(6): 3535-3545. doi: 10.3233/jifs-169532

42. Cauteruccio F, Cinelli L, Corradini E, et al. A framework for anomaly detection and classification in Multiple IoT scenarios. Future Generation Computer Systems. 2021, 114: 322-335. doi: 10.1016/j.future.2020.08.010

43. Aljuhani A. Machine Learning Approaches for Combating Distributed Denial of Service Attacks in Modern Networking Environments. IEEE Access. 2021, 9: 42236-42264. doi: 10.1109/access.2021.3062909

44. Pourhabibi T, Ong KL, Kam BH, et al. Fraud detection: A systematic literature review of graph-based anomaly detection approaches. Decision Support Systems. 2020, 133: 113303. doi: 10.1016/j.dss.2020.113303




DOI: https://doi.org/10.32629/jai.v7i3.1285

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 S. Vishnu Kumar, G. Aloy Anuja Mary, Jasgurpreet Singh Chohan, Kanak Kalita

License URL: https://creativecommons.org/licenses/by-nc/4.0/