banner

Lost item identification model development using similarity prediction method with CNN ResNet algorithm

Jonathan Prawira, Theresia Ratih Dewi Saputri

Abstract


Background: Incidents of personal belongings being lost often occur due to our negligence as human beings or criminal acts such as theft. The methods used to address such situations are still manual and ineffective. The manual process of reporting lost items requires significant time and effort. Additionally, matching the information of lost items with the found ones becomes increasingly difficult, and finding the original owners can be time-consuming. Objectives and Methods: This research aims to develop an approach that aids the community in the management of lost items by incorporating a process of item identification. It proposes the creation of an iOS-based prototype model that implements image comparison and string matching. The ResNet-50 architecture extracts features from images, and the Euclidean Distance method measures similarity between these features. Natural language processing used for text pre-processing and employs the cosine similarity metric to assess textual similarity in item descriptions. Result and Conclusion: By combining Euclidean distance and cosine similarity values, the model predicts similar lost item reports. Image comparison provides an accuracy result of 29.96% correctness, while string matching with 97.92% correctness. Thorough testing and validation confirm the model’s success across different reports.


Keywords


image comparison; Euclidean distance; string matching; natural language processing; cosine similarity

Full Text:

PDF

References


1. Ahmad S, Ziaullah M, Rauniyar L, et al. How Does Matter Lost and Misplace Items Issue and Its Technological Solutions in 2015—A Review Study. IOSR Journal of Business and Management 2015; 17(4).

2. Suryani L, Edy K. Pengembangan aplikasi “lost & found” berbasis android dengan menggunakan metode term frequency—Inverse document frequency (TF-IDF) dan cosine similarity. Jelekn 2020; 6(2): 190-204. doi: 10.32531/jelekn.v6i2.232

3. Setiawan MA, Andryana S, Gunaryati A. Penerapan Algoritma Boyer Moore Dalam Pencarian Barang Hilang pada Aplikasi FindIt Berbasis Android. Jurnal Media Informatika Budidarma 2021; 5(3): 945. doi: 10.30865/mib.v5i3.3093

4. Ghazal M, Al Khalil Y, Haneefa F, et al. Archival and Retrieval of Lost Objects using Multi-feature Image Matching in Mobile Applications. International Journal of Computing and Digital Systems 2016; 5(1): 73-83. doi: 10.12785/ijcds/050107

5. Liu Y, Fang K, Yang E, et al. Lost-Found Item Net for Classification Based on Inception-Resnet. In: Proceedings of 2022 16th IEEE International Conference on Signal Processing (ICSP); 2022. doi: 10.1109/icsp56322.2022.9965294

6. Zhou M, Fung I, Yang L, et al. Lostnet: A Smart Way for Lost and Find. SSRN Journal 2023. doi: 10.2139/ssrn.4391555

7. Jeong H, Yoo H, You T, et al. Lost and Found Registration and Inquiry Management System for User-dependent Interface using Automatic Image Classification and Ranking System based on Deep Learning. Journal of convergence security 2018; 18(4): 19-25.

8. RGB-D Object Dataset. Available online: https://datasets.abci.ai/dataset/miro/ (accessed on 17 June 2022).

9. MIRO: Multi-view Images of Rotated Objects. Available online: http://rgbd-dataset.cs.washington.edu (accessed on 17 June 2022).

10. detikTravel. 10 Barang yang Paling Sering Hilang Saat Liburan. Available online: https://travel.detik.com/travel-news/d-2267276/10-barang-yang-paling-sering-hilang-saat-liburan (accessed on 26 February 2023).

11. Chipolo. Lost and Missing Items: What We Lose the Most and Where We Lose It. Available online: https://chipolo.net/en/blogs/lost-and-missing-items-what-we-lose-the-most-and-where-we-lose-it (accessed on 26 February 2023).

12. Kang Y, Cai Z, Tan CW, et al. Natural language processing (NLP) in management research: A literature review. Journal of Management Analytics 2020; 7(2): 139-172. doi: 10.1080/23270012.2020.1756939

13. Hussen Maulud D, Zeebaree SRM, Jacksi K, et al. State of Art for Semantic Analysis of Natural Language Processing. Qubahan Academic Journal 2021; 1(2): 21-28. doi: 10.48161/qaj.v1n2a44

14. Srinivasan K, Garg L, Datta D, et al. Performance Comparison of Deep CNN Models for Detecting Driver’s Distraction. Computers, Materials & Continua 2021; 68(3): 4109-4124. doi: 10.32604/cmc.2021.016736

15. Yamashita R, Nishio M, Do RKG, Togashi K. Convolutional neural networks: An overview and application in radiology. Insights Imaging 2018; 9(4): 611-629. doi: 10.1007/s13244-018-0639-9

16. He K, Zhang X, Ren S, Sun J. Identity mappings in deep residual networks. In: Proceedings of the Computer Vision–ECCV 2016: 14th European Conference; 11–14 October 2016; Amsterdam, The Netherlands. pp. 6302–645.

17. Sarwinda D, Paradisa RH, Bustamam A, Anggia P. Deep Learning in Image Classification using Residual Network (ResNet) Variants for Detection of Colorectal Cancer. Procedia Computer Science 2021; 179: 423-431. doi: 10.1016/j.procs.2021.01.025

18. Reddy ASB, Juliet DS. Transfer Learning with ResNet-50 for Malaria Cell-Image Classification. In: Proceedings of 2019 International Conference on Communication and Signal Processing (ICCSP); 2019. doi: 10.1109/iccsp.2019.8697909

19. Wen L, Li X, Gao L. A transfer convolutional neural network for fault diagnosis based on ResNet-50. Neural Comput & Applic 2019; 32(10): 6111-6124. doi: 10.1007/s00521-019-04097-w

20. Tensor Flow. Available online: https://www.tensorflow.org/ (accessed on 17 June 2022).

21. Keras. Available online: https://keras.io/ (accessed on 17 June 2022).

22. Zenggang X, Zhiwen T, Xiaowen C, et al. Research on Image Retrieval Algorithm Based on Combination of Color and Shape Features. J Sign Process Syst 2019; 93(2-3): 139-146. doi: 10.1007/s11265-019-01508-y

23. Thusnavis Bella MI, Vasuki A. An efficient image retrieval framework using fused information feature. Computers & Electrical Engineering 2019; 75: 46-60. doi: 10.1016/j.compeleceng.2019.01.022

24. Sitikhu P, Pahi K, Thapa P, Shakya S. A Comparison of Semantic Similarity Methods for Maximum Human Interpretability. In: Proceedings of 2019 Artificial Intelligence for Transforming Business and Society (AITB); 2019. doi: 10.1109/aitb48515.2019.8947433




DOI: https://doi.org/10.32629/jai.v7i2.1381

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Jonathan Prawira, Theresia Ratih Dewi Saputri

License URL: https://creativecommons.org/licenses/by-nc/4.0/