Recent Advances in Particle Swarm Optimization for Large Scale Problems
Abstract
Keywords
Full Text:
PDFReferences
1. Ali, Y. M. B., Soft adaptive particle swarm algorithm for large scale optimization, in: IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA), IEEE, 2010, pp. 1658-1662.
2. Aziz, M., Tayarani-N., M.-H., An adaptive memetic particle swarm optimization algorithm for finding large-scale Latin hypercube designs, Engineering Applications of Artificial Intelligence 36 (2014) 222-237.
3. Banka, H., Dara, S., A Hamming distance based binary particle swarm optimization (HDBPSO) algorithm for high dimensional feature selection, classification and validation, Pattern RecognitionLetters 52 (2015) 94-100.
4. Budhraja, K. K., Singh, A., Dubey, G., Khosla, A., Exploration enhanced particle swarm optimization using guided reinitialization, in: Proceedings of Seventh International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA 2012), Springer, 2013, pp. 403-416.
5. Cai, Q., Gong, M., Ma, L., Ruan, S., Yuan, F., Jiao, L., Greedy discrete particle swarm optimization for large-scale social network clustering, Information Sciences 316 (2015) 503-516.
6. Chen, K.-T., Dai, Y., Fan, K., Baba, T., A particle swarm optimization with adaptive multi-swarm strategy for capacitated vehicle routing problem, in: IEEE 1st International Conference on Industrial Networks and Intelligent Systems (INISCom), IEEE, 2015, pp. 79-83.
7. Cheng, R., Xu, L., Liu, Y., Gao, J., Distribution network reconfiguration based on adaptive bi-group particle swarm algorithm, in: 8th International Symposium on Computational Intelligence and Design (ISCID), 2015, vol. 1, pp. 374-378.
8. Cheng, R., Jin, Y., A competitive swarm optimizer for large scale optimization, IEEE Transactions on Cybernetics 45 (2) (2015) 191-204.
9. Cheng, R., Jin, Y., A social learning particle swarm optimization algorithm for scalable optimization, Information Sciences 291 (2015) 43-60.
10. Chu, Y., Mi, H., Liao, H., Ji, Z., Wu, Q. H., A fast bacterial swarming algorithm for high-dimensional function optimization, in: IEEE Congress on Evolutionary Computation, IEEE, 2008, pp. 3135-3140.
11. Chu, W., Gao, X., Sorooshian, S., Handling boundary constraints for particle swarm optimization in high- dimensional search space, Information Sciences 181 (20) (2011) 4569-4581.
12. A. P., Scalability of a heterogeneous particle swarm optimizer, in: IEEE Symposium on Swarm Intelligence, IEEE, 2011, pp. 1-8.
13. Fan, J., Wang, J., Han, M., Cooperative coevolution for large- scale optimization based on kernel fuzzy clustering and variable trust region methods, IEEE Transactions on Fuzzy Systems 22 (4) (2014) 829-839.
14. Garc?a-Nieto, J., Alba, E., Restart particle swarm optimization with velocity modulation: a scalability test, Soft Computing 15 (11) (2011) 2221-2232.
15. Gong, M., Wu, Y., Cai, Q., Ma, W., Qin, A. K., Wang, Z., Jiao, L., Discrete particle swarm optimization for high-order graph matching, Information Sciences 328 (2016) 158-171.
16. Hou, P., Hu, W., Soltani, M., Chen, Z., Optimized placement of wind turbines in large-scale offshore wind farm using particle swarm optimization algorithm, IEEE Transactions on Subtainable Energy 6 (4) (2015) 1272-1282.
17. Hsieh, S.-T., Sun, T.-Y., Liu, C.-C., Tsai, S.-J., Solving large scale global optimization using improved particle swarm optimizer, in: IEEE Congress on Evolutionary Computation, IEEE, 2008, pp. 1777-1784.
18. Ismail, A., Engelbrecht, A. P., Measuring diversity in the cooperative particle swarm optimizer, in: Swarm Intelligence, Lecture Notes in Computer Science, Springer, 2012, vol. 7461, pp. 97-108.
19. Jiang, B., Wang, N., Cooperative bare-bone particle swarm optimization for data clustering, Soft Computing 18 (6) (2014) 1079-1091.
20. Jiao, B., Chen, Q., Yan, S., A cooperative coevolution pso for flow shop scheduling problem with uncertainty, Journal of Computers 6 (9) (2011) 1955-1961.
21. Lee, S.-M., Kim, H., Myung, H., Yao, X., Cooperative coevolutionary algorithm-based model predictive control guaranteeing stability of multirobot formation, IEEE Transactions on Control Systems Technology 23 (1) (2015) 37-51.
22. Li, X., Yao, X., Tackling high dimensional nonseparable optimization problems by cooperatively coevolving particle swarms, in: IEEE Congress on Evolutionary Computation, IEEE, 2009, pp. 1546-1553.
23. Li, X., Yao, X., Cooperatively coevolving particle swarms for large scale optimization, IEEE Transactions on Evolutionary Computation 16 (2) (2012) 210-224.
24. Li, Z., Wang, W., Yan, Y., Li, Z., PS-ABC: A hybrid algorithm based on particle swarm and artificial bee colony for high- dimensional optimization problems, Expert Systems With Applications 42 (2015) 8881-8895.
25. Lin, L., Gen, M., Liang, Y., A hybrid EA for high-dimensional subspace clustering problem, in: IEEE Congress on Evolutionary Computation, IEEE, 2014, pp. 2855-2860.
26. Montes de Oca, M. A., Stutzle, T., Van den Enden, K., Dorigo, M., Incremental social learning in particle swarms, IEEE Transactions on System. Man and Cybernetics, Part B: Cybernetics 41 (2) (2011) 368-384.
27. Montes de Oca, M. A., Aydin, D., Stutzle, T., An incremental particle swarm for large-scale continuous optimization problems: an example of tuning-in-the-loop (re)design of optimization algorithms, Soft Computing 15 (11) (2011)2233-2255.
28. Ouyang, H.-b., Gao, L.-q., Kong, X.-y., Li, S., Zou, D.-x., Hybrid harmony search particle swarm optimization with global dimension selection, Information Sciences 346-347 (2016) 318-337.
29. Rather, Z. H., Chen, Z., Thersen, P., Lund, P., Dynamic reactive power compensation of large-scale wind integrated power system, IEEE Transactions on Power Systems 30 (5) (2015) 2516-2526.
30. Sahu, P. K., Shah, T., Manna, K., Chattopadhyay, S., Application mapping onto mesh-based network-on- chip using discrete particle swarm optimization, IEEE Transactions on Very Large Scale Integration (VLSI) Systems 22 (2) (2014) 300-312.
31. Sun, C., Tao, H., Guo, X., Xie, J., Adaptive interferences suppression algorithm after subarray configuration for large-scale antenna array, IET Electronics Letters 52 (1) (2016) 7-8.
32. Sun, L., Yoshida, S., Cheng, X., Liang, Y., A cooperative particle swarm optimizer with statistical variable interdependence learning, Information Sciences 186 (1)(2012) 20-39.
33. Tang, D., Cai, Y., Zhao, J., Xue, Y., A quantum-behaved particle swarm optimization with memetic algorithm and memory for continuous non-linear large scale problems, Information Sciences 277 (2014) 680-693.
34. Van den Bergh, F., Engelbrecht, A. P., A cooperative approach to particle swarm optimization, IEEE Transactions on Evolutionary Computation 8 (3) (2004) 225-239.
35. Van Zyl, E., Engelbrecht, A. P., A subspace-based method for PSO initialization, in: IEEE Symposium Series on Computational Intelligence, IEEE, 2015, pp. 226-233.
36. Van Zyl, E., Engelbrecht, A. P., Group-based stochastic scaling for PSO velocities, in: IEEE Congress on Evolutionary Computation, 2016, pp. 66-73.
37. Wang, H., Wu, Z., Rahnamayan, S., Liu, Y., Ventresca, M., Enhancing particle swarm optimization using generalized opposition based learning, Information Sciences 181 (20) (2011) 4699-4714.
38. Wang, H., Sun, H., Li, C., Rahnamayan, S., Pan, J., Diversity enhanced particle swarm optimization with neighborhood search, Information Sciences 223 (2013) 119-135.
39. Zhang, C., Yi, Z., Scale-free fully informed particle swarm optimization algorithm, Information Sciences 181 (20)(2011) 4550-4568.
40. Zhang, Y., Jing, Z., Zhang, Y., MR-IDPSO: a novel algorithm for large-scale dynamic service composition, Tsinghua Science and Technology 20 (6) (2015) 602-612.
41. Zhang, W.-X., Chen, W.-N., Zhang, J., A dynamic competitive swarm optimizer based-on entropy for large scale optimization, in: IEEE Eighth International Conference on Advanced Computational Intelligence (ICACI), IEEE, 2016, pp. 365-371.
42. Zhao, S.-Z., Liang, J. J., Suganthan, P. N., Tasgetiren, M. F., Dynamic multi-swarm particle swarm optimizer with local search for large scale global optimization, in: IEEE Congress on Evolutionary Computation, IEEE, 2008, pp. 3845-3852.
43. Zhao, S.-Z., Suganthan, P. N., Das, S., Dynamic multi-swarm particle swarm optimizer with sub-regional harmony search, in: IEEE Congress on Evolutionary Computation, IEEE, 2010, pp. 1-8.
DOI: https://doi.org/10.32629/jai.v1i1.15
Refbacks
- There are currently no refbacks.
Copyright (c) 2018 Danping Yan, Yongzhong Lu
License URL: https://creativecommons.org/licenses/by-nc/4.0