banner

Beyond pixels and ciphers: Navigating the advancements and challenges in visual cryptography

Prema Bhushan Sahane, Gayathri M., Snehal Akshay Bagal, Praful Sambhare, Satish Billewar, Kirti Borhade, John Blesswin, Selva Mary

Abstract


Visual cryptography (VC) has emerged as a pivotal solution for secure information transmission, leveraging its unique capability to encrypt images in a user-friendly and accessible manner. This survey paper provides an in-depth analysis of various VC methods, highlighting their distinct encryption and decryption techniques, applicability, and security levels. The study delves into the technical specifications of each VC type, offering insights into secret image formats, the number of secret images used, types of shares, pixel expansion, and complexity. Significant attention is given to the practical applications of VC, ranging from secure document verification and anti-counterfeiting measures to digital watermarking and online data protection. The paper also identifies key challenges in the field, such as image quality retention post-decryption, computational efficiency, and scalability. Future prospects of VC are explored, particularly its potential integration with emerging technologies like AI and blockchain. This survey aims to provide a comprehensive understanding of VC’s current state, its diverse applications, and the future possibilities, making it a valuable resource for researchers and practitioners in the field of data security and cryptography.


Keywords


visual cryptography; information security; encryption techniques; digital watermarking; cryptographic applications

Full Text:

PDF

References


1. Naor M, Shamir A. Visual cryptography. Lecture Notes in Computer Science. Published online 1995: 1-12. doi: 10.1007/bfb0053419

2. Ateniese G, Blundo C, De Santis A, Stinson DR. Constructions and bounds for visual cryptography. In: Proceedings of the 23rd International Colloquium on Automata, Languages, and Programming (ICALP 96), LNCS, Vol. 1099, Springer-Verlag. 1996.

3. Shyu SJ, Huang SY, Lee YK, et al. Sharing multiple secrets in visual cryptography. Pattern Recognition. 2007; 40(12): 3633-3651. doi: 10.1016/j.patcog.2007.03.012

4. Wu HC, Wang HC, Yu RW. Color Visual Cryptography Scheme Using Meaningful Shares. 2008 Eighth International Conference on Intelligent Systems Design and Applications. Published online November 2008. doi: 10.1109/isda.2008.130

5. Wu X, Liu T, Sun W. Improving the visual quality of random grid-based visual secret sharing via error diffusion. Journal of Visual Communication Image Representation. 2013; 24: 552–566. doi: 10.1016%2Fj.jvcir.2013.03.002

6. Deshmukh M, Nain N, Ahmed M. Efficient and secure multi secret sharing schemes based on boolean XOR and arithmetic modulo. Multimedia Tools Application. 2018; 77: 89–107. doi: 10.1007%2Fs11042-016-4229-x

7. Yan M, Hu Y, Zhang H. Progressive meaningful visual cryptography for secure communication of grayscale medical images. Multimedia Tools and Applications. Published online September 23, 2023. doi: 10.1007/s11042-023-16960-z

8. Wang RZ. Region Incrementing Visual Cryptography. IEEE Signal Processing Letters. 2009; 16(8): 659-662. doi: 10.1109/LSP.2009.2021334

9. Suma D, Raviraja Holla M. Pipelined parallel rotational visual cryptography (PPRVC). In: International Conference on Communication and Signal Processing, 4–6 April 2019, India.

10. Verheul ER, Tilborg HCA. Constructions and properties of k out of n visual secret sharing schemes. Designs, Codes and Cryptography. 1997; 11: 179–196. doi: 10.1023%2FA%3A1008280705142

11. Kester QA, Nana L, Pascu AC. A new hybrid asymmetric key-exchange and visual cryptographic algorithm for securing digital images. 2013 International Conference on Adaptive Science and Technology. Published online November 2013. doi: 10.1109/icastech.2013.6707497

12. John Blesswin A, Selva Mary G, Manoj Kumar S. Multiple Secret Image Communication Using Visual Cryptography. Wireless Personal Communications. 2021; 122(4): 3085-3103. doi: 10.1007/s11277-021-09041-7

13. Petrauskiene V, Palivonaite R, Aleksa A, et al. Dynamic visual cryptography based on chaotic oscillations. Communications in Nonlinear Science and Numerical Simulation. 2014; 19(1): 112-120. doi: 10.1016/j.cnsns.2013.06.002

14. Zhao Y, Fu FW. A cheating immune (k, n) visual cryptography scheme by using the rotation of shares. Multimedia Tools and Applications. 2022; 81(5): 6235-6257. doi: 10.1007/s11042-021-11692-4

15. Patil K, Barpute JV, Arkadi M, Bhirud SD, et al. Semantic pixel encoding visual secret sharing technique for balancing quality and security in color images. Journal of Autonomous Intelligence. 7(3): 1159.

16. Sun Y, Lu Y, Chen J, et al. Meaningful Secret Image Sharing Scheme with High Visual Quality Based on Natural Steganography. Mathematics. 2020; 8(9): 1452. doi: 10.3390/math8091452

17. Cimato S, Yang JCN, Wu CC. Visual Cryptography Based Watermarking. In: Shi YQ, Liu F, Yan W (editors). Transactions on Data Hiding and Multimedia Security IX. Lecture Notes in Computer Science. Springer, Berlin, Heidelberg. 2014.

18. Selva Mary G, Blesswin AJ, Kumar SM. Self-authentication Model to Prevent Cheating Issues in Grayscale Visual Secret Sharing Schemes. Wireless Personal Communications. 2022; 125(2): 1695-1714. doi: 10.1007/s11277-022-09628-8

19. Matsuzaki T, Qin H, Harada K. Color Visual Cryptography with Stacking Order Dependence Using Interference Color. Open Journal of Applied Sciences. 2017; 07(07): 329-336. doi: 10.4236/ojapps.2017.77026

20. Zhao T, Chi Y. Hierarchical visual cryptography for multisecret images based on a modified phase retrieval algorithm. Multimedia Tools and Applications. 2020; 79(17-18): 12165-12181. doi: 10.1007/s11042-020-08632-z

21. Blesswin J, Mary S, Gobinath T, et al. Error-induced inverse pixel visual cryptography for secure QR code communication. Journal of Autonomous Intelligence. 2023; 7(1). doi: 10.32629/jai.v7i1.1129

22. Bhat K. A Verifiable Lossless Multiple Secret Images Sharing Scheme, Information Systems Security. 2021.

23. Chen YH, Juan JST. XOR-Based (n, n) Visual Cryptography Schemes for Grayscale or Color Images with Meaningful Shares. Applied Sciences. 2022; 12(19): 10096. doi: 10.3390/app121910096

24. Blesswin J, Mary S, Suryawanshi S, et al. Secure transmission of grayscale images with triggered error visual sharing. Journal of Autonomous Intelligence. 2023; 6(2): 957. doi: 10.32629/jai.v6i2.957

25. Lin J, Chang CC, Horng JH. Asymmetric Data Hiding for Compressed Images with High Payload and Reversibility. Symmetry. 2021; 13(12): 2355. doi: 10.3390/sym13122355

26. Koptyra K, Ogiela MR. Subliminal Channels in Visual Cryptography. Cryptography. 2022; 6(3): 46. doi: 10.3390/cryptography6030046

27. Youmaran R, Adler A, Miri A. An Improved Visual Cryptography Scheme for Secret Hiding. 23rd Biennial Symposium on Communications, 2006. doi: 10.1109/bsc.2006.1644637

28. Wang L, Yan B, Yang HM, et al. Flip Extended Visual Cryptography for Gray-Scale and Color Cover Images. Symmetry. 2020; 13(1): 65. doi: 10.3390/sym13010065

29. John Blesswin A. JBA, John Blesswin A. SMG, Selva Mary G. MKS. Secured Communication Method using Visual Secret Sharing Scheme for Color Images. Journal of Internet Technology. 2021; 22(4): 803-810. doi: 10.53106/160792642021072204008

30. Yang CN, Chung TH. A general multi-secret visual cryptography scheme. Optics Communications. 2010; 283(24): 4949-4962. doi: 10.1016/j.optcom.2010.07.051

31. Selva Mary G, John Blesswin A, Venkatesan M, et al. Enhancing conversational sentimental analysis for psychological depression prediction with Bi-LSTM. Journal of Autonomous Intelligence. 2023; 7(1).

32. Zhao MY, Yan B, Pan JS, et al. Quantum meaningful visual cryptography. Quantum Information Processing. 2023; 22(8). doi: 10.1007/s11128-023-04066-2

33. Zhou Z, Arce GR, Di Crescenzo G. Halftone visual cryptography. IEEE Transactions on Image Processing. 2006; 15(8): 2441-2453. doi: 10.1109/tip.2006.875249

34. Chen TH, Tsao KH. User-friendly random-grid-based visual secret sharing. IEEE Trans. Circuits Syst. Video Technol. 2011; 21(11): 1693–1703. doi: 10.1109/TCSVT.2011.2133470

35. Yan X, Wang S, Niu X. Threshold construction from specific cases in visual cryptography without the pixel expansion. Signal Processing. 2014; 105: 389–398. doi: 10.1016%2Fj.sigpro.2014.06.011

36. Huang SY, Lo A hui, Juan JST. XOR-Based Meaningful (n, n) Visual Multi-Secrets Sharing Schemes. Applied Sciences. 2022; 12(20): 10368. doi: 10.3390/app122010368

37. Wang Q, Blesswin A J, Manoranjitham T, et al. Securing image-based document transmission in logistics and supply chain management through cheating-resistant visual cryptographic protocols. Mathematical Biosciences and Engineering. 2023; 20(11): 19983-20001. doi: 10.3934/mbe.2023885

38. Selva Mary G, Manoj Kumar S. A self-verifiable computational visual cryptographic protocol for secure two-dimensional image communication. Measurement Science and Technology. 2019; 30(12): 125404. doi: 10.1088/1361-6501/ab2faa

39. Jana B, Mallick M, Chowdhuri P, Mondal S. Cheating prevention in Visual Cryptography using steganographic scheme. 2014 International Conference on Issues and Challenges in Intelligent Computing Techniques (ICICT). 2014. 706-712.

40. Kumar M, Singh R. A (2, n) and (3, n) Visual Cryptography Scheme for Black and White Images. International Journal of Science and Research. 2014; 3: 574-577.

41. Blesswin JA, Visalakshi P. A new semantic visual cryptographic protocol (SVCP) for securing multimedia communications. International Journal of Soft Computing. 2015; 10(2): 175-182.

42. Selva Mary G, Manoj Kumar S. Secure grayscale image communication using significant visual cryptography scheme in real time applications. Multimedia Tools and Applications. 2019; 79(15-16): 10363-10382. doi: 10.1007/s11042-019-7202-7

43. John Blesswin A, Genitha, Selva Mary G. A Novel QR-Code Authentication Protocol Using Visual Cryptography for Secure Communications”, International Journal of Control Theory Applications. 2016; 9(2): 967-974.

44. Lee KH, Chiu PL. Image Size Invariant Visual Cryptography for General Access Structures Subject to Display Quality Constraints. IEEE Transactions on Image Processing. 2013; 22(10): 3830-3841. doi: 10.1109/tip.2013.2262290




DOI: https://doi.org/10.32629/jai.v7i5.1525

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Prema Bhushan Sahane, Gayathri M., Snehal Akshay Bagal, Praful Sambhare, Satish Billewar, Kirti Borhade, John Blesswin, Selva Mary

License URL: https://creativecommons.org/licenses/by-nc/4.0/