banner

Histopathological parameter and brain tumor mapping using distributed optimizer tuned explainable AI classifier

Prasad R. Mutkule, Nilesh P. Sable, Parikshit N. Mahalle, Gitanjali R. Shinde

Abstract


Brain tumors represent a critical and severe challenge worldwide early and accurate diagnosis is necessary to increase the predictions for individuals with brain tumors. Several studies on brain tumor mapping have been conducted recently; however, the methods have some drawbacks, including poor image quality, a lack of data, and a limited capacity for generalization ability. To tackle these drawbacks this research presents a distributed optimizer tuned explainable AI classifier model for brain tumor mapping from histopathological images. The foraging gyps africanus optimization enabled explainable artificial intelligence (FGAO enabled explainable AI) combines the advantages of the explainable AI classifier model and hybrid spatio-temporal attention-based ResUNet segmentation model. The hybrid spatio-temporal attention-based ResUNet segmentation model accurately segments the histopathological images that leverage both Spatio-Temporal attention and the ResUNet model which addresses performance degradation problems. The nature-inspired algorithms draw inspiration from the foraging and hunting traits which optimize the tunable parameters of the explainable AI classifier. The SHAP model in the explainable AI translates the insights into predictions that produce explanations for the decisions made by the CNN model which fosters end-user confidence. The experimental results show that the FGAO-enabled explainable AI model outperforms the conventional approaches in terms of accuracy 95.75%, sensitivity 95.10%, and specificity 96.32% for TP 80.


Keywords


brain tumor mapping; explainable AI classifier; hybrid spatio-temporal attention-based ResUNet segmentation; foraging gyps africanus optimization; SHapley Additive exPlanations

Full Text:

PDF

References


1. Tandel GS, Balestrieri A, Jujaray T, et al. Multiclass magnetic resonance imaging brain tumor classification using artificial intelligence paradigm. Computers in Biology and Medicine. 2020; 122: 103804. doi: 10.1016/j.compbiomed.2020.103804

2. Tandel GS, Biswas M, Kakde OG, et al. A Review on a Deep Learning Perspective in Brain Cancer Classification. Cancers. 2019; 11(1): 111. doi: 10.3390/cancers11010111

3. Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathologica. 2016; 131(6): 803-820. doi: 10.1007/s00401-016-1545-1

4. Thaha MM, Kumar KPM, Murugan BS, et al. Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images. Journal of Medical Systems. 2019; 43(9). doi: 10.1007/s10916-019-1416-0

5. Kotrotsou A, Zinn PO, Colen RR. Radiomics in Brain Tumors. Magnetic Resonance Imaging Clinics of North America. 2016; 24(4): 719-729. doi: 10.1016/j.mric.2016.06.006

6. Davis FG, Malmer BS, Aldape K, et al. Issues of Diagnostic Review in Brain Tumor Studies: From the Brain Tumor Epidemiology Consortium. Cancer Epidemiology, Biomarkers & Prevention. 2008; 17(3): 484-489. doi: 10.1158/1055-9965.epi-07-0725

7. Sharif M, Amin J, Raza M, et al. An integrated design of particle swarm optimization (PSO) with fusion of features for detection of brain tumor. Pattern Recognition Letters. 2020; 129: 150-157. doi: 10.1016/j.patrec.2019.11.017

8. Fernandes SL, Tanik UJ, Rajinikanth V, et al. A reliable framework for accurate brain image examination and treatment planning based on early diagnosis support for clinicians. Neural Computing and Applications. 2019; 32(20): 15897-15908. doi: 10.1007/s00521-019-04369-5

9. Durand T, Bernier MO, Léger I, et al. Cognitive outcome after radiotherapy in brain tumor. Current Opinion in Oncology. 2015; 27(6): 510-515. doi: 10.1097/cco.0000000000000227

10. DeAngelis LM. Chemotherapy for Brain Tumors—A New Beginning. New England Journal of Medicine. 2005; 352(10): 1036-1038. doi: 10.1056/nejme058010

11. Amin J, Sharif M, Yasmin M, et al. Big data analysis for brain tumor detection: Deep convolutional neural networks. Future Generation Computer Systems. 2018; 87: 290-297. doi: 10.1016/j.future.2018.04.065

12. Khan MA, Ashraf I, Alhaisoni M, et al. Multimodal Brain Tumor Classification Using Deep Learning and Robust Feature Selection: A Machine Learning Application for Radiologists. Diagnostics. 2020; 10(8): 565. doi: 10.3390/diagnostics10080565

13. Xu Y, Jia Z, Ai Y, et al. April. Deep convolutional activation features for large scale brain tumor histopathology image classification and segmentation. In: 2015 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE. pp. 947-951.

14. Bejnordi BE, Veta M, van Diest PJ, van Ginneken B. Diagnostic Assessment of Dl Algorithms for Detection of Lymph Node Metastases in Women with Breast Cancer. JAMA. 2017; 318(22): 2199-2210.

15. Madabhushi A, Lee G. Image analysis and machine learning in digital pathology: Challenges and opportunities. Medical Image Analysis. 2016; 33: 170-175. doi: 10.1016/j.media.2016.06.037

16. Xu J, Janowczyk A, Chandran S, et al. A high-throughput active contour scheme for segmentation of histopathological imagery. Medical Image Analysis. 2011; 15(6): 851-862. doi: 10.1016/j.media.2011.04.002

17. Xu H, Liu L, Lei X, et al. An unsupervised method for histological image segmentation based on tissue cluster level graph cut. Computerized Medical Imaging and Graphics. 2021; 93: 101974. doi: 10.1016/j.compmedimag.2021.101974

18. Cheung EYW, Wu RWK, Li ASM, et al. AI Deployment on GBM Diagnosis: A Novel Approach to Analyze Histopathological Images Using Image Feature-Based Analysis. Cancers. 2023; 15(20): 5063. doi: 10.3390/cancers15205063

19. Pei L, Vidyaratne L, Hsu WW, et al. Brain tumor classification using 3d convolutional neural network. In: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 5th International Workshop, BrainLes 2019, Held in Conjunction with MICCAI 2019; 17 October 2019; Shenzhen, China. Springer International Publishing. pp. 335-342.

20. Im S, Hyeon J, Rha E, et al. Classification of Diffuse Glioma Subtype from Clinical-Grade Pathological Images Using Deep Transfer Learning. Sensors. 2021; 21(10): 3500. doi: 10.3390/s21103500

21. Zadeh Shirazi A, Fornaciari E, Bagherian NS, et al. DeepSurvNet: deep survival convolutional network for brain cancer survival rate classification based on histopathological images. Medical & Biological Engineering & Computing. 2020; 58(5): 1031-1045. doi: 10.1007/s11517-020-02147-3

22. Vankdothu R, Hameed MA. Brain tumor MRI images identification and classification based on the recurrent convolutional neural network. Measurement: Sensors. 2022; 24: 100412. doi: 10.1016/j.measen.2022.100412

23. Sharif MI, Khan MA, Alhussein M, et al. A decision support system for multimodal brain tumor classification using deep learning. Complex & Intelligent Systems. 2021; 8(4): 3007-3020. doi: 10.1007/s40747-021-00321-0

24. Mudda M, Manjunath R, Krishnamurthy N. Brain Tumor Classification Using Enhanced Statistical Texture Features. IETE Journal of Research. 2020; 68(5): 3695-3706. doi: 10.1080/03772063.2020.1775501

25. Singh G, Mittal A. Various image enhancement techniques-a critical review. International Journal of Innovation and Scientific Research. 2014; 10(2): 267-274.

26. Jha D, Smedsrud PH, Riegler MA, et al. ResUNet++: An Advanced Architecture for Medical Image Segmentation. 2019 IEEE International Symposium on Multimedia (ISM). Published online December 2019. doi: 10.1109/ism46123.2019.00049

27. Yan C, Tu Y, Wang X, et al. STAT: Spatial-Temporal Attention Mechanism for Video Captioning. IEEE Transactions on Multimedia. 2020; 22(1): 229-241. doi: 10.1109/tmm.2019.2924576

28. Zhang F, Wang Y, Du Y, et al. A Spatio-Temporal Encoding Neural Network for Semantic Segmentation of Satellite Image Time Series. Applied Sciences. 2023; 13(23): 12658. doi: 10.3390/app132312658

29. Ghosal P, Nandanwar L, Kanchan S, et al. Brain Tumor Classification Using ResNet-101 Based Squeeze and Excitation Deep Neural Network. 2019 Second International Conference on Advanced Computational and Communication Paradigms (ICACCP). Published online February 2019. doi: 10.1109/icaccp.2019.8882973

30. Elazab N, GabAllah W, Elmogy M. Computer-aided Diagnosis System for Grading Brain Tumor Using Histopathology Images Based on Color and Texture Features. Published online August 1, 2022. doi: 10.21203/rs.3.rs-1847884/v1

31. Chattopadhay A, Sarkar A, Howlader P, et al. Grad-CAM++: Generalized Gradient-Based Visual Explanations for Deep Convolutional Networks. 2018 IEEE Winter Conference on Applications of Computer Vision (WACV). Published online March 2018. doi: 10.1109/wacv.2018.00097

32. Alzubaidi L, Zhang J, Humaidi AJ, et al. Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data. 2021; 8(1). doi: 10.1186/s40537-021-00444-8

33. Hossain MM, Ali MS, Ahmed MM, et al. Cardiovascular disease identification using a hybrid CNN-LSTM model with explainable AI. Informatics in Medicine Unlocked. 2023; 42: 101370. doi: 10.1016/j.imu.2023.101370

34. Hasan MM, Hossain MM, Rahman MM, et al. FP-CNN: Fuzzy pooling-based convolutional neural network for lung ultrasound image classification with explainable AI. Computers in Biology and Medicine. 2023; 165: 107407. doi: 10.1016/j.compbiomed.2023.107407

35. Alsattar HA, Zaidan AA, Zaidan BB. Novel meta-heuristic bald eagle search optimisation algorithm. Artificial Intelligence Review. 2019; 53(3): 2237-2264. doi: 10.1007/s10462-019-09732-5

36. Abdollahzadeh B, Gharehchopogh FS, Mirjalili S. African vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems. Computers & Industrial Engineering. 2021; 158: 107408. doi: 10.1016/j.cie.2021.107408

37. Wang Y, Li S, Sun H, et al. The utilization of adaptive African vulture optimizer for optimal parameter identification of SOFC. Energy Reports. 2022; 8: 551-560. doi: 10.1016/j.egyr.2021.11.257

38. TCGA database. Available online: http://www.andrewjanowczyk.com/download-tcga-digital-pathology-images-ffpe/ (accessed on 1 December 2023).

39. Amarapur B. An automated approach for brain tumor identification using ANN classifier. In: 2017 International conference on current trends in computer, electrical, electronics and communication (CTCEEC). IEEE. pp. 1011-1016.

40. Islam MK, Ali MS, Miah MS, et al. Brain tumor detection in MR image using superpixels, principal component analysis and template based K-means clustering algorithm. Machine Learning with Applications. 2021; 5: 100044. doi: 10.1016/j.mlwa.2021.100044

41. Ahmed F, Asif M, Saleem M, et al. Identification and Prediction of Brain Tumor Using VGG-16 Empowered with Explainable Artificial Intelligence. International Journal of Computational and Innovative Sciences. 2023; 2(2): 24-33.




DOI: https://doi.org/10.32629/jai.v7i5.1617

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Prasad R. Mutkule, Nilesh P. Sable, Parikshit N. Mahalle, Gitanjali R. Shinde

License URL: https://creativecommons.org/licenses/by-nc/4.0/