Impacts of agricultural digitization on China’s food security: A sustainability roadmap
Abstract
Digital technology plays a crucial role in addressing the urgent issues of food security and green and sustainable development. This article innovatively constructs Agricultural Digital Transformation indicators based on relevant theories and literature. It examines the effect of agricultural digital transformation on the food security development level in 30 provinces between 2011 and 2020. Research indicates that agricultural digitization has a significant positive impact on food security. In the future, the Chinese government should improve agricultural digital infrastructure development, stimulate agricultural technical innovation, and give talent support for agricultural digitization.
Keywords
Full Text:
PDFReferences
1. Li X, Guan R. How Does Agricultural Mechanization Service Affect Agricultural Green Transformation in China? International Journal of Environmental Research and Public Health. 2023; 20(2): 1655. doi: 10.3390/ijerph20021655
2. Gebresenbet G, Bosona T, Patterson D, et al. A concept for application of integrated digital technologies to enhance future smart agricultural systems. Smart Agricultural Technology. 2023; 5: 100255. doi: 10.1016/j.atech.2023.100255
3. Sharma C, Pathak P, Kumar A, et al. Sustainable regenerative agriculture allied with digital agri-technologies and future perspectives for transforming Indian agriculture. Environment, Development and Sustainability.2024. doi: 10.1007/s10668-024-05231-y
4. Irajifar L, Chen H, Lak A, et al. The nexus between digitalization and sustainability: A scientometrics analysis. Heliyon. 2023; 9(5): e15172. doi: 10.1016/j.heliyon.2023.e15172
5. Lioutas ED, Charatsari C, De Rosa M. Digitalization of agriculture: A way to solve the food problem or a trolley dilemma? Technology in Society. 2021; 67: 101744. doi: 10.1016/j.techsoc.2021.101744
6. Fu W, Zhang R. Can Digitalization Levels Affect Agricultural Total Factor Productivity? Evidence From China. Frontiers in Sustainable Food Systems. 2022; 6. doi: 10.3389/fsufs.2022.860780
7. Shen Z, Wang S, Boussemart JP, et al. Digital transition and green growth in Chinese agriculture. Technological Forecasting and Social Change. 2022; 181: 121742. doi: 10.1016/j.techfore.2022.121742
8. Moysiadis V, Sarigiannidis P, Vitsas V, et al. Smart Farming in Europe. Computer Science Review. 2021; 39: 100345. doi: 10.1016/j.cosrev.2020.100345
9. Sroufe R, Watts A. Pathways to Agricultural Decarbonization: Climate Change Obstacles and Opportunities in the US. Resources, Conservation and Recycling. 2022; 182: 106276. doi: 10.1016/j.resconrec.2022.106276
10. Qin S, Han Z, Chen H, et al. High-Quality Development of Chinese Agriculture under Factor Misallocation. International Journal of Environmental Research and Public Health. 2022; 19(16): 9804. doi: 10.3390/ijerph19169804
11. Xie K, Ding M, Zhang J, et al. Trends towards Coordination between Grain Production and Economic Development in China. Agriculture. 2021; 11(10): 975. doi: 10.3390/agriculture11100975
12. Tim Y, Cui L, Sheng Z. Digital resilience: How rural communities leapfrogged into sustainable development. Information Systems Journal. 2020; 31(2): 323-345. doi: 10.1111/isj.12312
13. Balyan S, Jangir H, Tripathi SN, et al. Seeding a Sustainable Future: Navigating the Digital Horizon of Smart Agriculture. Sustainability. 2024; 16(2): 475. doi: 10.3390/su16020475
14. Wang N, Hao J, Zhang L, et al. Basic Farmland Protection System in China: Changes, Conflicts and Prospects. Agronomy. 2023; 13(3): 651. doi: 10.3390/agronomy13030651
15. Deichmann U, Goyal A, Mishra D. Will digital technologies transform agriculture in developing countries? Agricultural Economics. 2016; 47(S1): 21-33. doi: 10.1111/agec.12300
16. Hrustek L. Sustainability Driven by Agriculture through Digital Transformation. Sustainability. 2020; 12(20): 8596. doi: 10.3390/su12208596
17. Theiss A, Yen DC, Ku CY. Global Positioning Systems: an analysis of applications, current development and future implementations. Computer Standards & Interfaces. 2005; 27(2): 89-100. doi: 10.1016/j.csi.2004.06.003
18. Mendes JAJ, Carvalho NGP, Mourarias MN, et al. Dimensions of digital transformation in the context of modern agriculture. Sustainable Production and Consumption. 2022; 34: 613-637. doi: 10.1016/j.spc.2022.09.027
19. Michels M, Musshoff O. A tobit regression model for the timing of smartphone adoption in agriculture. Heliyon. 2022; 8(11): e11272. doi: 10.1016/j.heliyon.2022.e11272
20. Tadesse G, Bahiigwa G. Mobile Phones and Farmers’ Marketing Decisions in Ethiopia. World Development. 2015; 68: 296-307. doi: 10.1016/j.worlddev.2014.12.010
21. Wolfert S, Ge L, Verdouw C, et al. Big Data in Smart Farming—A review. Agricultural Systems. 2017; 153: 69-80. doi: 10.1016/j.agsy.2017.01.023
22. Zhang F, Sarkar A, Wang H. Does Internet and Information Technology Help Farmers to Maximize Profit: A Cross-Sectional Study of Apple Farmers in Shandong, China. Land. 2021; 10(4): 390. doi: 10.3390/land10040390
23. S.S. VC, S. AH, Albaaji GF. Precision farming for sustainability: An agricultural intelligence model. Computers and Electronics in Agriculture. 2024; 226: 109386. doi: 10.1016/j.compag.2024.109386
24. Mendes JAJ, Carvalho NGP, Mourarias MN, et al. Dimensions of digital transformation in the context of modern agriculture. Sustainable Production and Consumption. 2022; 34: 613-637. doi: 10.1016/j.spc.2022.09.027
25. Mühl DD, de Oliveira L. A bibliometric and thematic approach to agriculture 4.0. Heliyon. 2022; 8(5): e09369. doi: 10.1016/j.heliyon.2022.e09369
26. Zhou X, Chen T, Zhang B. Research on the Impact of Digital Agriculture Development on Agricultural Green Total Factor Productivity. Land. 2023; 12(1): 195. doi: 10.3390/land12010195
27. Lee CC, Zeng M, Luo K. Food security and digital economy in China: A pathway towards sustainable development. Economic Analysis and Policy. 2023; 78: 1106-1125. doi: 10.1016/j.eap.2023.05.003
28. Fabregas R, Kremer M, Schilbach F. Realizing the potential of digital development: The case of agricultural advice. Science. 2019; 366(6471). doi: 10.1126/science.aay3038
29. Atanga SN. Digitalization of agriculture: How digital technology is transforming small-scale farming in Ghana. Agrarian, Food and Environmental Studies (AFES) [Master’s thesis]. Submitted to Erasmus University; 2020.
30. Rotz S, Gravely E, Mosby I, et al. Automated pastures and the digital divide: How agricultural technologies are shaping labour and rural communities. Journal of Rural Studies. 2019; 68: 112-122. doi: 10.1016/j.jrurstud.2019.01.023
31. Rotz S, Duncan E, Small M, et al. The Politics of Digital Agricultural Technologies: A Preliminary Review. Sociologia Ruralis. 2019; 59(2): 203-229. doi: 10.1111/soru.12233
32. Mager A, Katzenbach C. Future imaginaries in the making and governing of digital technology: Multiple, contested, commodified. New Media & Society. 2021; 23(2): 223-236. doi: 10.1177/1461444820929321
33. De Baerdemaeker J, Hemming S, Polder G, et al. Artificial intelligence in the agri-food sector: Applications, risks and impacts. Panel for the Future of Science and Technology, EPRS; 2023.
34. Regan Á. Smart farming’ in Ireland: A risk perception study with key governance actors. NJAS: Wageningen Journal of Life Sciences. 2019; 90-91(1): 1-10. doi: 10.1016/j.njas.2019.02.003
35. Masron TA, Subramaniam Y. Does Poverty Cause Environmental Degradation? Evidence from Developing Countries. Journal of Poverty. 2018; 23(1): 44-64. doi: 10.1080/10875549.2018.1500969
36. Abdul Manap NM, Ismail NW. Food Security and Economic Growth. International Journal of Modern Trends in Social Sciences. 2019; 108-118. doi: 10.35631/ijmtss.280011
37. Gandhi VP, Zhou Z. Food demand and the food security challenge with rapid economic growth in the emerging economies of India and China. Food Research International. 2014; 63: 108-124. doi: 10.1016/j.foodres.2014.03.015
38. Su F, Liu Y, Chen SJ, et al. Towards the impact of economic policy uncertainty on food security: Introducing a comprehensive heterogeneous framework for assessment. Journal of Cleaner Production. 2023; 386: 135792. doi: 10.1016/j.jclepro.2022.135792
39. Subramaniam Y, Masron TA, Azman NHN. Biofuels, environmental sustainability, and food security: A review of 51 countries. Energy Research & Social Science. 2020; 68: 101549. doi: 10.1016/j.erss.2020.101549
40. Godfray HCJ, Beddington JR, Crute IR, et al. Food Security: The Challenge of Feeding 9 Billion People. Science. 2010; 327(5967): 812-818. doi: 10.1126/science.1185383
41. Lu S, Lu W, Xu M, et al. Water-energy-food security under green finance constraints in Southwest China. Energy Economics. 2023; 118: 106478. doi: 10.1016/j.eneco.2022.106478
42. Bindraban PS, van der Velde M, Ye L, et al. Assessing the impact of soil degradation on food production. Current Opinion in Environmental Sustainability. 2012; 4(5): 478-488. doi: 10.1016/j.cosust.2012.09.015
43. Gomiero T. Soil Degradation, Land Scarcity and Food Security: Reviewing a Complex Challenge. Sustainability. 2016; 8(3): 281. doi: 10.3390/su8030281
44. Svensson J, Yanagizawa D. Getting Prices Right: The Impact of the Market Information Service in Uganda. Journal of the European Economic Association. 2009; 7(2-3): 435-445. doi: 10.1162/jeea.2009.7.2-3.435
45. Liu Y, Zhou Y. Reflections on China’s food security and land use policy under rapid urbanization. Land Use Policy. 2021; 109: 105699. doi: 10.1016/j.landusepol.2021.105699
46. Saiz-Rubio V, Rovira-Más F. From Smart Farming towards Agriculture 5.0: A Review on Crop Data Management. Agronomy. 2020; 10(2): 207. doi: 10.3390/agronomy10020207
47. Fusco G, Coluccia B, De Leo F. Effect of Trade Openness on Food Security in the EU: A Dynamic Panel Analysis. International Journal of Environmental Research and Public Health. 2020; 17(12): 4311. doi: 10.3390/ijerph17124311
48. Klerkx L, Jakku E, Labarthe P. A review of social science on digital agriculture, smart farming and agriculture 4.0: New contributions and a future research agenda. NJAS: Wageningen Journal of Life Sciences. 2019; 90-91(1): 1-16. doi: 10.1016/j.njas.2019.100315
49. Zhang Z, Sun C, Wang J. How Can the Digital Economy Promote the Integration of Rural Industries—Taking China as an Example. Agriculture. 2023; 13(10): 2023. doi: 10.3390/agriculture13102023
50. Jiang Q, Li J, Si H, et al. The Impact of the Digital Economy on Agricultural Green Development: Evidence from China. Agriculture. 2022; 12(8): 1107. doi: 10.3390/agriculture12081107
51. Leng X, Tong G. The Digital Economy Empowers the Sustainable Development of China’s Agriculture-Related Industries. Sustainability. 2022; 14(17): 10967. doi: 10.3390/su141710967
52. FAO. Thinking about the future of food safety. A foresight report Rome. 2022. doi: 10.4060/cb8667en
53. Bao Y, Leung MK, Poon D, et al. Integrating vertical farm into low-carbon high-rise building in high-density context: A design case study in Hong Kong. Journal of Building Engineering. 2024; 96: 110472. doi: 10.1016/j.jobe.2024.110472
54. Zhang X, Wang Y, Bao J, et al. A Research on the Evaluation of China’s Food Security under the Perspective of Sustainable Development—Based on an Entropy Weight TOPSIS Model. Agriculture. 2022; 12(11): 1926. doi: 10.3390/agriculture12111926
55. Clapp J, Moseley WG, Burlingame B, et al. Viewpoint: The case for a six-dimensional food security framework. Food Policy. 2022; 106: 102164. doi: 10.1016/j.foodpol.2021.102164
56. Wang J, Dong K, Dong X, et al. Assessing the digital economy and its carbon-mitigation effects: The case of China. Energy Economics. 2022; 113: 106198. doi: 10.1016/j.eneco.2022.106198
57. Erokhin V, Tianming G, Chivu L, et al. Food security in a food self-sufficient economy: A review of China’s ongoing transition to a zero hunger state. Agricultural Economics (Zemědělská ekonomika). 2022; 68(12): 476-487. doi: 10.17221/278/2022-agricecon
58. Guo Y, Wang J. Identifying the Determinants of Nongrain Farming in China and Its Implications for Agricultural Development. Land. 2021; 10(9): 902. doi: 10.3390/land10090902
59. Zhang H, Guo K, Liu Z, et al. How has the rural digital economy influenced agricultural carbon emissions? Agricultural green technology change as a mediated variable. Frontiers in Environmental Science. 2024; 12. doi: 10.3389/fenvs.2024.1372500
60. Peng J, Zhou M, Yi M, et al. Unveiling the impact of digital industrialization on synergistic governance of pollution and carbon reduction in China: a geospatial perspective. Environmental Science and Pollution Research. 2023; 31(25): 36454-36473. doi: 10.1007/s11356-023-31225-w
61. Attaran M. The impact of 5G on the evolution of intelligent automation and industry digitization. Journal of Ambient Intelligence and Humanized Computing. 2021; 14(5): 5977-5993. doi: 10.1007/s12652-020-02521-x
62. Gilch PM, Sieweke J. Recruiting digital talent: The strategic role of recruitment in organisations’ digital transformation. German Journal of Human Resource Management: Zeitschrift für Personalforschung. 2020; 35(1): 53-82. doi: 10.1177/2397002220952734
63. Blundell R, Bond S. Initial conditions and moment restrictions in dynamic panel data models. Journal of Econometrics. 1998; 87(1): 115-143. doi: 10.1016/S0304-4076(98)00009-8
DOI: https://doi.org/10.32629/jai.v7i5.1633
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Bing Hu, Tajul Ariffin Masron, Fan Yang
License URL: https://creativecommons.org/licenses/by-nc/4.0/