A Perspective of Conventional and Bio-inspired Optimization Techniques in Maximum Likelihood Parameter Estimation
Abstract
Keywords
Full Text:
PDFReferences
1. Aguirregariria, V., A hybrid genetic algorithm for the maximum likelihood estimation of models with multiple equilibria: A first report, New Mathematics and Natural Computation 1 (2) (2005) 295-303.
2. An, ., Aksoy, S., Ankan, O., Maximum likelihood estimation of Gaussian mixture models using stochastic search, Pattern Recognition 45 (7) (2012) 2804-2816.
3. Augustyniak, M., Maximum likelihood estimation of the Markov-switching GARCH model, Computational Statistics and Data Analysis 76 (2) (2014) 61-75.
4. Baghishani, H., Mohammadzadeh, M., A data cloning algorithm for computing maximum likelihood estimates in spatial generalized linear mixed models, Computational Statistics and Data Analysis 55 (4) (2011) 1748-1759.
5. Baltagi, B. H., Bresson, G., Maximum likelihood estimation and Lagrange multiplier tests for panel seemingly unrelated regressions with spatial lag and spatial errors: An application to hedonic housing prices in Paris, Journal of Urban Economics 69 (1) (2011) 24-42.
6. Chang, J.-C., Chen, C.-Y., Maximum likelihood DOA estimation with sensor position perturbation using particle swarm optimization, Advances in Intelligent Systems and Applications: Smart Innovation, Systems and Technologies 20 (1), Springer-Verlag, Berlin, Heidelberg, 2013, pp. 187-197.
7. Denoeux, T., Maximum likelihood estimation from fuzzy data using the EM algorithm, Fuzzy Sets and Systems 183 (1) (2011) 72-91.
8. Dosiek, L., Pierre, J. W., Follum, J., A recursive maximum likelihood estimator for the online estimation of electromechanical modes with error bounds, IEEE Transactions on Power Systems 28 (1) (2013) 441-451.
9. Dutta, P., Arnaud, E., Prados, E., Saujot, M., Calibration of an integrated land-use and transportation model using maximum likelihood estimation, IEEE Transactions on Computers 63 (1) (2014) 167-178.
10. El-Kafafy, M., Peeters, B., Guillaume, P., Troyer, T. D., Constrained maximum likelihood modal parameter identification applied to structural dynamics, Mechanical Systems and Signal Processing 72-73 (2016) 567-589.
11. Firmino, P. R. A., Mattos Netob, P. S. G. d., Ferreira, T. A. E., Correcting and combining time series forecasters, Neural Networks 50 (2014) 1-11.
12. Haryanto, A., Hong, K.-S., Maximum likelihood identification of Wiener-Hammerstein models, Mechanical Systems and Signal Processing 41 (1-2) (2013) 54-70.
13. Hirai, S., Yamanishi, K., Efficient computation of normalized maximum likelihood codes for Gaussian mixture models with its applications to clustering, IEEE Transactions on Information Theory 59 (11) (2013) 7718-7727.
14. Hu, C., Liu, Q., Online identification for hypersonic vehicle using recursive maximum likelihood method based on interior-point algorithm, in: 25th Chinese Control and Decision Conference, Guiyang, China, IEEE, 2013, pp. 1862-1867.
15. Galimberti, G., Soffritti, G., A multivariate linear regression analysis using finite mixtures of t distributions, Computational Statistics and Data Analysis 71 (2014) 138-150.
16. Giacomina, P. A. S., Hemerlyb, E. M., Pedrycz, W., A probabilistic approach for designing nonlinear optimal robust tracking controllers for unmanned aerial vehicles, Applied Soft Computing 34 (2015) 26-38.
17. Gonzlez, M., Minuesa, C., Puerto, I. d., Maximum likelihood estimation and expectation-maximization algorithm for controlled branching processes, Computational Statistics and Data Analysis 93 (2016) 209-227.
18. Jelonek, T. M., Reilly, J. P., Maximum likelihood estimation for direction of arrival using a nonlinear optimising neural network, in: International Joint Conference on Neural Networks, IEEE, San Diego, 1990, pp. 253-258.
19. Li, J., Ding, F., Maximum likelihood stochastic gradient estimation for Hammerstein systems with colored noise based on the key term separation technique, Computers and Mathematics with Applications 62 (11) (2011) 4170-4177.
20. Li, J., Ding, F., Yang, G., Maximum likelihood least squares identification method for input nonlinear finite impulse response moving average systems, Mathematical and Computer Modelling 55 (3-4) (2012) 442-450.
21. Liu, Z.-M., Huang, Z.-T., Zhou, Y.-Y., An efficient maximum likelihood method for direction-of-arrival estimation via sparse Bayesian learning, IEEE Transactions on Wireless Communications 11 (10) (2012) 1-11.
22. Martin, R., Hanb, Z., A semiparametric scale-mixture regression model and predictive recursion maximum likelihood, Computational Statistics and Data Analysis 94 (2016) 75-85.
23. Mirikitani, D., Nikolaev, N., Nonlinear maximum likelihood estimation of electricity spot prices using recurrent neural networks, Neural Computing and Applications 20 (1) (2011) 79-89.
24. Mohsin, M., Kazianka, H., Pilz, J., Likelihood and objective Bayesian modeling of acidity and major ions in rain fall using a bivariate pseudo-Gamma distribution, Computers & Geosciences 54 (2013) 269-278.
25. Ogasawara, H., Asymptotic expansions for the estimators of Lagrange multipliers and associated parameters by the maximum likelihood and weighted score methods, Journal of Multivariate Analysis 147 (2016) 20-37.
26. Pan, J., Ma, W.-K., Jalden, J., MIMO detection by Lagrangian dual maximum-likelihood relaxation: reinterpreting regularized lattice decoding, IEEE Transactions on Signal Processing 62 (2) (2014) 511-524.
27. Pence, B.L., Fathy, H.K., Stein, J.L., Recursive maximum likelihood parameter estimation for state space systems using polynomial chaos theory, Automatica 47 (11) (2011) 2420-2424.
28. Poladian, L., A GA for maximum likelihood hylogenetic inference using neighbour-joining as a genotype to phenotype mapping, in: Proceedings of the 7th annual conference on Genetic and evolutionary computation, New York, USA, ACM, 2005, pp. 415-422.
29. Reed, H. M., Nicholsb, J. M., Earls, C. J., A modified differential evolution algorithm for damage identification in submerged shell structures, Mechanical Systems and Signal Processing 39(1-2) (2013) 396-408.
30. Risholm, P., Janoos, F., Norton, I., Golby, A. J., Wells III, W. M., Bayesian characterization of uncertainty in intra-subject non-rigid registration, Medical Image Analysis 17 (2013) 538-555.
31. Skaug, H. J., Yu, J., A flexible and automated likelihood based framework for inference in stochastic volatility models, 76 (2014) 642-654.
32. Stathakis, E., Jalden, J., Rasmussen, L. K., Skoglund, M., Uniformly improving maximum-likelihood SNR estimation of known signals in Gaussian channels, IEEE Transactions on Signal Processing 62 (1) (2014) 156-167.
33. Stoica, P., Babu, P., Maximum-likelihood nonparametric estimation of smooth spectra from irregularly sampled data, IEEE Transactions on Signal Processing 59 (12) (2011) 5746-5758.
34. Sun, Q., Lim, C.-C., Liu, L., Maximum likelihood state estimation for Markov jump systems with uncertain mode-dependent delays, Journal of the Franklin Institute 353 (2016) 594-614.
35. Tay, D., Poh, C. L., Kitney, R. I., An evolutionary data-conscious artificial immune recognition system, in: Genetic and evolutionary computation conference, Amsterdam, Netherland, ACM, 2013, pp. 1101-1108.
36. Tay, D., Poh, C. L., Kitney, R. I., A novel neural-inspired learning algorithm with application to clinical risk prediction, Journal of Biomedical Informatics, 54 (2015) 305-314.
37. Wang, D. Q., Chu, Y. Y., Yang, G. W., Ding, F., Auxiliary model-based recursive generalized least squares parameter estimation for Hammerstein OEAR systems, Mathematical and Computer Modelling 52 (1-2) (2010) 309-317.
38. Wang, X., Sun, W., Wu Z., Yang H., Wang Q., Color image segmentation using PDTDFB domain hidden Markov tree model, Applied Soft Computing 29 (2015) 138-152.
39. Wang, Z., Luo, J.-A., Zhang, X.-P., A novel location-penalized maximum likelihood estimator for bearing-only target localization, IEEE Transactions on Signal Processing 60 (12) (2012) 6166-6181.
40. Wen, C.-C., Chen, Y.-H., Nonparametric maximum likelihood analysis of clustered current status data with the gamma-frailty Cox model, Computational Statistics and Data Analysis 55 (2) (2011) 1053-1060.
41. Xu, B., Lu, M., Ren, Y., Zhua, P., Shi, J., Cheng, D., Multi-task ant system for multi-object parameter estimation and its application in cell tracking, Applied Soft Computing 35 (2015) 449-469.
42. Yao, K., Yu, D., Deng, L., Gong, Y., A fast maximum likelihood nonlinear feature transformation method for GMM-HMM speaker adaptation, Neurocomputing 128 (2014) 145-152.
43. Zhang, Z., Lin, J., Shi, Y., Application of artificial bee colony algorithm to maximum likelihood DOA estimation, Journal of Bionic Engineering 10 (2013) 100-109
DOI: https://doi.org/10.32629/jai.v1i2.28
Refbacks
- There are currently no refbacks.
Copyright (c) 2018 Yongzhong Lu
License URL: https://creativecommons.org/licenses/by-nc/4.0