Principle of Machine Learning and Its Potential Application in Climate Prediction
Abstract
Keywords
Full Text:
PDFReferences
1. Bauer P, Thorpe A, Brunet G. The quiet revolution of numerical weather prediction. Nature 2015; 525(7567) : 47–55. doi: 10. 1038/nature14956.
2. Behringer D, Xue Y. Evaluation of the global ocean data assimilation system at NCEP: The Pacific Ocean. Proc. Eighth Symp. on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, Seattle, WA, AMS. 2014 Jan 1. Washington. Washington: Washington State Con-vention and Trade Center. 2014.
3. Copernicus Climate Change Service (C3S). ERA5: Fifth generation of ECMWF atmospheric reanal-yses of the global climate. 2017. Available from: https://cds.climate.copernicus.eu/cdsapp#!/home.
4. Dougherty J, Kohavi R, Sahami M. Supervised and unsupervised discretization of continuous features. Machine Learning Proceedings Amsterdam: Else-vier. 1995. p. 194–202. doi: 10. 1016/b978-1-55860-377-6. 50032-3.
5. Goodfellow I, Bengio Y, Courville A. Deep learning. Cambridge: MIT Press. 2016.
6. Ham YG, Kim JH, Luo JJ. Deep learning for multi-year ENSO forecasts. Nature 2019; 573(7775) : 568–572. doi: 10. 1038/s41586-019-1559-7.
7. Hantson S, Arneth A, Harrison SP, et al. The status and challenge of global fire odeling. Biogeosciences 2016; 13(11): 3359–3375. doi: 10. 5194 /bg-13-3359-2016.
8. Hasselmann K. Linear and nonlinear signatures. Nature 1999; 398(6730): 755–756. doi: 10. 1038/19635.
9. He S, Wang H, Xu X, et al. Impact of Arctic warm-ing and the super El Nino in winter 2015/2016 on the East Asian climate anomaly (in Chinese). Transactions of Atmospheric Sciences 2016; 39(6): 735–743. doi: 10. 13878/j.cnki.dqkxxb.20161008002.
10. He S, Xu X, Furevik T, et al. Eurasian cooling linked to the vertical distribution of arctic warming. Geo-physical Research Letters 2020; 47(10). doi: 10. 1029/2020gl087212.
11. Huntingford C, Jeffers ES, Bonsall MB, et al. Ma-chine learning and artificial intelligence to aid cli-mate change research and preparedness. Environ-mental Research Letters 2019; 14(12): 124007. doi: 10. 1088/1748-9326/ab4e55.
12. Kuang Z, Song Z, Dong C. Global sea surface tem-perature over 21st century using a biases correction model based on machine learning (in Chinese). Climate Chang Research Letters 2020; 9(4): 270–284.
13. Lagerquist R, McGovern A, Gagne DJ. Deep learn-ing for spatially explicit prediction of synoptic-scale fronts. Weather Forecast 2019; 34(4): 1137–1160. doi: 10. 1175/waf-d-18-0183. 1.
14. Liu Y J, Racah E, Prabhat, et al. Application of deep convolutional neural networks for detecting extreme weather in climate datasets. 2016. Availa-ble from: https://arxiv.org/abs/1605. 01156.
15. McCarthy J, Minsky ML, Rochester N, et al. A pro-posal for the Dartmouth summer research project on artificial intelligence. 1956. Available from: http://www.formal.stanford.edu/jmc/history/dartmouth/dartmouth.html.
16. Men X, Jiao R, Wang D, et al. A temperature correc-tion method for multi-model ensemble forecast in North China based on machine learning (in Chi-nese). Climatic and Environmental Research 2019; 24(1): 116–124. doi: 10. 3878/j.issn.1006-9585. 2018. 18049.
17. Pörtner HO, Roberts DC, Masson-Delmotte V. IPCC special report on the ocean and cryosphere in a changing climate. 2019. In press.
18. Ruder S. An overview of gradient descent optimiza-tion algorithms. 2016. Available from: https://arxiv.org/abs/1609. 04747.
19. Samuel AL. Some studies in machine learning using the game of checkers. IBM Journal of Research and Development 1959; 3(3): 210–229. doi: 10. 1147/rd.33. 0210.
20. Specht DF. A general regression neural network. IEEE Transactions on Neural Networks and Learn-ing Systems 1991; 2(6): 568–576. doi: 10. 1109/72. 97934.
21. Stockhause M, Lautenschlager M. CMIP6 data citation of evolving data. Data Science Journal 2017; 16. doi: 10. 5334/dsj-2017-030.
22. Toms BA, Barnes EA, Ebert-Uphoff I. Physically interpretable neural networks for the geosciences: Applications to earth system variability. Journal of Advances in Modeling Earth Systems 2020; 12(9). doi: 10. 1029/2019ms002002.
23. Weyn JA, Durran DR, Caruana R. Can machines learn to predict weather? Using deep learning to predict gridded 500-hPa geopotential height from historical weather data.Journal of Advances in Modeling Earth Systems 2019; 11(8): 2680–2693. doi: 10. 1029/2019ms001705.
DOI: https://doi.org/10.32629/jai.v4i1.483
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Shengping He, Huijun Wang, Hua Li, Jiazhen Zhao
License URL: https://creativecommons.org/licenses/by-nc/4.0