banner

Fractional Order Modeling of 1,2,3 DOF Robot Dynamic

Israel Cerón-Morales

Abstract


The fractional order modeling method of robot dynamics with one, two and three degrees of freedom is introduced. The stability of the fractional order model is proved by using the second-order Lyapunov method. A basic physical parameter is considered, that is, the inertial mass of the connecting rod. Freecad software is used for mechanical design. The dynamic models of 2-DOF and 3-DOF robots are established, and their motion trajectories are given in plane (x, y) and space (x, y, z) respectively. The model is programmed on the development card based on microcontroller. The advantage of the development card lies in its peripheral output, because it has two analog output channels, which are sent to the oscilloscope. The results are consistent with the proposed model.


Keywords


Machine Translation; Deep Learning; Neural Machine Translation; Urdu Language; Chinese Language

Full Text:

PDF

References


1. Goméz-Aguilar JF, Rosales-García J, Razo-Hernández JR., et al. Fractional RC and LC electrical circuits. Ingeniería, Investigación y Tecnología 2014; 15(2): 311–319.

2. Goodvine B, Leyden K. Recent results in fractional order modeling in multi-agent systems and linear friction welding. IFAC-PapersOnLine 2015; Vol. 48(1): 380–381.

3. Tejado I, Valerio D, Pires P, et al. Fractional human arm dynamics with variability analyses. Mechatronics 2013; 23(7): 805–812.

4. Rosario JM, Dumur D, Tenreiro M. Analysis of fractional-order robot axis dynamics. IFAC Proceedings Volumes 2006; 39(11): 367–372.

5. Shalaby R, El-Hossaing M, Abo-Zalam B. Fractional Order modeling and control for under-actuated inverted pendulum. Communications in Nonlinear Science and Numerical Simulation 2019; 74: 97–121.

6. Zhang L, Hu X, Wang Z, et al. Fractional-Order modeling and State-of-Charge estimation for ultracapacitors. Journal of Power Sources 2016; 314: 28–34.

7. Shi X, Chen YQ, Huang J. Application of fractional-order active disturbance rejection controller on linear motion system. Control Engineering Practice 2018; 81: 207–214.

8. Ceron-Morales I, Gonzalez-Manzanilla FQ, Muñiz-Montero C, et al. Control PID de orden fraccional aplicado a un colector solar cilindroparabólico [Application of Fractional Order PID control in solar collector]. Visión Politécnica 2018; 13(1): 23–27.

9. Krishna BT. Studies on fractional differentiators and integrators: A survey. Signal Processing 2011; 91(3), 246–386.

10. Sun H, Zhang Y, Dumitru B, et al. A new collection of real world practical applications of fractional calculus in science and engineering. Communication in Nonlinear Science and Numerical Simulations 2018; 64: 213–231.

11. Muñiz-Montero C, Flores JA, Ceron I, et al. Implementación de controladores PID fraccionales en las plataformas STM32-Discovery y Arduino a partir de SIMULINK/MATLAB: Parte I [Implementation of Fractional Order PID controller based on Simulink / Matlab STM32 discovery and Arduino platform: Part I]. Visión Politécnica 2017; 12(2): 8–12.

12. Ceron-Morales I, Muñiz-Montero C, Tlelo-Cuautle E. Metodología didáctica de control con redes neuronales y FOPID al modelo dinámico de un robot 2GDL en Arduino y STM32. XVII Congreso Nacional de Ingeniería Electromecánica y de Sistemas; 2018; Mexico City. 2018.

13. Cero I, Herver Acuña JF, Castillo-Castillo SJ, et al. Metodología de programación de trayectorias de un robot de 2GDL Utilizando la tarjeta STM32L476RG [Methodology for programming 2DOF robot trajectory using STM32L476RG card]. In: Sinergia Mecatrónica. Asociación Mexicana de Mecatrónica A.C.; 2019. p. 144–158.

14. Voronin BF. La aplicación del método de fragmentación en la enseñanza de cinemática de mecanismos [Application of segmented kinematics in the teaching of science]. Científica 2014; 18(1): 21–29.

15. Zhang D, Wei B. A review on model reference adaptive control of robotic manipulators. Annual Reviews in Control 2017; 43: 188–198.

16. Ramirez-Agundis A, Orozco-Mendoza H, Villaseñor-Aguilar M. Control de estabilidad de un manipulador planar paralelo 3RRR utilizando redes neuronales [stability of planar 3RRR parallel robot controlled by neural network] Científica 2011; 15(3): 107–115.




DOI: https://doi.org/10.32629/jai.v4i1.490

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Israel Cerón-Morales

License URL: https://creativecommons.org/licenses/by-nc/4.0