The Current Application Status and Expectation of Machine Learning in Unmanned Farm
Abstract
Keywords
Full Text:
PDFReferences
1. Wang T, Xu X, Wang C, et al. From smartfarming towards unmanned farms: A new mode of agricul-tural production. Agriculture 2021; 11(2): 145. doi: 10.3390/agriculture11020145.
2. Gollin D, Parente S, Rogerson R, et al. The role of agriculture in development. American Economic Review 2002; 92(2): 160–164.
3. Hunter MC, Smith RG, Schipanski ME, et al. Agri-culturein 2050: Recalibrating targets for sustaina-ble intensification. Bioscience 2017; 67(4): 386–391. doi: 10.1093/biosci/bix010.
4. Yang W. Research on the impact of agricultural labor ageing on agricultural labor productivity (in Chinese). Beijing: Beijing Jiaotong University; 2019.
5. Akbar MO, Khan M, Ali MJ, et al. IoT for devel-opment of smart dairy farming. Journal of Food Quality 2020; (2): 1–8. doi: 10.1155/2020/4242805.
6. Ramli MR, Daely PT, Kim DS, et al. IoT-based adaptive network mechanism for reliable smart farm system. Computers and Electronics in Agriculture 2020; 170: 105–287. doi: 10.1016/j.compag.2020.105287.
7. Takahashi K, Kim K, Ogata T, et al. Tool-body as-similation model considering grasping motion through deeplearning. Robotics and Autonomous Systems 2017; 91: 115–127. doi: 10.1016/j.robot.2017.01.002.
8. Gastaldo P, Pinna L, Seminara L, et al. A ten-sor-based approach to touch modality classifica-tion byusing machine learning. Robotics and Au-tonomous Systems 2015; 63: 268–278. doi: 10.1016/j.robot.2014.09.022.
9. Kamilaris A, Kartakoullis A, Prenafeta-Boldú FX. A review on the practice of big data analysis in agri-culture. Computers and Electronics in Agriculture 2017; 143: 23–37. doi: 10.1016/j.compag.2017.09.037.
10. Chlingaryan A, Sukkarieh S, Whelan B. Machine learning approaches for crop yield prediction and nitrogenstatus estimation in precision agriculture: A review. Computers and Electronics in Agriculture 2018; 151: 61–69. doi: 10.1016/j.compag.2018.05.012.
11. Konstantinos L, Patrizia B, Dimitrios M, et al. Ma-chine learningin agriculture: A review. Sensors 2018, 18(8): 26–74. doi: 10.3390/s18082674.
12. Zhang Q, Yang LT, Chen Z, et al. A survey on deep learning for bigdata. Information Fusion 2018; 42: 146–157. doi: 10.1016/j.inffus.2017.10.006.
13. Kong L,Zhang Y,Ye ZQ,et al. CPC: Assess the protein-coding potential of transcripts using se-quence features and support vector machine. Nu-cleic Acids Research 2007; 35(Web Server issue): W345–9. doi: doi: 10.1093/nar/gkm391.
14. Kang J, Schwartz R, Flickinger J, et al. Machine learning approaches for predicting radiation thera-py outcomes: A clinician’s perspective. Interna-tional Journal of Radiation Oncology Biology Physics 2015; 93(5): 1127–1135.
15. Zhu Y, Zhao J, Wang Y, et al. A review of human action recognition based on deep learning (in Chi-nese). Acta automatica Sinica 2016; 42(6): 848–857. doi: 10.16383/j.aas.2016.c150710.
16. Cramer S, Kampouridis M,Freitas A,et al. An extensive evaluation of seven machine learning methods for rainfall prediction in weather deriva-tives. Expert Systems with Applications 2017; 85: 169–1811. doi: 10.1016/j.eswa.2017.05.029.
17. Huang H, Deng J, Lan Y, et al. A fully convolu-tional network for weed mapping of unmanned aerial vehicle (UAV) imagery. PloSOne 2018; 13(4): e0196302. doi: 10.1371/journal.pone.0196302.
18. Weiss M, Jacob F, Duveiller G. Remote sensing for agricultural applications: A meta-review. Remote Sensing of Environment 2020; 236. doi: 10.1016/j.rse.2019.111402.
19. Kamilaris, Andreas, Pren af eta-Boldu, et al. Deep learning in agriculture: A survey. Computers and Electronics in Agriculture 2018; 147: 70–90. doi: 10.1016/j.compag.2018.02.016.
20. Zhang Y, Niu M, Liu L, et al. A preliminary study on the emergence and development of unmanned farms in China (in Chinese). Agricultural Engi-neering Technology 2020; 40(21): 27–28. doi: 10.16815/j.cnki.11-5436/s.2020.21.003.
21. Wang H, Hao W, Xia Y, et al. Design of automatic cultivation system for greenhouse crops based on LoRa technology (in Chinese). Microcontrollers & Embedded Systems 2021; 21(2): 71–74, 78.
22. Wolfert S, Ge L, Verdouw C, et al. Big data in smart farming—A review. Agricultural Systems 2017; 153: 69–80. doi: 10.1016/j.agsy.2017.01.023.
23. Samuel AL. Some studies in machine learning us-ing the game of checkers. IBM Journal of Research and Development 1959; 3(3): 210–229. doi: 10.1147/rd.33.0210.
24. Ouf N S. A review on the relevant applications of machine learning in agriculture. IJIREEICE 2018; 6(8): 1–17.
25. Mishra S, Mishra D, Santra GH, et al. Applications of machine learning techniques in agricultural crop production: A review paper. Indian Journal of Sci-ence and Technology 2016; 9(38): 1–14. doi: 10.17485/ijst/2016/v9i38/95032.
26. Mou W. Application of machine learning technol-ogy in modern agriculture (in Chinese). Electronic Technology and Software Engineering 2018(18): 240–241.
27. Guo X, Tai H. The application and prospect of deep learning in field planting (in Chinese). Journal of China Agricultural University 2019; 24(1): 119–129.
28. Yu B, Li S, Xu S, et al. Deep learning: The key to open the age of big data. Journal of Engineering Studies 2014; 6(3): 233–243.
29. Bengio Y. Learning deep architectures for AI. Foundations and Trends in Machine Learning 2009; 2(1): 1–127. doi: 10.1561/2200000006.
30. Fu L, Song Z, Wang D, et al. Research progress and application status of deep learning methods in ag-ricultural information (in Chinse). Journal of China Agricultural University 2020; 25(2): 105–120.
31. LecunY, Bengio Y, Hinton G. Deep learning. Nature 2015; 521(7553): 436–444. doi: 10.1038/nature14539.
32. Duan Y, Lv Y, Zhang J, et al. Research status and prospect of deep learning in the field of control. Acta Automatica Sinica 2016; 42(5): 643–654. doi: 10.16383/j.aas.2016.c160019.
33. Andrea CC, Daniel BBM, Misael J. Precise weed and maize classification through convolutional neuronal networks. 2017 IEEE Second Ecuador Technical Chapters Meeting (ETCM); 2017; Salin-as. IEEE; 2017. p. 1–6.
34. Jiang H, Wang P, Zhang Z, et al. Rapid identifica-tion of weeds in corn fields based on convolutional network and hash code (in Chinse). Transactions of the Chinese Society for Agricultural Machinery 2018; 49(11): 30–38.
35. Paulo F, Zhang Z, Jithin M, et al. Distinguishing volunteer corn from soybean at seedling stage us-ing images and machine learning. Smart Agricul-ture, 2020; 2(3): 61–74. doi: 10.12133/j.smartag.2020.2.3.202007-SA002.
36. Meng Q, Zhang M, Yang X, et al. Recognition of corn seedlings and weeds based on lightweight convolution combined with feature information fu-sion (in Chinese). Transactions of the Chinese So-ciety for Agricultural Machinery 2020; 51(12): 238–245, 303.
37. Liu H, Jia H, Wang G, et al. Recognition method and experiment of corn seedling stalk based on deep learning and image processing (in Chinese). Transactions of the Chinese Society for Agricultur-al Machinery 2020; 51(4): 207–215.
38. Ying R, Zhu Y. The impact of agricultural tech-nology training methods on farmers’ agricultural chemical input use behavior: Evidence from ex-perimental economics (in Chinese). China Rural Survey 2015(1): 50–58, 83, 95.
39. Pantati XE,Tamouridou AA, Alexandridis TK, et al. Detection of silybum marianum infection with mi-crobotryum silybum using VNIR field spectroscopy. Computers and Electronics in Agriculture 2017; 137: 130–137. doi: 10.1016/j.compag.2017.03.017.
40. Ebrahimt MA,Khoshtaghaza MH, Minaei S, et al. Vision-based pest detection based on SVM classi-fication method. Computers and Electronics in Ag-riculture 2017; 137: 52–58. doi: 10.1016/j.compag.2017.03.016.
41. Chung CL, Huang KJ, Chen SY, et al. Detecting Bakanae disease in rice seedlings by machine vi-sion. Computers and Electronics in Agriculture 2016; 121: 404–411. doi: 10.1016/j.compag.2016.01.008.
42. Zhang Y. Identification and counting of pests in sticky board images based on deep learning (in Chinese). Xuzhou: China University of Mining and Technology; 2019.
43. Liu Z, Zhang L, Zhong T, et al. Research on identi-fication of tomato pests and diseases based on im-proved leNet-5 (in Chinese). Journal of Gannan Normal University 2020; 41(6): 70–74. doi: 10.13698/j.cnki.cn36-1346/c.2020.06.015.
44. Moshou D, Bravo C, Wahlen S, et al. Simultaneous identification of plant stresses and diseases in ara-ble crops using proximal optical sensing and self-organising maps. Precision Agriculture 2006; 7: 149–164. doi: 10.1007/s11119-006-9002-0.
45. You J, Li X, Low M, et al. Deep gaussian process for crop yield prediction based on remote sensing data. Proceedings of the Thirty-First AAAI Confer-ence on Artificial Intelligence; 2017 Feb; San Francisco. AAAI Press; 2017. p. 4559–4565.
46. Ali I, Awkwell F, Dwyer E, et al. Modeling man-aged grassland biomass estimation by using mul-titemporal remote sensing data—A machine learn-ing approach. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 2017; 10(7): 3254–3264. doi: doi: 10.1109/JSTARS.2016.2561618.
47. Yu H, Feng Y, Li H, et al. Establishment of a sys-tematic service and assistant decision-making sys-tem for fishery standard (in Chinese). Journal of Dalian Ocean University 2019; 34(2): 260–266. doi: 10.16535/j.cnki.dlhyxb.2019.02.016.
48. Wang W, Jiang H, Qiao Q, et al. research on the algorithm of fish recognition and detection based on deep learning (in Chinese). Information Tech-nology and Network Security 2020; 39(8): 57–61, 66. doi: 10.19358/j.issn.2096-5133.2020.08.011.
49. Yuan H, Zhang S. An underwater fish target detec-tion method based on Faster R-CNN and image enhancement (in Chinese). Journal of Dalian Ocean University 2020; 35(4): 612–619. doi: 10.16535/j.cnki.dlhyxb.2019-146.
50. Li Q, Li Y, Niu J. Real-time detection of underwater fish targets based on improved YOLO and transfer learning (in Chinese). Pattern Recognition and Ar-tificial Intelligence 2019; 32(3): 193–203. doi: 10.16451/j.cnki.issn1003-6059.201903001.
51. Wang Ye. Research on fish recognition based on deep learning (in Chinese). Shanghai: Shanghai Ocean University; 2020.
52. Hansen MF, Smith ML, Smith LN, et al. Towards on-farm pig face recognition using convolutional neural networks. Computers in Industry 2018; 98: 145–152. doi: 10.1016/j.compind.2018.02.016.
53. Morales IR, Cebrian DR, Blanco EF, et al. Early warning in egg production curves from commercial hens: A SVM approach. Computers and Electronics in Agriculture 2016; 121: 169–179. doi: 10.1016/j.compag.2015.12.009.
54. Alonso J, Castanon AR, Bahamonde A. Support vector regression to predict carcass weight in beef cattle in advance of the slaughter. Computers and Electronics in Agriculture 2013; 91: 116–120. doi: 10.1016/J.COMPAG.2012.08.009.
55. Zhou C, Lin K, Xu D, et al. Near infrared computer vision and neuro-fuzzy model-based feeding deci-sion system for fish in aquaculture. Computers and Electronics in Agriculture 2018; 146: 114–124. doi: 10.1016/j.compag.2018.02.006.
56. Zhao Jian. Research on precise feeding of swim-ming fish in recirculating aquaculture (in Chinese). Hangzhou: Zhejiang University; 2018.
DOI: https://doi.org/10.32629/jai.v4i2.492
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Baoju Wang, Yubin Lan, Mengmeng Chen, Baohu Liu, Guobin Wang, Haitao Liu
License URL: https://creativecommons.org/licenses/by-nc/4.0