Design and Modeling of PA-10 Virtual Surgery Robot
Abstract
This paper introduces the implementation of a virtual laparoscopic surgery simulator assisted by robot. This type of simulator requires three robots: an endoscope robot (Hibou robot in this case) and two surgical robots (Lapbot robot and PA-10 robot in this case). The three robots are operated by the joystick in cholecystectomy and included in the motion deformation algorithm, which modifies the organ to contact the end organ of robot PA-10, so as to make the simulator more realistic. This result provides a basis for laparoscopic surgery simulation using three auxiliary robots, which is an ideal method for training new surgeons.
Keywords
Full Text:
PDFReferences
1. Mishra K, Wexner S, Green R. Textbook of prac-tical laparoscopic surgery. New Delhi: Jaypee Brothers Medical Publishers; 2013.
2. Escobar PF, Falcone T (editors). Atlas of sin-gle-port, laparoscopic, and robotic surgery: A practical approach in gynecology. New York: Springer; 2014.
3. Ballantyne GH, Moll F. The Da Vinci telerobotic surgical system: the virtual operative field and telepresence surgery. Surgical Clinics of North America 2003; 83(6): 1293–1304. doi: 10.1016/S0039-6109(03)00164-6.
4. Smith RD, Truong M. Simulation in Robotic Surgery: A comparative review of simulators of the Da Vinci surgical robot. Oviedo, FLA: Mod-elbenders Press; 2013.
5. Polet R, Donnez J. Using a laparoscope manipu-lator (Lapman) in laparoscopic gynecological surgery. Surgical Technology International 2008; 17: 187–191.
6. Kommu SS, Rimington P, Anderson C, et al. Ini-tial experience with the EndoAssist cam-era-holding robot in laparoscopic urological sur-gery. Journal of Robotic Surgery 2007; 1(2): 133–137. doi: 10.1007/s11701-007-0010-5.
7. Kraft B, Jäger C, Kraft K, et al. The Aesop robot system in laparoscopic surgery: Increased risk or advantage for surgeon and patient? Surgical En-doscopy 2004; 18(8): 1216–1223. doi: 10.1007/s00464-003-9200-z.
8. Justo J, Pedroza A, Prado E, et al. Un nuevo sim-ulador de laparoscopia [A new laparoscopic sim-ulator] Medigraphic Artemisa 2007; 75(1): 19–23.
9. García J, Arias M, Valencia E. Diseño de prototipo de simulador para entrenamiento en cirugía lapa-roscópica [Prototype design of laparoscopic sur-gery training simulator]. Revista Ingeniería Bio-médica 2011; 5(9): 13–19.
10. Sanz S, Sanchez F, Díaz I, et al. Validación pre-liminar del simulador físico Simulap® y de su sistema de evaluación para cirugía laparoscópica [Preliminary validation of simulated physical simulators® and its laparoscopic surgery evalua-tion system]. Cirugía Española 2011; 90(1): 38–44. doi: /10.1016/j.ciresp.2011.07.013.
11. Matsuda D, Ono Y, Baba S, et al. Positive correla-tion between motion analysis data on the Lap-mentor virtual reality laparoscopic surgical simu-lator and the results from video tape assessment of real laparoscopic surgeries. The Journal of Urol-ogy 2008; 179(4): 661. doi: 10.1016/S0022-5347(08)61930-8.
12. A. Rolls, C. Riga, C. Bicknell, et al. A pilot study of video-motion analysis in endovascular surgery: Development of real-time discriminatory skill metrics. European Journal of Vascular and Endo-vascular Surgery 2013; 45(5): 509–515. doi: 10.1016/j.ejvs.2013.02.004.
13. Patel S, Radia C, Bains S, et al. WII Trauma Cen-tre VS. LapSim: Are modern game consoles com-parable to simulators for the development of lap-aroscopic skills? International Journal of Surgery 2013; 11(8): 598. doi: 10.1016/j.ijsu.2013.06.062.
14. Brinkman W, Luursema J, Kengen B, et al. Da Vinci skills simulator for assessing learning curve and criterion-based training of robotic basic skills. Urology 2013; 81(3): 562–566. doi: 10.1016/j. urology.2012.10.020.
15. Guzman Villamarín DE, Vivas Albán OA. Soft-ware tool for the practice on robotic surgery. In-geniería y Universidad 2015; 19(1): 7–25. doi: 10.11144/ Javeriana.iyu19-1.sprq.
16. Salinas SA, Vivas Albán OA. Modeling, simula-tion and control of surgical laparoscopic robot ‘Lapbot’. Ingeniare. Revista chilena de inge-niería 2009; 17(3): 317–328. December. 2009. doi: 10.4067/S0718-33052009000300005.
17. Torres V, Méndez C, Vivas A, et al. Diseño y sim-ulación en 3D de un robot porta endoscopio para operaciones de laparoscopia. The Fifth Interna-tional Symposium on Electronic Engineering; Colombia; 2011 Sep; Bucaramanga. 2011.
18. Kennedy CW, Desai JP. Modeling and control of the Mitsubishi PA10 robot arm harmonic drive system. IEEE ASME Transactions on Mechatron-ics 2005; 10(3): 263–274. doi: org/10.1109/TMECH.2005.848290.
19. Bompos N, Artemiadis P, Oikonomopoulos A, et al. Modeling, full identification and control of the mitsubishi PA-10 robot arm. IEEE/ASME Interna-tional Conference on Advanced Intelligent Mech-atronics; 2007 Sep; Zurich (Switzerland). 2007. p. 1–6.
20. Dombre E, Khalil W. Modeling, Performance Analysis and Control of Robot Manipulators. London: Willie; 2010.
21. Garcés BE, Mora OG, Vivas OA. Study of indus-trial robots as assistants in laparoscopic surgeries. Revista Facultad de Ingeniería Universidad de Antioquia 2009; (47): 91–102.
22. Levenberg KQ. A method for the solution of cer-tain nonlinear problems in least squares. Quarterly of Applied Mathematics 1944; 2: 164–168.
23. Vivas A. Diseño y Control de Robots Industriales: Teoría y Práctica [Design and control of industrial robots: Theory and practice]. Buenos Aires: Elaeph; 2010.
24. Gómez R, Montero F. Visualización y deformación de objetos virtuales 3D [visualization and defor-mation of 3D virtual objects]. Popayan: Cauca University; 2012.
DOI: https://doi.org/10.32629/jai.v5i1.507
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Carlos Eduardo Fernández-Riomalo, Héctor Andrés Guástar-Morillo, Oscar Andrés Vivas-Albán
License URL: https://creativecommons.org/licenses/by-nc/4.0