Financial time series prediction using deep computing approaches
Abstract
A financial time series is chaotic and non-stationary in nature, and predicting it outcomes is a very complex and challenging task. In this research, the theory of chaos, Long Short-Term Memory (LSTM), and Polynomial Regression (PR) are used in tandem to create a novel financial time series prediction hybrid, Chaos+LSTM+PR. The first step in this hybrid will determine whether or not a financial time series contains chaos. Following that, the chaos in the time series is modeled using Chaos Theory. The modeled time series is fed into the LSTM to obtain initial predictions. The error series obtained from LSTM predictions is fitted by PR to obtain error predictions. The error predictions and initial predictions from LSTM are combined to obtain final predictions. The effectiveness of this hybrid is examined by three types of financial time series (Chaos+LSTM+PR), including stock market indices (S&P 500, Nifty 50, Shanghai Composite), commodity prices (gold, crude oil, soya beans), and foreign exchange rates (INR/USD, JPY/USD, SGD/USD). The results show that the proposed hybrid outperforms ARIMA (autoregressive integrated moving average), Prophet, CART (Classification and Regression Tree), RF (Random Forest), LSTM, Chaos+CART, Chaos+CART, and Chaos+LSTM. The results are also checked for statistical significance.
Keywords
Full Text:
PDFReferences
1. Yao J, Tan CL. A case study on using neural networks to perform technical forecasting of forex. Neurocomputing 2000; 34(1–4): 79–98. doi: 10.1016/S0925-2312(00)00300-3.
2. Dhanya C, Kumar DN. Nonlinear ensemble prediction of chaotic daily rainfall. Advances in Water Resources 2010; 33(3): 327–347. doi: 10.1016/j.advwatres.2010.01.001.
3. Hellstrom T, Holmstrom K. Predicting the stock market. 1998.
4. Magdon-Ismail M, Nicholson A, Abu-Mostafa YS. Financial markets: Very noisy information processing. Proceedings of the IEEE 1998; 86(11): 2184–2195. doi: 10.1109/5.726786.
5. Reid DJ. Combining three estimates of gross domestic product. Economica 1968; 35(140): 431–444. doi: 10.2307/25523.
6. Bates JM, Granger CW. The combination of forecasts. Journal of the Opertional Research Society 1969; 20(4): 451–468. Doi: 10.1057/jors.1969.103.
7. Makridakis S, Andersen A, Carbone R, et al. The accuracy of extrapolation (time series) methods: Results of a forecasting competition. Journal of Forecasting 1982; 1(2): 111–153. doi: 10.1002/for.3980010202.
8. Poincaré H. Sur le probléme des trois corps et les équations de la dynamique (French) [On the three-body problem and the equations of dynamics]. Acta Mathematica 1890; 13(1): A3–A270.
9. Williams G. Chaos theory tamed. Washington, D.C.: CRC Press; 1997.
10. Cavalcante RC, Brasileiro RC, Souza VL, et al. Computational intelligence and financial markets: A survey and future directions. Expert Systems with Applications 2016; 55: 194–211. doi: 10.1016/j.eswa.2016.02.006.
11. Bao W, Yue J, Rao Y. A deep learning framework for financial time series using stacked autoencoders and long-short term memory. PloS ONE 2014; 12(7): e0180944. doi: 10.1371/journal.pone.0180944.
12. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015; 521: 436–444. doi: 10.1038/nature14539.
13. Heaton J, Polson NG, Witte JH. Deep learning in finance. arXiv preprint arXiv:1602.06561. 2016. doi: 10.48550/arXiv.1602.06561.
14. Zhang K, Zhong G, Dong J, et al. Stock market prediction based on generative adversarial network. Procedia Computer Science 2019; 147: 400–406. doi: 10.1016/j.procs.2019.01.256.
15. Hochreiter S, Schmidhuber J. Long short-term memory. Neural Computation 1997; 9(8): 1735–1780. doi: 10.1162/neco.1997.9.8.1735.
16. Karasu S, Altan A, Bekiros S, Ahmad W. A new forecasting model with wrapper-based feature selection approach using multi-objective optimization technique for chaotic crude oil time series. Energy 2020; 212: 118750. doi: 10.1016/j.energy.2020.118750.
17. Pradeepkumar D, Ravi V. Forex rate prediction using chaos and quantile regression random forest. In: 2016 3rd International Conference on Recent Advances in Information Technology (RAIT); 2016 Mar 3–5; Dhanbad, India. New York: IEEE; 2016. p. 517–522. doi: 10.1109/RAIT.2016.7507954.
18. Huang W, Lai KK, Nakamori Y, Wang S. Forecasting foreign exchange rates with artificial neural networks: A review. International Journal of Information Technology & Decision Making 2004; 3(1): 145–165. doi: 10.1142/S0219622004000969.
19. Pfeiffer M, Hohmann A. Applications of neural networks in training science. Human Movement Science 2012; 31(2): 344–359. doi: 10.1016/j.humov.2010.11.004.
20. Mochón A, Quintana D, Sáez Y, Isasi P. Soft computing techniques applied to finance. Applied Intelligence 2008; 29(2): 111–115. doi: 10.1007/s10489-007-0051-5.
21. Li Y, Ma W. Applications of artificial neural networks in financial economics: A survey. In: 2010 International Symposium on Computational Intelligence and Design; 2010 Oct 29–31; Hangzhou, China. New York: IEEE; 2011. p. 211–214. doi: 10.1109/ISCID.2010.70.
22. Bahrammirzaee A. A comparative survey of artificial intelligence applications in finance: Artificial neural networks, expert system and hybrid intelligent systems. Neural Computing and Applications 2010; 19(8): 1165–1195. doi: 10.1007/s00521-010-0362-z.
23. Pradeepkumar D, Ravi V. Soft computing hybrids for forex rate prediction: A comprehensive review. Computers & Operations Research 2018; 99: 262–284. doi: 10.1016/j.cor.2018.05.020.
24. Durairaj M, Mohan BK. A review of two decades of deep learning hybrids for financial time series prediction. International Journal on Emerging Technologies 2019; 10(3): 324–331.
25. Kim HY, Won CH. Forecasting the volatility of stock price index: A hybrid model integrating LSTM with multiple GARCH-type models, Expert Systems with Applications 2018; 103: 25–37. doi: 10.1016/j.eswa.2018.03.002.
26. Baek Y, Kim HY. ModAugNet: A new forecasting framework for stock market index value with an overfitting prevention LSTM module and a prediction LSTM module. Expert Systems with Applications 2018; 113: 457–480. doi: 10.1016/j.eswa.2018.07.019.
27. Cao J, Li Z, Li J. Financial time series forecasting model based on CEEMDAN and LSTM. Physica A: Statistical Mechanics and Its Applications 2019; 519: 127–139. doi: 10.1016/j.physa.2018.11.061.
28. Pavlidis N, Tasoulis D, Vrahatis MN. Financial forecasting through unsupervised clustering and evolutionary trained neural networks. In: The 2003 Congress on Evolutionary Computation, 2003. CEC’03; 2003 Dec 8–12; Canberra, ACT, Australia. New York: IEEE; 2004. p. 2314–2321. doi: 10.1109/CEC.2003.1299377.
29. Huang SC, Chuang PJ, Wu CF, Lai HJ. Chaos-based support vector regressions for exchange rate forecasting. Expert Systems with Applications 2010; 37(12): 8590–8598. doi: 10.1016/j.eswa.2010.06.001.
30. Pradeepkumar D, Ravi V. Forex rate prediction using chaos, neural network and particle swarm optimization. In: Tan Y, Shi Y, Coello CAC (editors). Advances in Swarm Intelligence. ICSI 2014. Lecture Notes in Computer Science, vol 8795. Cham: Springer; 2014. p. 363–375. doi: 10.1007/978-3-319-11897-0_42.
31. Pradeepkumar D, Ravi V. Forex rate prediction: A hybrid approach using chaos theory and multivariate adaptive regression splines. In: Satapathy S, Bhateja V, Udgata S, Pattnaik P (editors). Proceedings of the 5th International Conference on Frontiers in Intelligent Computing: Theory and Applications. Advances in Intelligent Systems and Computing, vol 515. Singapore: Springer; 2017. p. 219–227. doi: 10.1007/978-981-10-3153-3_22.
32. Ravi V, Pradeepkumar D, Deb K. Financial time series prediction using hybrids of chaos theory, multi-layer perceptron and multi-objective evolutionary algorithms. Swarm and Evolutionary Computation 2017; 36: 136–149. doi: 0.1016/j.swevo.2017.05.003.
33. Packard NH, Crutchfield JP, Farmer JD, Shaw RS. Geometry from a time series. Physical Review Letters 1980; 45(9): 712. doi: 10.1103. PhysRevLett.45.712.
34. Takens F. Detecting strange attractors in turbulence. In: Rand D, Young LS (editors). Dynamical systems and turbulence, Warwick 1980. Lecture notes in Mathematics, vol 898. Berlin: Springer; 1981. p. 366–381.
35. Akaike H. A new look at the statistical model identification. IEEE Transactions on Automatic Control 1974; 19(6): 716–723. doi: 10.1109/TAC.1974.1100705.
36. Cao L. Practical method for determining the minimum embedding dimension of a scalar time series. Physica D: Nonlinear Phenomena 1997; 110(1–2): 43–50. doi: 10.1016/S0167-2789(97)00118-8.
37. Makridakis S, Hibon M. ARMA models and the Box–Jenkins methodology. Journal of Forecasting 1997; 16(3): 147–163. doi: 10.1002/(SICI)1099-131X(199705)16:3<147::AID-FOR652>3.0.CO;2-X.
38. Hibon M, Makridakis S. Evaluating accuracy (or error) measures. INSEAD [Google Scholar] 1995.
DOI: https://doi.org/10.32629/jai.v6i1.558
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 M. Durairaj, Ch. Suneetha, BH. Krishna Mohan
License URL: https://creativecommons.org/licenses/by-nc/4.0