A hybrid software defects prediction model for imbalance datasets using machine learning techniques: (S-SVM model)
Abstract
Keywords
Full Text:
PDFReferences
1. Amasaki S. On applicability of cross-project defect prediction method for multi-versions projects. In: Proceedings of the 13th International Conference on Predictive Models and Data Analytics in Software Engineering; 2017 Nov 8; Toronto Canada. New York: Association for Computing Machinery; 2017. p. 93–96. doi: 10.1145/3127005.3127015.
2. Shukla S, Radhakrishnan T, Muthukumaran K, Neti LBM. Multi-objective cross-version defect prediction. Soft Computing 2018; 22(6): 1959–1980. doi: 10.1007/s00500-016-2456-8.
3. Jayanthi R, Florence L. Software defect prediction techniques using metrics based on neural network classifier. Cluster Computing 2019; 22(1): 77–88. doi: 10.1007/s10586-018-1730-1.
4. Liu M, Miao L, Zhang D. Two-stage cost-sensitive learning for software defect prediction. IEEE Transactions on Reliability 2014; 63(2): 676–686. doi: 10.1109/TR.2014.2316951.
5. Herbold S, Trautsch A, Grabowski J. Global vs. local models for cross-project defect prediction. Empirical Software Engineering 2017; 22(4): 1866–1902. doi: 10.1007/s10664-016-9468-y.
6. Zhang F, Zheng Q, Zou Y, Hassan AE. Cross-project defect prediction using a connectivity-based unsupervised classifier. In: 2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE); 2016 May 14–22; Austin, TX. New York: IEEE; 2017. p. 309–320. doi: 10.1145/2884781.2884839.
7. Hosseini S, Turhan B, Gunarathna D. A systematic literature review and meta-analysis on cross project defect prediction. IEEE Transactions on Software Engineering 2019; 45(2): 111–147. doi: 10.1109/TSE.2017.2770124.
8. Wahono RS. A systematic literature review of software defect prediction: Research trends, datasets, methods and frameworks. Journal of Software Engineering 2007; 1(1): 1–16. doi: 10.3923/jse.2007.1.12.
9. Malhotra R. A systematic review of machine learning techniques for software fault prediction. Applied Soft Computing 2015; 27: 504–518. doi: 10.1016/j.asoc.2014.11.023.
10. Benediktsson O, Dalcher D, Thorbergsson H. Comparison of software development life cycles: A multiproject experiment. IET Software 2006; 153(3): 87–101. doi: 10.1049/ip-sen:20050061.
11. Hassan MM, Afzal W, Blom M, et al. Testability and software robustness: A systematic literature review. In: 2015 41st Euromicro Conference on Software Engineering and Advanced Applications; 2015 Aug 26–28; Madeira, Portugal. New York: IEEE; 2015. p. 341–348. doi: 10.1109/SEAA.2015.47.
12. Shepperd M, Bowes D, Hall T. Researcher bias: The use of machine learning in software defect prediction. IEEE Transactions on Software Engineering 2014; 40(6): 603–616. doi: 10.1109/TSE.2014.2322358.
13. Manjula C, Florence L. Deep neural network based hybrid approach for software defect prediction using software metrics. Cluster Computing 2019; 22: 9847–9863. doi: 10.1007/s10586-018-1696-z.
14. Chidamber SR, Kemerer CF. A metrics suite for object oriented design. IEEE Transactions on Software Engineering 1994; (6): 476–493. doi: 10.1109/32.295895.
15. Basili VR, Briand LC, Melo WL. A validation of object-oriented design metrics as quality indicators. IEEE Transactions on Software Engineering 1996; 22(10): 751–761. doi: 10.1109/32.544352.
16. Alsawalqah H, Faris H, Aljarah I, et al. Hybrid SMOTE-ensemble approach for software defect prediction. Advances in Intelligent Systems and Computing 2017; 575: 355–366. doi: 10.1007/978-3-319-57141-6_39.
17. He H, Bai Y, Garcia EA, Li S. ADASYN: Adaptive synthetic sampling approach for imbalanced learning. In: 2008 IEEE International Joint Conference on Neural Networks; 2008 Jun 1–8; Hong Kong. New York: IEEE; 2008. p. 1322–1328. doi: 10.1109/IJCNN.2008.4633969.
18. Nian R. Fixing imbalanced datasets: An introduction to ADASYN (with code!) [Internet]. San Francisco: Medium; 2018 [published 2018 Dec 23]. Available from: https://medium.com/@ruinian/an-introduction-to-adasyn-with-code-1383a5ece7aa.
19. Mirzaei B, Nikpour B, Nezamabadi-Pour H. An under-sampling technique for imbalanced data classification based on DBSCAN algorithm. In: 2020 8th Iranian Joint Congress on Fuzzy and intelligent Systems (CFIS); 2020 Sept 2–4; Mashhad, Iran. New York: IEEE; 2020. p. 21–26. doi: 10.1109/CFIS49607.2020.9238718.
20. Hasanin T, Khoshgoftaar TM. The effects of random undersampling with simulated class imbalance for big data. In: 2018 IEEE International Conference on Information Reuse and Integration (IRI); 2018 Jul 6–9; Salt Lake City, UT. New York: IEEE; 2018. p. 70–79. doi: 10.1109/IRI.2018.00018.
21. Bach M, Werner A, Palt M. The proposal of undersampling method for learning from imbalanced datasets. Procedia Computer Science 2019; 159: 125–134. doi: 10.1016/j.procs.2019.09.167.
22. Sawangarreerak S, Thanathamathee P. Random forest with sampling techniques for handling imbalanced prediction of university student depression. Information 2020; 11(11): 1–13. doi: 10.3390/info11110519.
23. Software Defect Dataset. Promise software engineering repository [Internet]. Ottawa: University of Ottawa; 2004. Available from: http://promise.site.uottawa.ca/SERepository/datasets-page.html.
24. Kovács B, Tinya F, Németh C, Ódor P. Unfolding the effects of different forestry treatments on microclimate in oak forests: Results of a 4-yr experiment. Ecological Applications 2020; 30(2): 321–357. doi: 10.1002/eap.2043.
25. Wilson MD. Support vector machines. In: Encyclopedia of ecology. Amsterdam, Netherlands: Elsevier Science; 2008. p. 3431–3437. doi: 10.1016/B978-008045405-4.00168-3.
26. Zoppis I, Mauri G, Dondi R. Kernel methods: Support vector machines. Ranganathan R, Gribskov M, Nakai K, et al. (editors). Oxford: Academic Press; 2019. p. 503–510.
27. Chang YW, Hsieh CJ, Chang KW, et al. Training and testing low-degree polynomial data mappings via linear SVM. The Journal of Machine Learning Research 2010; 11(48): 1471–1490.
28. Sayyad Shirabad J, Menzies TJ. The PROMISE repository of software engineering databases [Internet]. Ottawa: University of Ottawa; 2005. Available from: http://promise.site.uottawa.ca/SERepository.
29. Alkhasawneh MS. Software defect prediction through neural network and feature selections. Applied Computational Intelligence and Soft Computing 2022; 2022: 2581832. doi: 10.1155/2022/2581832.
30. Mustaqeem M, Saqib M. Principal component based support vector machine (PC-SVM): A hybrid technique for software defect detection. Cluster Computing 2021; 24(3): 2581–2595. doi: 10.1007/s10586-021-03282-8.
31. Abualigah L. Group search optimiser: A nature-inspired meta-heuristic optimisation algorithm with its results, variants, and applications. Neural Computing and Applications 2021; 33: 2949–2972. doi: 10.1007/s00521-020-05107-y.
32. Abualigah L. Multi-verse optimiser algorithm: A comprehensive survey of its results, variants, and applications. Neural Computing and Applications 2020; 32: 12381–12401. doi: 10.1007/s00521-020-04839-1.
33. Rahim A, Hayat Z, Abbas M, et al. Software defect prediction with naïve bayes classifier. In: 2021 International Bhurban Conference on Applied Sciences and Technologies (IBCAST); 2021 Jan 12–16; Islamabad, Pakistan. New York: IEEE; 2021. p. 293–297. doi: 10.1109/IBCAST51254.2021.9393250.
34. Soe YN, Santosa PI, Hartanto R. Software defect prediction using random forest algorithm. In: 2018 12th South East Asian Technical University Consortium (SEATUC); 2018 Mar 12–13; Yogyakarta, Indonesia. New York: IEEE; 2019. p. 1–5. doi: 10.1109/SEATUC.2018.8788881.
35. Wang J, Shen B, Chen Y. Compressed C4.5 models for software defect prediction. In: 2012 12th International Conference on Quality Software; 2012 Aug 27–29; Xi’an, China. New York: IEEE; 2012. p. 13–16. doi: 10.1109/QSIC.2012.19.
36. Haouari AT, Souici-Meslati L, Atil F, Meslati D. Empirical comparison and evaluation of Artificial Immune Systems in inter-release software fault prediction. Applied Soft Computing 2020; 96: 106686. doi: 10.1016/j.asoc.2020.106686.
37. Arar ÖF, Ayan K. Software defect prediction using cost-sensitive neural network. Applied Soft Computing 2015; 33: 263–277. doi: 10.1016/j.asoc.2015.04.045.
38. Abaei G, Selamat A, Fujita H. An empirical study based on semi-supervised hybrid self-organising map for software fault prediction. Knowledge-Based Systems 2015; 74: 28–39. doi: 10.1016/j.knosys.2014.10.017.
39. Saifudin A, Hendric SWHL, Soewito B, et al. Tackling imbalanced class on cross-project defect prediction using ensemble SMOTE. IOP Publishing 2019; 662(6): 062011. doi: 10.1088/1757-899X/662/6/062011.
DOI: https://doi.org/10.32629/jai.v6i1.559
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Mohd. Mustaqeem, Tamanna Siddiqui
License URL: https://creativecommons.org/licenses/by-nc/4.0