banner

An improved convolutional neural network-based model for detecting brain tumors from augmented MRI images

Gaurav Meena, Krishna Kumar Mohbey, Malika Acharya, K. Lokesh

Abstract


Identifying and categorizing a brain tumor is a crucial stage in enhancing knowledge of its underlying mechanisms. Brain tumor detection is one of the most complex challenges in modern medicine. There are a variety of diagnostic imaging techniques that may be used to locate malignancies in the brain. MRI technique has the unparallel image quality and hence serves the purpose. Deep learning methods put at the forefront have facilitated the new paradigm of automated medical image identification approaches. Therefore, reliable and automated categorization techniques are necessary for decreasing the mortality rate in humans caused by this significant chronic condition. To solve a binary problem involving MRI scans that either show or don’t show brain tumors, we offer an automatic classification method in this paper that uses a computationally efficient CNN. The goal is to determine whether the image shows brain tumors. We use the Br35H benchmark dataset for experimentation, freely available on the Internet. We augment the dataset before training to enhance accuracy and reduce time consumption. The experimental evaluation of statistical measures like accuracy, recall, precision, F1 score, and loss suggests that the proposed model outperforms other state-of-the-art methods.


Keywords


Brain Tumor Classification; Deep Learning; Convolutional Neural Network; Magnetic Resonance Imaging

Full Text:

PDF

References


1. Wu W, Li D, Du J, et al. An intelligent diagnosis method of brain MRI tumor segmentation using deep convolutional neural network and SVM algorithm. Computational and Mathematical Methods in Medicine 2020; 2020: 6789306. doi: 10.1155/2020/6789306.

2. Amin J, Sharif M, Yasmin M, Fernandes SL. A distinctive approach in brain tumor detection and classification using MRI. Pattern Recognition Letters 2020; 139: 118–127. doi: 10.1016/j.patrec.2017.10.036.

3. De Angelis LM. Brain tumors. The New England Journal of Medicine 2001; 344(2): 114–123. doi: 10.1056/NEJM200101113440207.

4. Stewart BW, Wild CP. World cancer report 2014. Lyon: International Agency for Research on Cancer; 2014.

5. Feyissa AM, Worrell GA, Tatum WO, et al. High-frequency oscillations in awake patients undergoing brain tumor-related epilepsy surgery. Neurology 2018; 90(13): e1119–e1125. doi: 10.1212/WNL.0000000000005216.

6. Kumar S, Dabas C, Godara S. Classification of brain MRI tumor images: A hybrid approach. Procedia Computer Science 2017; 122: 510–517.doi: 10.1016/j.procs.2017.11.400.

7. Xie L, Wisse LEM, Pluta J, et al. Automated segmentation of medial temporal lobe subregions on in vivo T1-weighted MRI in early stages of Alzheimer’s disease. Human Brain Mapping 2019; 40(12): 3431–3451. doi: 10.1002/hbm.24607.

8. Abdallah YMY, Alqahtani T. Research in medical imaging using image processing techniques. In: Zhou Y (editor). Medical imaging—Principles and applications. London: IntechOpen; 2019.

9. Saba T, Mohamed AS, El-Affendi M, et al. Brain tumor detection using fusion of hand crafted and deep learning features. Cognitive Systems Research 2020; 59: 221–230. doi: 10.1016/j.cogsys.2019.09.007.

10. Nagalkar VJ, Sarate GG. Brain tumor detection and identification using Support Vector Machine. International Research Journal of Engineering and Technology 2019; 6(12): 2020–2023.

11. Samanta AK, Khan AA. Computer aided diagnostic system for automatic detection of brain tumor through MRI using clustering based segmentation technique and SVM classifier. In: Hassanien AE, Tolba MF, Elhoseny M, Mostafa M (editors). Proceedings of International Conference on Advanced Machine Learning Technologies and Applications; 2018 Feb 22–24; Cairo. Cham: Springer; 2018. p. 343–351.

12. Swati ZNK, Zhao Q, Kabir M, et al. Brain tumor classification for MR images using transfer learning and fine-tuning. Computerized Medical Imaging and Graphics 2019; 75: 34–46. doi: 10.1016/j.compmedimag.2019.05.001.

13. Muhammad K, Khan S, Ser JD, de Albuquerque VHC. Deep learning formultigrade brain tumor classification in smart healthcare systems: A prospective survey. IEEE Transactions on Neural Networks and Learning Systems 2020; 32: 507–522. doi: 10.1109/TNNLS.2020.2995800.

14. Naseer A, Zafar K. Comparative analysis of raw images and meta feature based Urdu OCR using CNN and LSTM. International Journal of Advanced Computer Science and Applications 2018; 9(1): 419–424. doi: 10.14569/IJACSA.2018.090157.

15. Shree NV, Kumar TNR. Identification and classification of brain tumor MRI images with feature extraction using DWT and probabilistic neural network. Brain Informatics 2018; 5: 23–30. doi: 10.1007/s40708-017-0075-5.

16. Arunachalam M, Royappan SS. An efficient and automatic glioblastoma brain tumor detection using shift-invariant shearlet transform and neural networks. International Journal of Imaging Systems and Technology 2017; 27(3): 216–226. doi: 10.1002/ima.22227.

17. Rajan PG, Sundar C. Brain tumor detection and segmentation by intensity adjustment. Journal of Medical Systems 2019; 43: 1–13. doi: 10.1007/s10916-019-1368-4.

18. Özyurt F, Sert E, Avci E, Dogantekin E. Brain tumor detection based on convolutional neural network with neutrosophic expert maximum fuzzy sure entropy. Measurement 2019; 147: 106830. doi: 10.1016/j.measurement.2019.07.058.

19. Deepak S, Ameer P. Brain tumor classification using deep CNN features via transfer learning. Computers in Biology and Medicine 2019; 111: 103345. doi: 10.1016/j.compbiomed.2019.103345.

20. Wang G, Li W, Ourselin S, Vercauteren T. Automatic brain tumor segmentation using convolutional neural networks with test-time augmentation. In: Crimi A, Bakas S, Kuijf H, et al. (editors). Proceedings of Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 4th International Workshop, BrainLes 2018; 2018 Sept 16; Granada. Cham: Springer International Publishing; 2018. p. 61–72.

21. Sajjad M, Khan S, Muhammad K, et al. Multi-grade brain tumor classification using deep CNN with extensive data augmentation. Journal of Computational Science 2019; 30: 174–182. doi: 10.1016/j.jocs.2018.12.003.

22. Toğaçar M, Ergen B, Cömert Z. BrainMRNet: Brain tumor detection using magnetic resonance images with a novel convolutional neural network model. Medical Hypotheses 2020; 134: 109531. doi: 10.1016/j.mehy.2019.109531.

23. Hossain T, Shishir FS, Ashraf M, et al. Brain tumor detection using convolutional neural network. In: Proceedings of 2019 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT); 2019 May 3–5; Dhaka. New York: IEEE; 2019. p. 1–6.

24. Amin J, Sharif M, Gul N, et al. Brain tumor classification based on DWT fusion of MRI sequences using convolutional neural network. Pattern Recognition Letters 2020; 129: 115–122. doi: 10.1016/j.patrec.2019.11.016.

25. Alfonse M, Salem ABM. An automatic classification of brain tumors through MRI using support vector machine. Egyptian Computer Science Journal 2016; 40(3): 11–21.

26. Dandıl E, Karaca S. Detection of pseudo brain tumors via stacked LSTM neural networks using MR spectroscopy signals. Biocybernetics and Biomedical Engineering 2021; 41(1): 173–195. doi: 10.1016/j.bbe.2020.12.003.

27. Díaz-Pernas FJ, Martínez-Zarzuela M, Antón-Rodríguez M, González-Ortega D. A deep learning approach for brain tumor classification and segmentation using a multiscale convolutional neural network. Healthcare 2021; 9: 153. doi: 10.3390/healthcare9020153.

28. Kumar RL, Kakarla J, Isunuri BV, Singh M. Multiclass brain tumor classification using residual network and global average pooling. Multimedia Tools and Applications 2021; 80(9): 13429–13438. doi: 10.1007/s11042-020-10335-4.

29. Kalaiselvi T, Padmapriya S. Brain tumor diagnostic system—A deep learning application. Machine Vision Inspection Systems 2021; 2: 69–90. doi: 10.1002/9781119786122.ch4.

30. Rehman A, Khan MA, SabaT, et al. Microscopic brain tumor detection and classification using 3D CNN and feature selection architecture. Microscopy Research and Technique 2021; 84(1): 133–149. doi: 10.1002/jemt.23597.

31. Kiranmayee BV, Rajinikanth TV, Nagini S. Explorative data analytics of brain tumor data using R. In: Proceedings of 2017 International Conference on Current Trends in Computer, Electrical, Electronics and Communication (CTCEEC); 2017 Sept 8–9; Mysore. New York: IEEE; 2018. p. 1182–1187.

32. Demirhan A, Törü M, Güler I. Segmentation of tumor and edema along with healthy tissues of brain using wavelets and neural networks. IEEE Journal of Biomedical and Health Informatics 2014; 19(4): 1451–1458. doi: 10.1109/JBHI.2014.2360515.

33. Siar M, Teshnehlab M. Brain tumor detection using deep neural network and machine learning algorithm. In: Proceedings of 2019 9th International Conference on Computer and Knowledge Engineering (ICCKE); 2019 Oct 24–25; Mashhad. New York: IEEE; 2020. p. 363–368. doi: 10.1109/ICCKE48569.2019.8964846.

34. Kharrat A, Gasmi K, Messaoud MB, et al. A hybrid approach for automatic classification of brain MRI using genetic algorithm and support vector machine. Leonardo Journal of Sciences 2010; 9(17): 71–82.

35. Ullah Z, Farooq MU, Lee SH, An D. A hybrid image enhancement based brain MRI images classification technique. Medical Hypotheses 2020; 143: 109922. doi: 10.1016/j.mehy.2020.109922.

36. Ural B. A compute-based brain tumor detection approach with advanced image processing and probabilistic neural network methods. Journal of Medical and Biological Engineering 2018; 38: 867–879. doi: 10.1007/s40846-017-0353-y.

37. Preethi S, Aishwarya P. Combining wavelet texture features and deep neural network for tumor detection and segmentation over MRI. Journal of Intelligent Systems 2019; 28(4): 571–588. doi: 10.1515/jisys-2017-0090.

38. Wang F, Jiang R, Zheng L, et al. 3D u-net based brain tumor segmentation and survival days prediction. In: Proceedings of Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 5th International Workshop, BrainLes 2019; 2019 Oct 17; Shenzhen. Cham: Springer International Publishing; 2019. p. 131–141. doi: 10.1007/978-3-030-46640-4_13.

39. Çinar A, Yildirim M. Detection of tumors on brain MRI images using the hybrid convolutional neural network architecture. Medical Hypotheses 2020; 139: 109684. doi: 10.1016/j.mehy.2020.109684.

40. Saxena P, Maheshwari A, Maheshwari S. Predictive modeling of brain tumor: A deep learning approach. In: Sharma MK, Dhaka VS, Perumal T, et al (editors). Innovations in computational intelligence and computer vision. Advances in intelligent systems and computing. Singapore: Springer; 2020. p. 275–285. doi: 10.1007/978-981-15-6067-5_30.

41. Paul JS, Plassard AJ, Landman BA, Fabbri D. Deep learning for brain tumor classification. In: Krol A, Gimi B (editors). Proceedings of SPIE Medical Imaging 2017; 2017 Feb 11–16; Orlando. Bellingham: SPIE-International Society for Optics and Photonics; 2017. doi: 10.1117/12.2254195.

42. Hemanth DJ, Anitha J, Naaji A, et al. A modified deep convolutional neural network for abnormal brain image classification. IEEE Access 2018; 7: 4275–4283. doi: 10.1109/ACCESS.2018.2885639.

43. Islam J, Zhang Y. A novel deep learning based multiclass classification method for Alzheimer’s disease detection using brain MRI data. In: Proceedings of International Conference on Brain Informatics; 2017 Nov 16–18; Beijing. Cham: Springer; 2017. p. 213–222.

44. Yang G, Nawaz T, Barrick TR, et al. Discrete wavelet transform-based whole-spectral and subspectral analysis for improved brain tumor clustering using single voxel MR spectroscopy. IEEE Transactions on Biomedical Engineering 2015; 62(12): 2860–2866. doi: 10.1109/TBME.2015.2448232.

45. Kumar SS, Moorthi M, Madhu M, Amutha R. An improved method of segmentation using fuzzy-neuro logic. In: Proceedings of 2010 Second International Conference on Computer Research and Development; 2010 May 7–10; Kuala Lumpur. New York: IEEE; 2010. p. 671–675.

46. Badža MM, Barjaktarović MC. Classification of brain tumors from MRI images using a convolutional neural network. Applied Sciences 2020; 10(6): 1999. doi: 10.3390/app10061999.

47. Suhara SF, Mary MS. Fully connected pyramid pooling network (FCPPN)—A method for brain tumor segmentation. International Journal of Engineering and Advanced Technology 2019; 9(1): 7041. doi: 10.35940/ijeat.A1658.109119.

48. Rahman T, Islam MS. MRI brain tumor detection and classification using parallel deep convolutional neural networks. Measurement: Sensors 2023; 26: 100694. doi: 10.1016/j.measen.2023.100694.

49. Hamada A. Br35H: Brain tumor detection 2020 [Internet]. 2020. Available from: https://www.kaggle.com/datasets/ahmedhamada0/brain-tumor-detection.

50. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015; 521: 436–444. doi: 10.1038/nature14539.

51. Wu J. Introduction to convolutional neural networks. Nanjing: LAMDA Group; 2017.

52. Scherer D, Müller A, Behnke S. Evaluation of pooling operations in convolutional architectures for object recognition. In: Diamantaras K, Duch W, Iliadis LS (editors). Proceedings of International Conference on Artificial Neural Networks; 2010 Sept 15–18; Thessaloniki. Berlin: Springer; 2010.

53. Santurkar S, Tsipras D, Ilyas A, Madry A. How does batch normalization help optimization? In: Bengio S, Wallach H, Larochelle H, et al. (editors). Advances in neural information processing systems 31 (NeurIPS 2018). San Diego: Neural Information Processing Systems Foundation, Inc.; 2018.

54. Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: A simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research 2014; 15(1): 1929–1958. doi: 10.5555/2627435.2670313.

55. Dubey AK, Mohbey KK. Combined cloud-based inference system for the classification of COVID-19 in CT-Scan and X-Ray images. New Generation Computing 2022; 41: 61–84. doi: 10.1007/s00354-022-00195-x.

56. Soltaninejad M, Yang G, Lambrou T, et al. Supervised learning based multimodal MRI brain tumour segmentation using texture features from supervoxels. Computer Methods and Programs in Biomedicine 2018; 157: 69–84. doi: 10.1016/j.cmpb.2018.01.003.

57. Sarkar S, Kumar A, Chakraborty S, et al. A CNN based approach for the detection of brain tumor using MRI scans. Test Engineering & Management 2020; 83: 16580–16586.

58. Avşar E, Salçin K. Detection and classification of brain tumours from MRI images using faster R-CNN. Tehnički glasnik 2019; 13(4): 337–342. doi: 10.31803/tg-20190712095507.

59. Arunkumar N, Mohammed MA, Mostafa SA, et al. Fully automatic model-based segmentation and classification approach for MRI brain tumor using artificial neural networks. Concurrency and Computation: Practice and Experience 2020; 32(1): e4962. doi: 10.1002/cpe.4962.

60. Martini ML, Oermann EK. Intraoperative brain tumour identification with deep learning. Nature Reviews Clinical Oncology 2020; 17(4): 200–201. doi: 10.1038/s41571-020-0343-9.

61. Choudhury CL, Mahanty C, Kumar R, Mishra BK. Brain tumor detection and classification using convolutional neural network and deep neural network. In: Proceedings of 2020 International Conference on Computer Science, Engineering and Applications (ICCSEA); 2020 Mar 13–14; Gunupur. New York: IEEE; 2020. p. 1–4.

62. Sultan HH, Salem NM, Al-Atabany W. Multi-classification of brain tumor images using deep neural network. IEEE Access 2019; 7: 69215–69225. doi: 10.1109/ACCESS.2019.2919122.

63. Ganesan M, Sivakumar N, Thirumaran M. Internet of medical things with cloud-based e-health services for brain tumour detection model using deep convolution neural network. Electronic Government, an International Journal 2020; 16(1–2): 69–83. doi: 10.1504/EG.2020.105240.

64. Naseer A, Yasir T, Azhar A, et al. Computer-aided brain tumor diagnosis: Performance evaluation of deep learner CNN using augmented brain MRI. International Journal of Biomedical Imaging 2021; 2021(2): 1–11. doi: 10.1155/2021/5513500.




DOI: https://doi.org/10.32629/jai.v6i1.561

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Gaurav Meena, Krishna Kumar Mohbey, Malika Acharya, K. Lokesh

License URL: https://creativecommons.org/licenses/by-nc/4.0