banner

Mathematical modeling and parameter analysis of quantum antenna for IoT sensor-based biomedical applications

Ram Krishna, Rajveer Singh Yaduvanshi, Harendra Singh, Arun Kumar Rana, Nitin Goyal, Ravinder Kumar

Abstract


In this paper, an equivalent combination of series and parallel R-L-C high-pass filter circuit is derived for a nano (quantum) antenna for the Internet of thing (IoT) based sensors for speedy data or organ image displaying in medical line surgeries. The proposed method utilized the sample frequency behavior of characteristics mode to develop a fundamental  building block that  superimposes  to  create  the  complete response. The resonance frequency, input impedance, and quality factor have been evaluated along with basic and higher-order resonating modes. The relation between quality factor, bandwidth, resonance frequency, and selectivity for higher order, increases the quantum circuits in terms of increased order of a filter, quality factor, and odd and even harmonics factors. Therefore, the basic circuits derivation factor of frequency coefficients are expanded in terms of polynomials and then they are expressed as a simple rational function from which the basic circuit parameters are calculated. In this circuit input impedance of each circuit’s element is complex. The real part of input impedance depends on frequency, depending on the frequency positive or negative value of the resistor, and the imaginary part of impedance modelling an inductor or capacitor due to the value of frequency. At cutoff frequency 511 THz, z11 and VSWR parameters are 34 Ω and 1.11, respectively. The proposed quantum DRA is tested at 5 THz, 10 THz, and 500 THz by calculating the electrical parameters like R, L, C and model performance is quite good as compared to existing ones. The dynamic impedance is dependent on the skin effect and enhances the detailed discussion below. The utilization of optical or quantum DRAs is as optical sensors in biomedical engineering, speedy wireless communication, and optical image solutions. Analyte material has been used for monitoring frequency deviation.

Keywords


NDRA (QA); phasor model; resistor; inductor; capacitor; quality factor; dynamic impedance; MATLAB; HFSS software-based simulations

Full Text:

PDF

References


1. Alam M, Massoud Y. RLC ladder model for scattering in single metallic nanoparticles. IEEE Transactions on Nanotechnology 2006; 5(5): 491–498. doi: 10.1109/TNANO.2006.880403

2. Ahmad R, Farooqi A, Farooqi R, et al. A new fractional-order stability analysis of sir model for the transmission of Buruli disease: A biomedical application. Fractals 2022; 30(5): 1–11. doi: 10.1142/S0218348X22401715

3. Ambrosio LA, Hernández-Figueroa HE. RLC circuit model for the scattering of light by small negative refractive index spheres. IEEE Transactions on Nanotechnology 2012; 11(6): 1217–1222. doi: 10.1109/TNANO.2012.2221739

4. Tzarouchis DC, Ylä-Oijala P, Sihvola A. Resonant scattering characteristics of homogeneous dielectric sphere. IEEE Transactions on Antennas and Propagation 2017; 65(6): 3184–3191. doi: 10.1109/TAP.2017.2690312

5. Mongia RK, Bhartia P. Dielectric resonator antennas—A review and general design relations for resonant frequency and bandwidth. International Journal of RF and Microwave Computer‐Aided Engineering 1994; 4(3): 230–247. doi: 10.1002/mmce.4570040304

6. Alam M, Massoud Y. An accurate closed-form analytical model of single nanoshells for cancer treatment. In: Proceedings of 48th Midwest Symposium on Circuits and Systems; 7–10 August 2005; Covington, America. pp. 1928–1931.

7. Oubre C, Nordlander P. Optical properties of metallodielectric nano structures calculate using the finite difference time domain method. The Journal of Physical Chemistry B 2004; 108(46): 17740–17747. doi: 10.1021/jp0473164

8. Alam M, Massoud Y. A closed-form analytical model for single nanoshells. IEEE Transactions on Nanotechnology 2006; 5(3): 265–272. doi: 10.1109/TNANO.2006.874050

9. Li JLW, Li Z, She H, et al. A new closed-form solution to light scattering by spherical nanoshells. IEEE Transactions on Nanotechnology 2009; 8(5): 617–626. doi: 10.1109/TNANO.2009.2021696

10. Farhat M, Rockstuhl C, Bağcı H. A 3D tunable and multi-frequency graphene plasmonic cloak. Optics Express 2013; 21(10): 12592–12603. doi: 10.1364/OE.21.012592

11. Ghadarghadr S, Mosallaei H. Coupled dielectric nanoparticles manipulating metamaterials optical characteristics. IEEE Transactions on Nanotechnology 2009; 8(5): 582–594. doi: 10.1109/TNANO.2009.2013619

12. Ahmad R, Farooqi A, Zhang J, Ali N. Steady flow of a power law fluid through a tapered non-symmetric stenotic tube. Applied Mathematics and Nonlinear Sciences 2019; 4(1): 255–266. doi: 10.2478/AMNS.2019.1.00022

13. Khandelwal MK, Kanaujia BK, Kumar S. Defected ground structure: Fundamentals, analysis, and applications in modern wireless trends. International Journal of Antennas and Propagation 2017; 2017(1): 1–22. doi: 10.1155/2017/2018527

14. Vakil A. Transformation Optics Using Graphene: One-atom-thick Optical Devices Based on Graphene [PhD thesis]. University of Pennsylvania; 2012.

15. Christensen T, Jauho AP, Wubs M, Mortensen NA. Localized plasmons in graphene-coated nanospheres. Physical Review B 2015; 91(12): 125414. doi: 10.1103/PhysRevB.91.125414

16. Abramowitz M, Stegun IA. Handbook of Mathematical Functions: With formulas, Graphs, and Mathematical Tables. Courier Corporation; 1964.

17. Novotny L, Hecht B. Principles of Nano-optics. Cambridge University Press; 2006.

18. Farooqi A, Ahmad R, Alotaibi H, et al. A comparative epidemiological stability analysis of predictor corrector types non-standard finite difference scheme for the transmissibility of measles. Results in Physics 2021; 21: 103756. doi: 10.1016/j.rinp.2020.103756

19. Kroto HW, Heath JR, O’Brien SC, et al. C60: Buckminsterfullerene. Nature 1985; 318: 162–163.

20. Yang H, Hou Z, Zhou N, et al. Graphene encapsulated SnO2 hollow spheres as high-performance anode materials for lithiumion batteries. Ceramics International 2014; 40(9): 13903–13910. doi: 10.1016/j.ceramint.2014.05.109

21. Lee JS, Kim SI, Yoon JC, Jang JH. Chemical vapor deposition of mesoporous graphene nanoballs for supercapacitor. ACS Nano 2013; 7(7): 6047–6055. doi: 10.1021/nn401850z

22. Naserpour M, Zapata-Rodríguez CJ, Vuković SM, et al. Tunable invisibility cloaking by using isolated graphene coated nanowires and dimers. Scientific Reports 2017; 7(1): 12186. doi: 10.1038/s41598-017-12413-4

23. Biagioni P, Huang JS, Hecht B. Nanoantennas for visible and infrared radiation. Reports on Progress in Physics 2012; 75(2): 024402. doi: 10.1088/0034-4885/75/2/024402

24. Zou L, Withayachumnankul W, Shah CM, et al. Dielectric resonator nanoantennas at visible frequencies. Optics Express 2013; 21(1): 1344–1352. doi: 10.1364/OE.21.001344

25. Malheiros-Silveira GN, Wiederhecker GS, Hernández-Figueroa HE. Dielectric resonator antenna for applications in nanophotonics. Optics Express 2013; 21(1): 1234–1239. doi: 10.1364/OE.21.001234

26. Zhao Y, Engheta N, Alù A. Effects of shape and loading of optical nanoantennas on their sensitivity and radiation properties. Journal of the Optical Society of America B 2011; 28(5): 1266–1274. doi: 10.1364/JOSAB.28.001266

27. Alam M, Massoud Y. An accurate closed-form analytical model of single nanoshells for cancer treatment. IEEE International Midwest Symp, Circuits System 2005; 2(1): 1928–1931. doi: 10.1109/mwscas.2005.1594503

28. Yaduvanshi RS, Parthasarathy H. Coupled solution of Boltzmann transport equation, Maxwell’s and Navier Stokes equations. International Journal for Infonomics 2010; 3(4): 422–428. doi: 10.20533/iji.1742.4712.2010.0046

29. Zou L, Withayachumnankul W, Shah CM, et al. Efficiency and scalability of dielectric resonator antennas at optical frequencies. IEEE Photonics Journal 2014; 6(4): 1–10. doi: 10.1109/JPHOT.2014.2337891

30. Yaduvanshi RS, Varshney G. Nano Dielectric Resonator Antennas for 5G Applications, 1st ed. CRC Press; 2020.

31. Kumar A, Yaduvanshi RS. Quantum antenna operating at 430 to 750 THz band, inspired through human eye. Journal of Information and Optimization Sciences 2020; 41(6): 1365–1373. doi: 10.1080/02522667.2020.1809093

32. Kumar SB, Singhal PK. RF energy harvesting using Sierpinski’s gasket fractal antenna with EBG geometry. Journal of Information and Optimization Sciences 2020; 41(1): 99–106. doi: 10.1080/02522667.2020.1715561

33. Krishna R, Imoize AL, Yaduvanshi RS, et al. Analysis of multi-stacked dielectric resonator antenna with its equivalent R-L-C circuit modeling for wireless communication systems. Mathematical and Computational Applications 2022; 28(1): 4. doi: 10.3390/mca28010004

34. Yadav R, Katiyar S, Yaduvanshi RS, et al. Analysis of dielectric resonator antenna with its equivalent R, L, C circuit modelling, Journal of Information and Optimization Sciences 2020; 41(6): 1375–1393. doi: 10.1080/02522667.2020.1822043

35. Ratan R, Singh H, Srivastava A, Luthra SK. Designing of fuzzy knowledge-based controller (FKBC) for optical communication system. International Journal of Engineering Research & Technology 2013; 6(8): 5–8.

36. Yaduvanshi RS, Yadav RK, Katiyar S, et al. Optical spherical dielectric resonator antenna for sensing and wireless communication. Frequenz 2020; 75(1–2): 49–59. doi: 10.1515/freq-2020-0086

37. Kumar A, Sharma S, Goyal N, et al. Energy‐efficient fog computing in internet of things based on routing protocol for low‐power and lossy network with Contiki. International Journal of Communication Systems 2022; 35(4): e5049. doi: 10.1002/dac.5049

38. Singh H, Solanki RS. Classification & feature extraction of brain tumor from MRI images using modified ANN approach. International Journal of Electrical and Electronics Research 2021; 9(2): 10–15. doi: 10.37391/IJEER.090202

39. Rana SK, Rana SK, Nisar K, et al. Blockchain technology and artificial intelligence based decentralized access control model to enable secure interoperability for healthcare. Sustainability 2022; 14(15): 9471. doi: 10.3390/su14159471

40. Rana AK, Sharma S. Enhanced energy-efficient heterogeneous routing protocols in WSNs for IoT application. International Journal of Engineering and Advanced Technology 2019; 9(1): 4418–4425. doi: 10.35940/ijeat. A1342.109119

41. Rana AK, Sharma S. Industry 4.0 manufacturing based on IoT, cloud computing, and big data: Manufacturing purpose scenario. In: Hura GS, Kumar SA, Siong HL (editors). Advances in Communication and Computational Technology. Springer; 2021. pp. 1109–1119.

42. Rana AK, Sharma S. Contiki cooja security solution (CCSS) with IPv6 routing protocol for low-power and lossy networks (RPL) in internet of things applications. In: Marriwala N, Tripathi CC, Kumar D, Jain S (editors). Mobile Radio Communications and 5G Networks. Springer; 2020. pp. 251–259.

43. Kumar A, Sharma S. IFTTT rely based a semantic web approach to simplifying trigger-action programming for end-user application with IoT applications. In: Pandey R, Paprzycki M, Srivastava N, et al (editors). Semantic IoT: Theory and Applications. Springer; 2021. pp. 385–397.

44. Kumar A, Sharma S. Internet of things (IoT) with energy sector-challenges and development. In: Electrical and Electronic Devices, Circuits and Materials: Design and Applications. CRC Press; 2021. pp. 183.

45. Kumar A, Sharma S, Dhawan S, et al. E-learning with Internet of things. In: Goyal N, Sharma S, Rana AK, Tripathi SL (editors). Internet of Things: Robotic and Drone Technology. CRC Press; 2022. pp. 195.

46. Rana AK, Sharma S. The fusion of blockchain and IoT technologies with industry 4.0. In: Sharma K, Gupta A, Sharma B, Tripathi SL (editors). Intelligent Communication and Automation Systems. CRC Press; 2021. pp. 275–290.

47. Rana AK, Sharma S, Dhawan S, Tayal S. Towards secure deployment on the Internet of robotic things: Architecture, applications, and challenges. In: Gupta R, Khari M (editors). Multimodal Biometric Systems. CRC Press; 2021. pp. 135–148.

48. Arora S, Sharma S, Rana AK. Ultrawide band antenna for wireless communications. In: Goyal N, Sharma S, Kumar Rana A, Tripathi SL (editors). Internet of Things: Robotic and Drone Technology. CRC Press; 2022. pp. 95.

49. Kumar A, Sharma S. Demur and routing protocols with application in underwater wireless sensor networks for smart city. In: Goyal N, Gupta R, Khari M (editors). Energy-efficient Underwater Wireless Communications and Networking. IGI Global; 2020. pp. 262–278.

50. Pan YM, Leung KW, Lu K. Compact quasi-isotropic dielectric resonator antenna with small ground plane. IEEE Transactions on Antennas and Propagation 2013; 62(2): 577–585. doi: 10.1109/TAP.2013.2292082

51. Kumar MR. A compact graphene based nano-antenna for communication in nano-network. Journal of the Institute of Electronics and Computer 2019; 1: 17–27. doi: 10.33969/JIEC.2019.11003

52. Kavitha S, Sairam K, Singh A. Graphene plasmonic nano-antenna for terahertz communication. SN Applied Sciences 2022; 4: 114. doi: 10.1007/s42452-022-04986-1




DOI: https://doi.org/10.32629/jai.v6i2.578

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Ram Krishna, Rajveer Singh Yaduvanshi, Harendra Singh, Arun Kumar Rana, Nitin Goyal, Ravinder Kumar

License URL: https://creativecommons.org/licenses/by-nc/4.0