Designing new student performance prediction model using ensemble machine learning
Abstract
Keywords
Full Text:
PDFReferences
1. Jiang W, Chen Z, Xiang Y, et al. SSEM: A novel self-adaptive stacking ensemble model for classification. IEEE Access 2019; 7: 120337–120349. doi: 10.1109/ACCESS.2019.2933262.2.
2. Bujang SDA, Selamat A, Ibrahim R, et al. Multiclass prediction model for student grade prediction using machine learning. IEEE Access 2021; 9: 95608–95621. doi: 10.1109/ACCESS.2021.3093563.
3. Pang Y, Judd N, O’Brien J, Ben-Avie M. Predicting students’ graduation outcomes through support vector machines. In: 2017 Frontiers in Education Conference (FIE); 2017 Oct 18–21; Indianapolis, IN, USA. New York: IEEE; 2017. doi: 10.1109/FIE.2017.8190666.
4. Ünal F. Data mining for student performance prediction in education. In: Birant D (editor). Data mining—Methods, applications, and systems. London: IntechOpen; 2021. doi: 10.5772/intechopen.91449.
5. Palacios CA, Reyes-Suárez JA, Bearzotti LA, et al. Knowledge discovery for higher education student retention based on data mining: Machine learning algorithms and case study in Chile. Entropy 2021; 23(4): 485. doi: 10.3390/e23040485.
6. Kaunang FJ, Rotikan R. Students’ academic performance prediction using data mining. In: 2018 Third International Conference on Informatics and Computing (ICIC); 2018 Oct 17–18; Palembang, Indonesia. New York: IEEE; 2019. doi: 10.1109/IAC.2018.8780547.
7. Ruiz S, Urretavizcaya M, Rodríguez C, Fernández-Castro I. Predicting students’ outcomes from emotional response in the classroom and attendance. Interactive Learning Environments 2020; 28(1): 107–129. doi: 10.1080/10494820.2018.1528282.
8. Cervera DEM, Parra OJS, Prado MAA. Forecasting model with machine learning in higher education ICFES exams. International Journal of Electrical and Computer Engineering 2021; 11(6): 5402–5410. doi: 10.11591/ijece.v11i6.pp5402-5410.
9. Sethi K, Jaiswal V, Ansari MD. Machine learning based support system for students to select stream (subject). Recent Advances in Computer Science and Communications 2020; 13(3): 336–344. doi: 10.2174/2213275912666181128120527.
10. Marbouti F, Diefes-Dux HA, Madhavan K. Models for early prediction of at-risk students in a course using standards-based grading. Computers & Education 2016; 103: 1–15. doi: 10.1016/j.compedu.2016.09.005.
11. Pushpa SK, Manjunath TN, Mrunal TV, et al. Class result prediction using machine learning. In: 2017 International Conference on Smart Technology for Smart Nation (SmartTechCon); 2017 Aug 17–19; Bengaluru, India. New York: IEEE; 2018. doi: 10.1109/SmartTechCon.2017.8358559.
12. Tuggener L, Amirian M, Rombach K, et al. Automated machine learning in practice: State of the art and recent results. In: 2019 6th Swiss Conference on Data Science (SDS); 2019 Jun 14; Bern, Switzerland. New York: IEEE; 2019. doi: 10.1109/SDS.2019.00-11.
13. Pavlyshenko B. Using stacking approaches for machine learning models. In: 2018 IEEE 2nd International Conference on Data Stream Mining and Processing (DSMP); 2018 Aug 21–25; Lviv, Ukraine. New York: IEEE; 2018. doi: 10.1109/DSMP.2018.8478522.
14. Xu J. An extended one-versus-rest support vector machine for multi-label classification. Neurocomputing 2011; 74(17): 3114–3124. doi: 10.1016/j.neucom.2011.04.024.
15. Trabelsi A, Elouedi Z, Lefevre E. Decision tree classifiers for evidential attribute values and class labels. Fuzzy Sets and Systems 2019; 366: 46–62. doi: 10.1016/j.fss.2018.11.006.
16. Rezaeijo SM, Abedi-Firouzjah R, Ghorvei M, Sarnameh S. Screening of COVID-19 based on the extracted radiomics features from chest CT images. Journal of X-Ray Science and Technology 2021; 29(2): .229–243. doi: 10.3233/XST-200831.
17. Churcher A, Ullah R, Ahmad J, et al. An experimental analysis of attack classification using machine learning in IoT networks. Sensors (Switzerland) 2021; 21(2): 446. doi: 10.3390/s21020446.
18. Akçapınar G, Altun A, Aşkar P. Using learning analytics to develop early-warning system for at-risk students. International Journal of Educational Technology in Higher Education 2019; 16: 40. doi: 10.1186/s41239-019-0172-z.
19. Hutagaol N, Suharjito. Predictive modelling of student dropout using ensemble classifier method in higher education. Advances in Science, Technology and Engineering Systems 2019; 4(4): 206–211. doi: 10.25046/aj040425.
20. Rohilla N, Rai M. Advance machine learning techniques used for detecting and classification of disease in plants: A review. In: 2021 3rd International Conference on Advances in Computing, Communication Control and Networking (ICAC3N); 2021 Dec 17–18; Greater Noida, India. New York: IEEE; 2021. doi: 10.1109/ICAC3N53548.2021.9725616.
21. Saluja R, Rai M. Analysis of existing ML techniques for students success prediction. In: 2022 Seventh International Conference on Parallel, Distributed and Grid Computing (PDGC); 2022 Nov 25–27; Solan, Himachal Pradesh, India. New York: IEEE; 2022. p. 507–512. doi: 10.1109/PDGC56933.2022.10053236.
22. Naseer M, Zhang W, Zhu W. Prediction of coding intricacy in a software engineering team through machine learning to ensure cooperative learning and sustainable education. Sustainability (Switzerland) 2020; 12(21): 8986. doi: 10.3390/su12218986.
23. Wang S, Jiang L, Li C. Adapting naive Bayes tree for text classification. Knowledge and Information Systems 2015; 44: 77–89. doi: 10.1007/s10115-014-0746-y.
24. Hussain S, Khan MQ. Student-Performulator: Predicting students’ academic performance at secondary and intermediate level using machine learning. Annals of Data Science 2021; 10: 637–655. doi: 10.1007/s40745-021-00341-0.
25. Sorour SE, Goda K, Mine T. Evaluation of effectiveness of time-series comments by using machine learning techniques. Journal of Information Processing 2015; 23(6): 784–794. doi: 10.2197/ipsjjip.23.784.
26. Park HS, Yoo SJ. Early dropout prediction in online learning of university using machine learning. International Journal on Informatics Visualization 2021; 5(4): 347–353. doi: 10.30630/JOIV.5.4.732.
27. Singh M, Verma C, Kumar R, Juneja P. Towards enthusiasm prediction of Portuguese school’s students towards higher education in realtime. In: 2020 International Conference on Computation, Automation and Knowledge Management (ICCAKM); 2020 Jan 9–10; Dubai, United Arab Emirates. New York: IEEE; 2020. doi: 10.1109/ICCAKM46823.2020.9051459.
28. Burman I, Som S. Predicting students academic performance using Support Vector Machine. In: 2019 Amity International Conference on Artificial Intelligence (AICAI); 2019 Feb 4–6; Dubai, United Arab Emirates. New York: IEEE; 2019. doi: 10.1109/AICAI.2019.8701260.
29. Altabrawee H, Ali OAJ, Ajmi SQ. Predicting students’ performance using machine learning techniques. Journal of University of Babylon for Pure and Applied Sciences 2019; 27(1): 194–205.
30. Nti IK, Adekoya AF, Weyori BA. A comprehensive evaluation of ensemble learning for stock-market prediction. Journal of Big Data 2020; 7: 20. doi: 10.1186/s40537-020-00299-5.
31. Wibawa AS, Purwarianti A. Indonesian Named-entity Recognition for 15 classes using ensemble supervised learning. Procedia Computer Science 2016; 81: 221–228. doi: 10.1016/j.procs.2016.04.053.
32. Hu X, Zhang H, Mei H, et al. Landslide susceptibility mapping using the stacking ensemble machine learning method in Lushui, Southwest China. Applied Sciences 2020; 10(11): 4016. doi: 10.3390/app10114016.
33. Rahman M, Chen N, Elbeltagi A, et al. Application of stacking hybrid machine learning algorithms in delineating multi-type flooding in Bangladesh. Journal of Environmental Managemen 2021; 295: 113086. doi: 10.1016/j.jenvman.2021.113086.
34. Chung J, Teo J. Single classifier vs. ensemble machine learning approaches for mental health prediction. Brain Informatics 2023; 10: 1. doi: 10.1186/s40708-022-00180-6.
35. Smirani LK, Yamani HA, Menzli LJ, Boulahia JA. Using ensemble learning algorithms to predict student failure and enabling customized educational paths. Scientific Programming 2022; 2022: 3805235. doi: 10.1155/2022/3805235.
36. Barella VJ, Garcia LPF, de Souto MCP, et al. Assessing the data complexity of imbalanced datasets. Information Sciences 2021; 553: 83–109. doi: 10.1016/j.ins.2020.12.006.
37. Bej S, Davtyan N, Wolfien M, et al. LoRAS: An oversampling approach for imbalanced datasets. Machine Learning 2021; 110: 279–301. doi: 10.1007/s10994-020-05913-4.
38. Lemaître G, Nogueira F, Aridas CK. Imbalanced-learn: A python toolbox to tackle the curse of imbalanced datasets in machine learning. Journal of Machine Learning Research 2017; 18: 1–5.
39. Davagdorj K, Lee JS, Pham VH, Ryu KH. A comparative analysis of machine learning methods for class imbalance in a smoking cessation intervention. Applied Sciences 2020; 10(9): 3307. doi: 10.3390/app10093307.
40. Seo JH, Kim YH. Machine-learning approach to optimize smote ratio in class imbalance dataset for intrusion detection. Computational Intelligence and Neuroscience 2018; 2018: 9704672. doi: 10.1155/2018/9704672.
41. Ijaz MF, Alfian G, Syafrudin M, Rhee J. Hybrid Prediction Model for type 2 diabetes and hypertension using DBSCAN-based outlier detection, Synthetic Minority Over Sampling Technique (SMOTE), and random forest. Applied Sciences 2018; 8(8): 1325. doi: 10.3390/app8081325.
DOI: https://doi.org/10.32629/jai.v6i1.583
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Rajan Saluja, Munishwar Rai, Rashmi Saluja
License URL: https://creativecommons.org/licenses/by-nc/4.0