Mining timed sequential patterns: The Minits-AllOcc technique
Abstract
Keywords
Full Text:
PDFReferences
1. Agrawal R, Srikant R. Mining sequential patterns. In: Proceedings of the eleventh international conference on data engineering; 1995 Mar 6–10; Taipei. New York: IEEE; 2002. p. 3–14. doi: 10.1109/ICDE.1995.380415.
2. Brock FV, Crawford KC, Elliott RL, et al. The Oklahoma Mesonet: A technical overview. Journal of Atmospheric and Oceanic Technology 1995; 12(1): 5–19. doi: 10.1175/1520-0426(1995)012<0005:tomato>2.0.co;2.
3. McPherson RA, Friedrich CA, Crawford KC, et al. Statewide monitoring of the mesoscale environment: A technical update on the Oklahoma Mesonet. Journal of Atmospheric and Oceanic Technology 2007; 24(3): 301–321. doi: 10.1175/JTECH1976.1.
4. Jay N, Herengt G, Albuisson E, Kohler F. Sequential pattern mining and classification of patient path. Medinfo 2004; 1667.
5. Pramono YWT, Suhardi. Anomaly-based intrusion detection and prevention system on website usage using rule-growth sequential pattern analysis: Case study: Statistics of Indonesia (BPS) website. In: 2014 International Conference of Advanced Informatics: Concept, Theory and Application (ICAICTA); 2014 Aug 20–21; Bandung. New York: IEEE; 2015. p. 203–208. doi: 10.1109/ICAICTA.2014.7005941.
6. Dermy O, Brun A. Can we take advantage of time-interval pattern mining to model students activity? In: International Conference on Educational Data Mining; 2020 Jul 10–13; Online. Massachusetts: International Educational Data Mining Society; 2020. p. 69–80.
7. Rossetti MA. Analysis of weather events on US railroads [Report]. Volpe National Transportation Systems Center; 2007.
8. Simes T. A blow to train operations, can strong winds cause derailment [Report]. Australian Transport Safety Bureau; 2011.
9. Han J, Pei J, Mortazavi-Asl B, et al. FreeSpan: Frequent pattern-projected sequential pattern mining. In: Proceedings of the sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 2000 Aug 20–23; Boston. New York: Association for Computing Machinery; 2000. p. 355–359.
10. Han J, Pei J, Mortazavi-Asl B, et al. PrefixSpan: Mining sequential patterns efficiently by prefix-projected pattern growth. In: Proceedings of the 17th International Conference on Data Engineering; 2001 Apr 2–6; Heidelberg. New York: IEEE; 2002. p. 215–224.
11. Zaki MJ. Spade: An efficient algorithm for mining frequent sequences. Machine Learning 2001; 42: 31–60. doi: 10.1023/A:1007652502315.
12. Jou C, Shyur HJ, Yen CY. Timed sequential pattern mining based on confidence in accumulated intervals. In: Proceedings of the 2014 IEEE 15th International Conference on Information Reuse and Integration (IEEE IRI 2014); 2014 Aug 13–15; Redwood City. New York: IEEE; 2015. p. 771–778. doi: 10.1109/IRI.2014.7051967.
13. Kumar S, Mohbey KK. A review on big data based parallel and distributed approaches of pattern mining. Journal of King Saud University-Computer and Information Sciences 2022; 34(5): 1639–1662. doi: 10.1016/j.jksuci.2019.09.006.
14. Ghorbani M, Abessi M. A new methodology for mining frequent itemsets on temporal data. IEEE Transactions on Engineering Management 2017; 64(4): 566–573. doi: 10.1109/TEM.2017.2712606.
15. Zhao P, Jonietz D, Raubal M. Applying frequent-pattern mining and time geography to impute gaps in smartphone-based human-movement data. International Journal of Geographical Information Science 2021; 35(11): 2187–2215. doi: 10.1080/13658816.2020.1862126.
16. Aggarwal A, Toshniwal D. Frequent pattern mining on time and location aware air quality data. IEEE Access 2019; 7: 98921–98933. doi: 10.1109/ACCESS.2019.2930004.
17. Ritika, Gupta SK. HUFTI-SPM: High-utility and frequent time-interval sequential pattern mining from transactional databases. International Journal of Data Science and Analytics 2022; 13: 239–250. doi: 10.1007/s41060-021-00297-7.
18. Huang JW, Jaysawal BP, Chen KY, Wu YB. Mining frequent and top-k high utility time interval-based events with duration patterns. Knowledge and Information Systems 2019; 61: 1331–1359. doi: 10.1007/s10115-019-01333-6.
19. Mirbagheri SM, Hamilton HJ. Mining high utility patterns in interval-based event sequences. Data & Knowledge Engineering 2021; 135: 101924. doi: 10.1016/j.datak.2021.101924.
20. Giannotti F, Nanni M, Pedreschi D. Efficient mining of temporally annotated sequences. In: Frasconi P, Landwehr N, Manco G, Vreeken J (editors). Proceedings of the 2006 SIAM International Conference on Data Mining; 2006 Apr 20–22; Bethesda. Philadelphia: Society for Industrial and Applied Mathematics; 2006. p. 348–359. doi: 10.1137/1.9781611972764.31.
21. Yang H, Gruenwald L, Boulanger M. A novel real-time framework for extracting patterns from trajectory data streams. In: Proceedings of the 4th ACM SIGSPATIAL International Workshop on GeoStreaming; 2013 Nov 5; Orlando. New York: Association for Computing Machinery; 2013. p. 26–32. doi: 10.1145/2534303.2534313.
22. Titarenko SS, Titarenko VN, Aivaliotis G, Palczewski J. Fast implementation of pattern mining algorithms with time stamp uncertainties and temporal constraints. Journal of Big Data 2019; 6(1): 1–34. doi: 10.1186/s40537-019-0200-9.
23. Karsoum S, Gruenwald L, Barrus C, Leal E. Using timed sequential patterns in the transportation industry. In: 2019 IEEE International Conference on Big Data (Big Data); 2019 Dec 9–12; Los Angeles. New York: IEEE; 2020. p. 3573–3582. doi: 10.1109/BigData47090.2019.9006394.
24. Srikant R, Agrawal R. Mining sequential patterns: Generalizations and performance improvements. In: Apers P, Bouzeghoub M, Gardarin G (editors). Advances in Database Technology—EDBT’96: 5th International Conference on Extending Database Technology; 1996 Mar 25–29; Avignon. Heidelberg: Springer; 1996. p. 1–17.
25. Fournier-Viger P, Lin JCW, Kiran RU, et al. A survey of sequential pattern mining. Data Science and Pattern Recognition 2017; 1: 54–77.
26. Huynh B, Vo B, Snasel V. An efficient method for mining frequent sequential patterns using multi-core processors. Applied Intelligence 2017; 46: 703–16. doi: 10.1007/s10489-016-0859-y.
27. Li H, Zhou X, Pan C. Study on GSP algorithm based on Hadoop. In: 2015 IEEE 5th International Conference on Electronics Information and Emergency Communication; 2015 May 14–16; Beijing. New York: IEEE; 2015. p. 321–324. doi: 10.1109/ICEIEC.2015.7284549.
28. Wei Y, Liu D, Duan L. Distributed PrefixSpan algorithm based on MapReduce. In: 2012 International Symposium on Information Technologies in Medicine and Education; 2012 Aug 3–5; Hokkaido. New York: IEEE; 2012. p. 901–904. doi: 10.1109/ITiME.2012.6291449.
29. Yu X, Li Q, Liu J. Scalable and parallel sequential pattern mining using spark. World Wide Web 2019; 22(1): 295–324. doi: 10.1007/s11280-018-0566-1.
30. Gan W, Lin JCW, Fournier-Viger P, et al. A survey of parallel sequential pattern mining. ACM Transactions on Knowledge Discovery from Data (TKDD) 2019; 13(3): 1–34. doi: 10.1145/3314107.
31. Dong G, Pei J. Sequence data mining. New York: Springer Science & Business Media; 2007.
32. Patnaik D, Butler P, Ramakrishnan N, et al. Experiences with mining temporal event sequences from electronic medical records: Initial successes and some challenges. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 2011 Aug 21–24; San Diego. New York: Association for Computing Machinery; 2011. p. 360–368. doi: 10.1145/2020408.2020468.
33. Chen YL, Chiang MC, Ko MT. Discovering time-interval sequential patterns in sequence databases. Expert Systems with Applications 2003; 25(3): 343–354. doi: 10.1016/S0957-4174(03)00075-7.
34. Hu YH, Huang TCK, Yang HR, Chen YL. On mining multi-time-interval sequential patterns. Data & Knowledge Engineering 2009; 68(10): 1112–1127. doi: 10.1016/j.datak.2009.05.003.
35. AlZahrani MY, Mazarbhuiya FA. Discovering constraint-based sequential patterns from medical datasets. International Journal of Recent Technology and Engineering 2019; 8(4): 724–728. doi: 10.35940/ijrte.D7011.118419.
36. Giannotti F, Nanni M, Pinelli F, Pedreschi D. Trajectory pattern mining. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 2007 Aug 12–15; San Jose. New York: Association for Computing Machinery; 2007. p. 330–339. doi: 10.1145/1281192.1281230.
37. Mannila H, Toivonen H, Inkeri Verkamo A. Discovery of frequent episodes in event sequences. Data Mining and Knowledge Discovery 1997; 1: 259–289. doi: 10.1023/A:1009748302351.
38. Zimmermann A. Understanding episode mining techniques: Benchmarking on diverse, realistic, artificial data. Intelligent Data Analysis 2014; 18(5): 761–791. doi: 10.3233/IDA-140668.
39. Zhang D, Lee K, Lee I. Mining medical periodic patterns from spatio-temporal trajectories. In: Siuly S, Lee I, Huang Z (editors). Health Information Science: 7th International Conference; 2018 Oct 5–7; Cairns. Berlin: Springer International Publishing; 2018. p. 123–133.
40. Zhang D, Lee K, Lee I. Mining hierarchical semantic periodic patterns from GPS-collected spatio-temporal trajectories. Expert Systems with Applications 2019; 122: 85–101. doi: 10.1016/j.eswa.2018.12.047.
41. Yuan J, Zheng Y, Zhang C, et al. T-drive: Driving directions based on taxi trajectories. In: Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems; 2010 Nov 2; San Jose. New York: Association for Computing Machinery; 2010. p. 99–108. doi: 10.1145/1869790.1869807.
42. Yuan J, Zheng Y, Xie X, Sun G. T-drive: Enhancing driving directions with taxi drivers’ intelligence. IEEE Transactions on Knowledge and Data Engineering 2011; 25(1): 220–232. doi: 10.1109/TKDE.2011.200.
43. Ester M, Kriegel HP, Sander J, Xu X. A density-based algorithm for discovering clusters in large spatial databases with noise. In: Simoudis E, Han J, Fayyad U (editors). Proceedings of the Second International Conference on Knowledge Discovery and Data Mining; 1996 Aug 2–4; Portland. Washington, D.C.: AAAI Press; 1996. p. 226–231.
44. Karsoum S, Gruenwald L, Leal E. Impact of trajectory segmentation on discovering trajectory sequential patterns. In: 2018 IEEE International Conference on Big Data (Big Data); 2018 Dec 10–13; Seattle. New York: IEEE; 2019. p. 3432–3441. doi: 10.1109/BigData.2018.8622209.
45. What is the heat index? [Internet]. Amarillo: Weather Forecast Office; [2021 Oct 17]. Available from: https://www.weather.gov/ama/heatindex.
46. Water Science School. The 100-year flood [Internet]. Virginia: USGS; 2018 [cited 2021 Oct 17]. Available from: https://www.usgs.gov/special-topic/water-science-school/science/100-year-flood?qt-science_center_objects=0#qt-science_center_objects.
47. The Beaufort wind scale [Internet]. London: MetMatters; [cited 2021 Oct 17]. Available from: https://www.rmets.org/resource/beaufort-scale.
48. Dew point vs humidity [Internet]. La Crosse: Weather Forecast Office; [cited 2021 Oct 17]. Available from: https://www.weather.gov/arx/why_dewpoint_vs_humidity.
49. Fournier-Viger P, Lin JCW, Gomariz A, et al. The SPMF open-source data mining library version 2. In: Berendt B, Bringmann B, Fromont É, et al. (editors). 19th European Conference on Principles of Data Mining and Knowledge Discovery (PKDD 2016) Part III; 2016 Sept 19–23; Riva del Garda. Berlin: Springer; 2016. p. 36–40. doi: 10.1007/978-3-319-46131-1_8.
DOI: https://doi.org/10.32629/jai.v6i1.593
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Somayah Karsoum, Clark Barrus, Le Gruenwald, Eleazar Leal
License URL: https://creativecommons.org/licenses/by-nc/4.0